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Objective: to critically assess in vitro methods used to 
evaluate the mechanical behavior of endodontically 
treated teeth restored with intra-radicular posts and co-
res. Literature review: a literature search of in vitro stu-
dies was conducted in PubMed database using the se-
arch terms: (“endodontic*” OR “intracanal post”) AND 
(“fracture” OR “resistance” OR “load” OR “strength”). 
A filter for publication date was set to return studies 
from the last five years (from October 2010 to October 
2015). The research strategy resulted in 1,556 studies. 
After the analysis of the eligibility criteria, 92 articles 
were included in a descriptive analysis. Human upper 
central incisors were used most frequently. The natural 
mobility of teeth was simulated using an artificial pe-
riodontal ligament in 66.7% of the studies. In 32.2% 
of the studies, the load to fracture was applied directly 
to the core. Thermocycling was performed in 27.2% 
of the studies. Cyclic loading was used in 38% of the 
studies. Final considerations: periodontal ligament si-
mulation, thermocycling and cyclic loads are some me-
thods that have been employed to approximate labora-
tory studies to the clinical conditions that teeth restored 
intra-radicular posts and cores are submitted. Novel test 
methodologies, such as step-test and staircase approa-
ch, have been used to evaluate the fatigue behavior of 
this systems. However, it is important do highlight that, 
considering the context in which most of the included 
studies were performed, the extrapolation of the results 
to the clinical practice should be made carefully. 

Keywords: Fatigue. In Vitro Techniques; Tooth, Nonvi-
tal. Dental Dowels.

Introduction
By means of in vitro studies, it is possible to 

standardize and to isolate a variable of interest, 
elucidating any doubts prior to conducting clinical 
studies1. However, over the past few decades, the 
validity of some in vitro dental materials studies 
has been questioned due to the variability in the 
methodological parameters, the lack of represen-
tativeness of the clinical mechanism of failure and 
the poor correlation with clinical behavior2,3. Des-
pite this, and considering that many issues related 
to restorative dental materials are difficult to eva-
luate in clinical studies because of high costs and 
ethical considerations4, the question that arises is: 
How can one simulate in laboratory the clinical con-
ditions that dental materials are submitted?

Initially, it is very important to establish diffe-
rences among in vitro studies. According to Kelly et 
al.2 (2012), in vitro studies can be categorized into 
two main groups: tests involving the measurement 
of physical properties; and tests aiming to simula-
te the clinical behavior2. There are standardized 
tests of mechanical and chemical properties in the 
first group, to include strength, fracture toughness, 
hardness, and thermal expansion, all of which use 
simplified specimens. The second group uses tests 
that try to simulate the oral environment, to inclu-
de parameters such as loading, temperature chan-
ges and humidity, usually employing specimens 
that are more complex and clinically more realis-
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tic2. Therefore, the type of information that is desi-
red is crucial for selecting the most suitable in vitro 
methodology and test parameters.

In contemporary dentistry, the choice of the 
best restorative treatment for endodontically trea-
ted teeth is still a question. Many factors may affect 
the longevity of pulpless teeth, such as the quan-
tity of remain dentin; length, material and design 
of the post; apical seal; and position of the tooth 
in the arch5. Laboratory studies have been widely 
employed to evaluate the impact of these factors 
on the mechanical behavior of endodontically tre-
ated teeth, since clinical trials are time-consuming, 
costly and standardization is sometimes difficult6. 
Different methodologies, involving different test pa-
rameters, have been applied in laboratory studies 
aiming to predict the clinical behavior of endodonti-
cally treated teeth, to include fatigue tests, mecha-
nical cycling and thermocycling.

The purpose of this structured review was to com-
pile and to critically assess the laboratory methods 
that have been employed to evaluate the mechani-
cal behavior of endodontically treated teeth restored 
with intra-radicular posts and cores, including direct 
posts, such as glass fiber, and indirect cast posts.

Literature review

Strategy search
A literature search of in vitro studies was con-

ducted in the PubMed database using the sear-

ch terms of: (“endodontic*” OR “intracanal post”) 
AND (“fracture” OR “resistance” OR “load” OR 
“strength”). The search was made in 30 October 
2015. A filter for publication date was set to return 
studies from the last five years (from October 2010 
to October 2015). The inclusion criteria were: frac-
ture strength studies containing at least one group 
with endodontically treated teeth restored with 
an intracanal post and core (irrespective of being 
a prefabricated post, such as glass fiber, or an in-
direct cast post); studies using human teeth of the 
secondary dentition with mature radicular apices 
or studies using animal teeth. The following ma-
nuscripts were excluded: review articles; studies of 
adhesive strength and finite element analysis; or 
in vitro studies using roots with a vertical fractu-
re before the test and re-attached fragments. Only 
manuscripts in the English language were consi-
dered. 

Results and discussion
Figure 1 shows the flow diagram that summa-

rizes the study selection process according to the 
PRISMA Statement7. The search strategy resulted 
in 1,556 potentially eligible studies, on which 1,453 
papers were excluded because they did not meet the 
eligibility criteria. The 103 remaining studies were 
selected for full-text analysis, from which 11 papers 
were excluded. Thus, a total of 92 laboratory stu-
dies fulfilled all of the inclusion criteria and were 
included in this review.

Figure 1 –	Flow diagram of studies selection according to PRISMA statement
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The main methodological characteristics of 
the included studies are summarized in Table 1. A 
critical assessment regarding the laboratory me-

thods and the most common test parameters em-
ployed in the included studies are presented and 
discussed.

Table 1 – Main methodological information of the included studies

Author Tooth type Periodontal 
ligament Restoration (Material) Loading type

Amarnath et al.8 (2015) H-LPM no just core monotonic
Bilgin et al.9 (2015) H-LPM no just core monotonic
Bitter et al.10 (2015) H-UCI silicone just core thermomechanical cycling + monotonic
Broch et al.11 (2015) B-I polyether crown (metal) monotonic vs. mechanical cycling + 

monotonic
Dastjerdi et al.12 (2015) H-UCI no crown (metal) thermomechanical cycling + monotonic
Farina et al.13 (2015) H-UC Silicone crown (metal) monotonic
Gaikwad et al.14 (2015) H-UCI no just core monotonic
Güth et al.15 (2015) H-UM no crown (all-ceramic) just mechanical cycling (step-test)
Khaledi et al.16 (2015) H-UCI silicone just core monotonic
Kumar et al.17 (2015) H-UCI no just core monotonic
Kurthukoti et al.18 (2015) H-UCI silicone just core monotonic
Maroulakos et al.19 (2015) H-UI; H-UC no crown (metal) thermomechanical cycling + monotonic
Muangamphan et al.20 (2015) H-UI; H-UC silicone crown (metal) monotonic
Samran et al.21 (2015) H-LPM silicone crown (metal) monotonic
Schmidlin et al.22 (2015) H-UPM silicone crown and endocrown (all-

ceramic)
monotonic

Sonkesriya et al.23 (2015) H-UCI no just core monotonic
Sreedevi et al.24 (2015) H-UCI no crown (metal) monotonic
Vachhani and Asnani25 (2015) H-UCI no just core monotonic
Zhang et al.26 (2015) H-UCI silicone crown (metal) monotonic
Abdulrazzak et al.27 (2014) H-UCI silicone crown (metal) thermocycling + monotonic
Aggarwal et al.28 (2014) H-LPM epoxy resin 

liner
crown (metaloceramic) mechanical cycling + monotonic

Alharbi et al.29 (2014) H-UC no crown (all-ceramic) monotonic vs. mechanical cycling + 
monotonic

Amin et al.30 (2014) H-UCI no just core thermocycling + monotonic
Chieruzzi et al.31 (2014) H-I; H-C no just core monotonic
Franco et al.32 (2014) H-UC no crown (metal) monotonic
Furuya et al.33 (2014) H-UPM silicone crown (metal) monotonic
Gomes et al.34 (2014) H-LPM polyether crown (indirect composite 

resin)
mechanical cycling + monotonic

Krastl et al.35 (2014) H-LPM silicone crown (direct composite resin) thermomechanical cycling + monotonic
Pereira et al.36 (2014) H-UC silicone crown (metal) mechanical cycling + monotonic
Ramírez-Sebastià et al.37 
(2014)

H-UCI no crown and endocrown 
(all-ceramic and indirect 
composite resin)

thermomechanical cycling + monotonic

Rippe et al.38 (2014) H-UC; 
H-LC; 
H-LPM

polyether just core monotonic vs. mechanical cycling + 
monotonic

Santos-Filho et al.39 (2014) B-I polyether crown (metal) monotonic
Singh and Thareja40 (2014) H-UCI no crown (metaloceramic) monotonic
Soundar et al.41 (2014) H-UCI no crown (metal) monotonic
Tey and Lui42 (2014) H-UCI silicone crown (metal) thermocycling + monotonic
Veríssimo et al.43 (2014) B-I polyether crown (metal and all-ceramic) monotonic
Wandscher et al.44 (2014) B-I polyether crown (metal) just mechanical cycling (survival test)
Aggarwal et al.45 (2013) H-UCI silicone just core thermocycling + monotonic
Ambica et al.46 (2013) H-UCI silicone just core monotonic vs. thermomechanical cycling + 

monotonic
Bacchi et al.47 (2013) H-UCI silicone crown (metal) monotonic
Balkaya and Birdal48 (2013) H-UCI silicone just metal coping monotonic
Barcellos et al.49 (2013) H-UC silicone crown (metal) mechanical cycling + monotonic
Carlini-Júnior et al.50 (2013) B-I polyether crown (metal) monotonic
Evangelinaki et al.51 (2013) H-UC silicone crown (metaloceramic and 

all-ceramic)
monotonic

Hou et al.52 (2013) H-LPM silicone crown (metal) mechanical cycling + monotonic
Jiangkongkho et al.53 (2013) H-LPM silicone crown (metal and composite 

resin)
monotonic
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Jindal et al.54 (2013) H-UCI silicone crown (metal) monotonic
Kaya and Ergun55 (2013) H-UCI polyether crown (metal) monotonic
Mobilio et al.56 (2013) H-LPM polyether just metal coping thermomechanical cycling + monotonic
Naumann et al.57 (2013) H-UCI silicone two-unit anterior cantilever-

fixed partial denture (all-
ceramic)

thermomechanical cycling + monotonic

Ozcan and Sahin58 (2013) H-UCI silicone crown (all-ceramic) thermocycling + monotonic
Rippe et al.59 (2013) H-LPM; 

H-LC; 
H-UC

silicone just core monotonic

Samran et al.60 (2013) H-LPM no crown (metal) mechanical cycling + monotonic
Torres-Sánchez et al.61 (2013) H-LPM polysulfide crown (metal) monotonic
Zicari et al.62 (2013) H-UPM no crown (all-ceramic) mechanical cycling + monotonic
Aggarwal et al.63 (2012) H-LPM epoxy resin 

liner
crown (indirect composite 
resin)

mechanical cycling + monotonic

Akman et al.64 (2012) H-UC; 
H-UPM

silicone two-unit cantilever-fixed 
partial denture (metal)

thermocycling + monotonic

Biacchi and Basting65 (2012) H-LM no crown and endocrown (all-
ceramic)

monotonic

Borelli et al.66 (2012) H-UCI polyether just core thermocycling + monotonic
Castro et al.67 (2012) H-UI; 

H-UC;
H-UM; 
H-LM

polyether crown (metal) monotonic

Costa et al.68 (2012) H-UPM; 
H-LPM

silicone just core mechanical cycling + monotonic

Fragou et al.69 (2012) H-UC silicone crown (metalceramic and all-
ceramic)

monotonic

Hegde et al.70 (2012) H-UCI silicone crown (metal) monotonic
Jindal et al.71 (2012) H-UCI silicone crown (metal) monotonic
Kaur et al.72 (2012) H-UCI silicone crown (metal) monotonic
Kumagae et al.73 (2012) H-LPM silicone just core monotonic
Mankar et al.74 (2012) H-UPM no just core monotonic
Mehrvarzfar et al.75 (2012) H-UCI polyether just core monotonic
Nie et al.76 (2012) H-LPM silicone crown (metal) monotonic vs mechanical cycling + 

monotonic
Rosa et al.77 (2012) B-I no just core mechanical cycling + monotonic
Rotunno and Rotunno78 (2012) H-UCI no just core monotonic
Schiavetti and Sannino79 
(2012)

H-PM no just core monotonic

Sterzenbach et al.80 (2012) H-UCI silicone crown (all-ceramic) monotonic vs thermomechanical cycling + 
monotonic

Tunjan et al.81 (2012) H-UCI silicone two-unit anterior cantilever-
fixed partial denture (all-
ceramic)

thermomechanical cycling + monotonic

Zicari et al.82 (2012) H-UPM no just core mechanical cycling + monotonic
Ayad et al.83 (2011) H-UCI silicone crown (metal) monotonic
Carlini-Júnior et al.84 (2011) B-I polyether crown (metal) monotonic
Kathuria et al.85 (2011) H-UCI silicone just core thermocycling + monotonic
Khatter et al.86 (2011) H-UCI silicone just core thermocycling + monotonic
Li et al.87 (2011) H-UCI silicone crown (metal) thermomechanical cycling + monotonic
Makade et al.88 (2011) H-UCI silicone just core monotonic
Mangold and Kern89 (2011) H-LPM no crown (metal) thermomechanical cycling + monotonic
Naumann et al.90 (2011) H-UCI silicone crown (all-ceramic) thermomechanical cycling + monotonic
Ni et al.91 (2011) H-UPM silicone crown (metal) thermomechanical cycling + monotonic
Nothdurft et al.92 (2011) B-I no crown (metal) monotonic vs thermomechanical cycling + 

monotonic
Santana et al.93 (2011) H-LM polyether crown (metal) monotonic
Santini et al.94 (2011) B-I no just core mechanical cycling + monotonic
Sherfudhin et al.95 (2011) H-LPM silicone crown (all-ceramic) mechanical cycling + monotonic
Silva et al.96 (2011) B-I polyether crown (metal) mechanical cycling + monotonic
Solomon and Osman97 (2011) H-UI no just core monotonic
Chuang et al.98 (2010) H-UCI no crown (metaloceramic) thermocycling + monotonic
Silva et al.99 (2010) B-I polyether crown (metal and all-ceramic) monotonic

*H-C: human canine; H-I: human incisor; H-UCI: human upper central incisor; H-UC: human upper canine; H-UPM: human upper pre-molar; H-LC: human lower 
canine; H-LPR: human lower pre-molar; H-LM: human lower molar; B-I: bovine incisor

cont...
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Specimen Preparation

Type of tooth 
Human upper central incisors were used most 

frequently (43.3% of the included studies), followed 
by human lower pre-molars (17.8%), human upper 
canines (7.8%), human upper pre-molars (6.7%) and 
human lower and upper molars (2.2%). A combina-
tion of different types of human teeth was used in 
10.0% of the studies. The literature indicates non-
-axial forces as a risk for fatigue fracture of teeth, 
cement, or restorative material100. However, the po-
sition of the tooth in the arch must be determinant. 
The function of posterior teeth is to accept forces 
applied during closure of the mouth effectively. The-
se forces are directed through the long axes of the 
posterior teeth and, then, dissipated efficiently. The 
anterior teeth, however, are not well positioned to 
accept heavy forces. They are normally positioned 
at a labial angle to the direction of closure, and ac-
cept well the forces of eccentric mandibular move-
ments101. 

Bovine incisors were used in 12.2% studies. 
The use of animal teeth in in vitro studies has been 
motivated by the difficulty in obtaining healthy hu-
man teeth in sufficient quantity, due to the risk of 
infection and for ethical considerations. According 
to Teruel et al.102 (2015), bovine teeth should be the 
first choice as substitutes for human teeth in rese-
arch on the basis of similar chemical compositions. 
However, differences in morphological, chemical 
composition and physical properties between these 
kinds of teeth must be considered when interpre-
ting results obtained from any experiment using 
bovine tooth substrate103.

Periodontal ligament simulation
Periodontal ligament (PDL) is important for the 

mechanisms of stress distribution over teeth. The 
natural mobility of the tooth in the alveolar bone 
was simulated using an artificial PDL in 66.7% of 
the studies, reproducing a more realistic clinical si-
tuation. Materials used to simulate the PDL inclu-
ded: silicon (71.7%), polyether (23.3%), epoxy resin 
liner (3.3%) and polysulfide (1.7%). For the strength 
test, samples were usually included in self-curing 
acrylic resin, epoxy resin and polystyrene resin.

Soares et al.104 (2005) evaluated the influence of 
the embedding material (acrylic resin; polystyrene 
resin) and PDL simulation (absence of ligament or 
presence of polyether, polysulfide, or polyurethane) 
on the fracture behavior of bovine teeth. A signifi-
cant difference was found among the modes of frac-
ture, mainly in relation to the presence of a simu-
lated PDL. When teeth were embedded directly in 
resin, stresses seemed to be concentrated around 
the tooth region localized at the top of the embe-

dding material. However, rigid attachment of the 
root is not found in nature, since the PDL transfers 
stresses applied to the coronal structure to all the 
root surface. 

Core/Crown restoration
In 32.2% of the studies, the load was applied di-

rectly in the core. A crown was used in 59% of the 
studies, followed by crown and endocrown (3.3%), 
two-unit cantilever-fixed partial denture (3.3%) and 
just metal coping (2.2%).

Regarding the crowns and endocrowns, the 
most frequent material used was metal (61%), follo-
wed by all-ceramic crowns (18.6%), metaloceramic 
(5.1%), indirect composite resin (3.4%), and a com-
bination of all ceramic and metaloceramic (3.4%), 
all ceramic and metal crown (3.4%), all-ceramic and 
indirect composite resin (1.7%), metal and indirect 
composite resin (1.7%) and direct composite resin 
(1.7%). The use of metal crowns, even considering 
that the human upper central incisor was the most 
used type of tooth, may be related to the lower labo-
ratory costs when compared with other prosthetic 
materials, like all-ceramic crowns.

The use of a coronal restoration in tests in-
volving the fracture resistance of endodontically 
treated teeth restored with intracanal posts has 
been questioned. A crown creates a ferrule effect 
and different load distribution when placed over a 
core buildup if the margins encircle a sound dentin 
collar105. It may obscure the effects of different buil-
dup techniques16. However, testing post-and-core 
preparations without placement of a crown would 
not have reflected clinical practice.

Loading protocol
The loading protocol applied in the studies is 

summarized in Table 2. The parameters of mecha-
nical cycling and thermocycling are summarized in 
Table 3. 

Most of the included studies classified the failu-
re in repairable (favorable) and non-repairable (un-
favorable), regardless of the loading protocol adop-
ted. Generally, failures at or above the simulated 
bone level were considered favorable; while fractu-
res below the simulated bone level were considered 
unfavorable. The possibility of repairing the tooth 
after the failure was also been use as a criterion 
to classify the failure mode in clinical trials. Root 
fractures or nonrepairable fractures of the post/core 
restoration leading to tooth extraction have been 
considered absolute failures, while loss of post re-
tention or repairable fractures of the core without 
further weakening of the tooth have been conside-
red relative failures106-108. 
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Table 2 – Loading protocol applied in the included studies

Loading % (number of studies)
monotonic 51.1% (47 studies)
mechanical cycling + monotonic 15.2% (14 studies)*
thermocycling + monotonic 10.9% (10 studies)*
thermomechanical cycling + monotonic 13% (12 studies)*
comparison: monotonic vs thermomechanical cycling + monotonic 3.3% (3 studies)*
comparison: monotonic vs mechanical cycling + monotonic 4.3% (4 studies)*
just mechanical cycling 2.2% (2 studies)
TOTAL 100% (92 studies)

*Cycling aimed to promote aging.

Table 3 – Parameters of mechanical and thermocycling

Author (year)
Mechanical cycling Thermocycling

Load amplitude Number of cycles Frequency Temperature Dwell 
time

Number 
cycles

Bitter et al.10 (2015) 50N 1,200,000 nr 5oC to 55oC 120s 6,000
Broch et al.11 (2015) 88N 100,000 2.2 Hz - - -
Dastjerdi et al.12 (2015) 50N 250,000 nr 5oC to 55oC 60s 500

Güth et al.15 (2015) 200N
400-600-800-1,000-1,200-1,400N

5,000 cycles
10,000 cycles each step 5 Hz - - -

Maroulakos et al.19 (2015) 50N 50,000 2 Hz 5oC to 55oC 16s 6,000
Abdulrazzak et al.21 (2014) - - 5oC to 55oC 30s 500
Aggarwal et al.28 (2014) 60N 150,000 50 Hz - - -
Alharbi et al.29 (2014) 250N 1,000,000 nr - - -
Amin et al.30 (2014) - - - 5oC to 55oC 30s 3,000
Gomes et al.34 (2014) 40N 1,200,000 2 Hz - - -
Krastl et al.35 (2014) 49N 1,200,000 1.7 Hz 5oC to 50oC nr 3,000
Pereira et al.36 (2014) 30N 250,000 2.6 Hz - - -
Ramírez-Sebastià et al.37 (2014) 49N 600,000 nr 5oC to 55oC nr 1,500
Rippe et al.38 (2014) 88N 2,000,000 4 Hz - - -
Tey and Lui42 (2014) - - - 5oC to 55oC 30s 500
Wandscher et al.44 (2014) 130N 1,500,000 2.2 Hz - - -
Aggarwal et al.45 (2013) - - - 5oC to 55oC nr 5,000
Ambica et al.46 (2013) 49N 1,200,000 1.3 Hz 5oC to 55oC 30s 5,000
Barcellos et al.49 (2013) 30N 250,000 2.6 Hz - - -
Hou et al.52 (2013) 50N 300,000 2 Hz - - -
Mobilio et al.56 (2013) 10N to 100N 1,500 4mm/min 5oC to 60oC 20 1,500
Naumann et al.57 (2013) 50N 1,200,000 nr 5oC to 55oC 120s 3,000
Ozcan and Sahin58 (2013) - - - 5oC to 55oC 20s 6,000
Samran et al.60 (2013) 50N 1,200,000 1.2 Hz 5oC to 55oC 30s 6,499
Zicari et al.62 (2013) 50N 1,200,000 1.6 Hz - - -
Aggarwal et al.63 (2012) 60N 150,000 5 Hz - - -
Akman et al.64 (2012) - - - 5oC to 55oC 10s 5,000
Borelli et al.66 (2012) - - - 5oC to 60oC 20s 1,500
Costa et al.68 (2012) 30N 250,000 2 Hz - - -
Nie et al.76 (2012) 127.4N 1,200,000 6 Hz - - -
Rosa et al.77 (2012) 90N 1,000,000 4 Hz - - -
Sterzenbach et al.80 (2012) 49N 1,200,000 nr 5oC to 55oC 120s 6,000
Tunjan et al.81 (2012) 50N 1,200,000 1.6 Hz 5oC to 55oC 120s 3,000
Zicari et al.82 (2012) 50N 1,200,000 1.6 Hz - - -
Kathuria et al.85 (2011) - - - 5oC to 55oC 30s 5,000
Khatter et al.86 (2011) - - - 5oC to 55oC 30s 10,000
Li et al.87 (2011) 49N 60,000 1.7 Hz 5oC to 50oC 70s 12,000
Mangold and Kern89 (2011) 45N 1,200,000 1.2 Hz 5oC to 55oC 30s 6,499
Naumann et al.90 (2011) 50N 1,200,000 nr 5oC to 55oC 120s 6,000
Ni et al.91 (2011) 10N N to 100N 3,000 4mm/min 5oC to 60oC 60s 3,000
Nothdurft et al.92 (2011) 50 N 1,200,000 nr 5oC to 55oC nr 10,000
Santini et al.94 (2011) 50N 1,000,000 1 Hz - - -
Sherfudhin et al.95 (2011) 50N to 200N 15,000 2 Hz - - -
Silva et al.96 (2011) 50N 300,000 nr - - -
Chuang et al.98 (2010) - - - 5oC to 60oC 20s 1,500

nr: not reported 
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Monotonic loading
Most of the included studies employed monoto-

nic loading (51.1%) to evaluate the fracture streng-
th of endodontically treated teeth restored with post 
and core material, which is in agreement with the 
review of Naumann et al.6 (2009). A monotonic test 
involves the application of a static load until the 
specimen fractures. This kind of test is usually the 
first step in the evaluation of biomaterials and it is 
commonly used in order to obtain basic knowledge 
regarding the fracture behavior and capacity of re-
sisting fracture. Results obtained from monotonic 
tests must be evaluated with caution with regards 
to the prediction of the clinical behavior. In many 
cases, failure loads far exceed reported ranges for 
mastication, swallowing and bruxism109. 

Masticatory loads are often quoted as ranging 
between 20N and 250N110. The average applied load 
in bruxism was found to be 423N, with a peak load 
of 800N111. There are in vitro studies reporting loads 
to fracture of 1021N for premolars33 and 1406N for 
central incisors42 restored with glass fiber posts and 
metal crowns, values that far exceed the normal 
masticatory loads.

Cyclic loading
Cyclic loading was used in just 38% of the stu-

dies and it involves the application of a minimum 
and a maximum stress, often with constant am-
plitude and a sinusoidal wave mode. This type of 
loading may be used to estimate the survival pro-
bability of a treatment15,44; to evaluate the fatigue 
strength112; and to promote aging, all of which try to 
simulate the oral environment. 

The term ‘fatigue’ is used to define the failure of 
a material subjected to stress or strain over a period 
of time. Failure may manifest itself as fracture, loss 
of compliance, or wear, and it is often influenced 
by environmental factors113. Considering that den-
tal materials are exposed to chemical and loading 
challenges, it is easy to understand why restorative 
procedures usually fail due to fatigue.

One methodology that considers the fatigue 
failure of restorative treatments in endodontically 
treated teeth consists in applying a fixed stress on 
the specimen, and evaluating the number of cycles 
required for failure. The data are then subjected to 
a survival analysis, such as the Kaplan Meier test, 
which for instance it may express the probability 
of specimens surpass a period of time without the 
occurrence failure. Wandscher et al.44 (2014) em-
ployed this methodology to evaluate the survival 
rate of weakened and non-weakened bovine roots 
restored with different intracanal posts. Specimens 
were mechanically cycled (130N, 2.2 Hz and 1.5 
million cycles) and were evaluated after each 5 x 
104 cycles to determine the presence of cracks as a 
primary outcome (event). 

Another method that allows for the estimation 
of survival is the ‘step-test’. This method consists 
in submitting a specimen to increasing load, over a 
fixed number of cycles, until failure114. Data of sur-
vival percentage vs. load levels are then plotted on 
a graph and a log-rank test is normally used to com-
pare the groups. Güth et al.15 (2016) used this me-
thodology to investigate the restoration of broken-
-down endodontically treated molars without fer-
rule effect using glass ceramic crowns on different 
composite resin core buildups. A cyclic load was 
applied at a frequency of 5 Hz, starting with a load 
of 200 N for 5000 cycles, followed by stages of 400, 
600, 800, 1000, 1200 and 1400 N at a maximum of 
30,000 cycles each. Samples were loaded until frac-
ture or to a maximum of 185,000 cycles. The number 
of endured cycles was recorded. The survival proba-
bility at each load interval was calculated based on 
the number of specimens that started the interval 
intact and the number of specimens that fractured 
during that interval. The comparison among the 
groups was performed using a log-rank test. This 
methodology may be considered an accelerated fa-
tigue test, remaining at an intermediate level be-
tween the monotonic tests (employ very high single 
load until failure, not clinically relevant) and tradi-
tional cyclic fatigue tests (employ low loads and a 
high number of cycles, which is time-consuming)115.

A very useful testing method for determining 
the mean fatigue strength at any specified life is the 
up-and-down method, also called the ‘staircase’ me-
thod. The term ‘fatigue strength’ identifies the ma-
ximum stress level that the material can support 
without failure at a specified lifetime. The term ‘fa-
tigue limit’ represents the stress below which the 
material supports an infinite number of cycles wi-
thout failure114. To perform an up-and-down test, 
the number of cycles is previously set. The first 
specimen tested is loaded with a stress lower than 
the maximum stress supported by the material in a 
corresponding monotonic test. If the specimen fails 
before reaching the desired lifespan, the stress level 
is decreased by a preselected increment and the se-
cond specimen is tested at a new lower stress level. 
If the first specimen reaches the desired lifespan, 
the stress level is increased by the preselected in-
crement and the second specimen is tested at this 
new higher stress level. The test is continued in 
this manner, with each succeeding specimen being 
tested at a stress level that is one increment above 
or below its predecessor, depending on whether the 
predecessor succeeded or failed. Fifteen to thirty 
specimens are required to adequately perform the 
test. When the test is completed, mathematical ex-
pressions, based on the less frequent event (success 
or failure), are used to calculate the mean fatigue 
strength and the standard deviation at the prescri-
bed life114,116.

The staircase approach was used in the study 
of Wiskott et al.112 (2007) which aimed to closely du-
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plicate intraoral loading conditions in a laboratory 
test designed to compare the resistance to fatigue 
loading of different endodontic post/natural root 
combinations. The repetitive, alternating and mul-
tivectorial intraoral force patterns were reproduced 
by subjecting the specimens to a rotating cantile-
ver beam test. The number of cycles was set at 1 
million, and a force increment of 2.5 N was used. 
The fatigue strength values obtained for each group 
investigated were compared calculating the 95% 
confidence intervals. Means with overlapping inter-
vals were considered equivalent114,116. 

In addition of being used for survival analysis 
and fatigue strength tests, cyclic loading has been 
used to promote the aging of the specimens befo-
re a monotonic test. In the present review, 36.6% 
articles used mechanical cycling for this purpose. 
Mechanical cycling can reproduce the pattern of a 
chewing load, which consists of high numbers of 
low cyclic loads, promoting damage accumulation 
over the time, which is not seen during single-load 
failure testing114. With regards to the load used for 
aging, some authors118 recommended that the fati-
gue load must be lower than the material’s monoto-
nic fracture load. Alternatively, the maximum mas-
ticatory force in canines and premolars in healthy 
men is typically 190 N and 254 N, respectively, and 
119 N and 178 N, respectively, in women119. Thus, 
care should be taken to not exceed the load limit 
of the maximum bite force of humans, which would 
not be adequate for aging, since this load must be 
constant and low.

Great variability in the mechanical cycling pa-
rameters, to include the number of cycles, frequency 
and applied load, can be observed in Table 3.

According to Wiskott et al.120 (1995) cyclic tests 
for simulating the oral environment should be per-
formed with at least 1 million cycles. To reach this 
number, those authors assumed 3 periods of 15 mi-
nutes of chewing per day, at a chewing rate of 60 
cycles per minute (1 Hz), resulting in 2,700 chewing 
cycles per day and 1 million cycles per year.

In the articles included in this review, the ma-
ximum number of cycles used to promote aging was 
2 million,38 which represents, according to Wiskott 
et al.120 (1995), just two years of function. The use of 
low frequencies (number of load cycles per second), 
usually ranging from 1 Hz to 2 Hz, to simulate the 
frequency of chewing activity121, may discourage 
many researchers to carry out studies with a higher 
number of cycles. Six days would be necessary to 
conclude a mechanical cycling for 1 million cycles 
using frequency of 2 Hz. If a higher frequency is 
applied, such as 20 Hz, this time would be redu-
ced to 14 hours, optimizing data collection. Thus, 
the effect of the load frequency in the cyclic fatigue 
behavior of restorative materials is still not com-
pletely understood, which is a relevant subject that 
deserves attention in the future.

Thermocycling
Thermocycling consists of a sequence of thermal 

stressing in which the sample is moved between 
high and low temperature environments for a pre-
determined number of cycles122. This test is conven-
tionally used to simulate the thermal changes and 
water exposure that may occur in the oral cavity 
during eating, drinking, or even breathing123, and it 
is an appropriate method for testing thermal stabi-
lity of a dental material. Hence, specimens subjec-
ted to thermocycling tend to give more meaningful 
results.

Thermocycling was performed in 27.2% of the 
studies, followed by mechanical cycling or not. 
The temperature regimen most used was 5oC to 
55oC, following the recommendations of ISO TR 
11405:1994124, and the most frequent dwell time 
was 30 seconds. The studies differed with respect 
to the number of cycles employed (minimum 500 
cycles; maximum 12,000 cycles) (Table 3).

Aiming test standardization, and considering 
that a specific regimen does not represent the na-
tural in vivo variability, Gale and Darvell123 (1999) 
proposed a thermocycling regimen of 35oC (28s), 
15oC (2s), 35oC (28s), 45oC (2s), which would be cli-
nically relevant. When considering the number of 
cycles, it was proposed that 10,000 cycles might 
represent one service year, considering that cycles 
might occur between 20 and 50 times in a day.

Load application in the fracture tests
In most of the studies, the load was applied at 

an angle of 45o in relation to the long axis of the 
tooth. This angle is usually chosen to simulate the 
average interincisal angle between maxillary and 
mandibular incisors in normal class I occlusion125. 
The site of load application changed according to 
the type of tooth. Hence, for incisors and canines, 
the load was generally applied on the palatal sur-
face, 2-4 mm below the incisal edge. For pre-molars 
and molars, the load was usually applied on the oc-
clusal surface. 

González-Lluch et al.126 (2012) investigated 
the effect of different test parameters on the me-
chanical strength of endodontically treated teeth 
restored with posts and cores using a validated 3D 
biomechanical model and sensitivity analysis. The 
results pointed up the remarkable importance of 
the loading angle on the final restoration strength. 
A better mechanical performance was observed for 
compressive loads (25o and 0o), while a lower resis-
tance was reported when the flexion component of 
the load increased (75o and 90o). Therefore, flexural 
loads seem to be more critical than compressive lo-
ads regarding the mechanical strength of endodon-
tically treated teeth restored with posts and cores.
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The shape and the diameter of the load appli-
cation device define the contact with the tooth and 
the restorative material. Silva et al.127 (2012) evalu-
ated the effect of different load application devices 
(sphere with 2 and 6 mm of diameter; cylinder with 
2 and 6 mm of diameter; wedge shaped device; in-
dividualized metallic antagonist tooth) on fracture 
resistance and failure mode of maxillary premolars 
restored with composite resin. They concluded that 
the load application device influences significantly 
the fracture strength and failure mode of the teeth-
-restoration complex. 

Most part of the studies included in this review 
employed spherical- and cylinder- shaped indenters 
with diameters ranging from 1 mm to 6 mm, besides 
the edge shaped tips and individualized antagonist. 
However, around 40% of the included studies, did 
not reported any information about the shape and 
the dimensions of the devise used to apply the load. 

According to Kelly117 (1999), steel indenter balls 
would have diameters between 40 mm and 1 m to 
develop clinically realistic contacts. This dimension 
was calculated considering simple circular contact 
of 0.5-3 mm diameter between two facets, load ran-
ges of 100 N to 700 N, and contact pressures of 5 
MPa to 890 MPa. Tooth-to-tooth contacts do not 
appear to be well represented by small steel balls, 
since those spherical indenters may cause failures 
that are not seen clinically. Therefore, in order to 
simulate clinical contact pressures, the use of in-
denter balls with a greater diameter should be con-
sidered.

One possible limitation of the present study 
relates to the literature research, in which a filter 
for publications date was set to return studies from 
the last five years, due the great number of arti-
cles published regarding the mechanical behavior 
of teeth restored with post and core. Therefore, the 
results obtained in the present study represent the 
actual scenario of the research in this area. Besides, 
the searched literature was conducted only in the 
PubMed/MEDLINE database. However, although 
conducting a search of EMBASE can result in a wi-
der range of literature, it also results in a higher 
number of false positives in the form of unnecessa-
rily identified studies.128 Thus, PubMed/MEDLINE 
seemed to be a suitable option for reviews in the 
biomedical area.129

Another limitation of this study is that the mode 
of failure obtained in the included in vitro studies 
was not compared to the mode of failure that occurs 
clinically. Many variables may influence the mode 
of failure of endodontically treated teeth restored 
with post and core, such as elasticity modulus130, 
diameter41,42 and length of the post71,82, and ferrule 
effect.27 These variables must be taken into account 
when comparing in vitro and clinical studies to 
avoid misleading conclusions. The authors suggest 
that a future review should be designed to properly 
compare the mode of failure obtained in laboratory 

and in clinical studies for endodontically treated te-
eth restored with different post/core systems.

Conclusions
Regarding sample preparation, upper central 

incisors were used most frequently; the natural 
mobility of teeth was simulated using an artificial 
periodontal ligament in 66.7% of the studies; and 
a crown was placed in 59% of the studies. Mono-
tonic loading tests are still prevalent (51.1%). New 
test methodologies, applying cyclic loads, have been 
employed to evaluate the fatigue strength of tee-
th restored with posts and cores, such as step-test 
and staircase approach. However, the methodology 
employed in most of the in vitro studies did not re-
produce the clinical challenges that the endodonti-
cally treated teeth restored with post and core are 
submitted in mouth, such as cyclic loading, pH and 
temperature variations and humidity. Therefore, 
the extrapolation of the in vitro results to the clini-
cal practice should be made carefully.

Considering future publications, the authors 
claim that more details should be given in the des-
cription of the fracture strength tests, since many 
articles do not show enough information regarding 
the shape and dimension of the device used for load 
applications.

It is still important to highlight the heterogenei-
ty among the studies, which require caution when 
trying to compare the results of different studies in 
the literature. 

Resumo

Objetivo: avaliar criticamente os métodos in vitro utili-
zados para avaliar o comportamento mecânico de den-
tes tratados endodonticamente, restaurados com pino 
intra-radicular e núcleo. Revisão de literatura: uma bus-
ca por estudos in vitro foi conduzida na base de dados 
PubMed, utilizando-se os termos: (“endodontic*” OU 
“intracanal post”) E (“fracture” OU “resistance” OU 
“load” OU “strength”). Durante a busca, utilizou-se um 
filtro para a seleção de publicações do período com-
preendido entre outubro de 2010 a outubro de 2015. 
A estratégia de busca resultou em 1556 artigos. Após a 
análise dos critérios de elegibilidade, 92 artigos foram 
incluídos em uma análise descritiva. Incisivos centrais 
superiores foram os dentes mais frequentemente utili-
zados nos estudos. A mobilidade natural dos dentes foi 
simulada por meio de ligamento periodontal em 66,7% 
dos artigos incluídos. Em 32,2% dos estudos, a carga 
para fratura foi aplicada diretamente no núcleo. Cicla-
gem térmica foi realizada em 27,2% dos artigos, en-
quanto que carregamento cíclico foi utilizado em ape-
nas 38% dos estudos. Considerações finais: simulação 
do ligamento periodontal, ciclagem térmica e carrega-
mento cíclico são alguns dos métodos utilizados para 
tentar aproximar os estudos laboratoriais das condições 
clínicas a que dentes restaurados com retentores intra-
-radiculares e núcleos são submetidos. Novos tipos de 
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ensaio, como step-test e staircase têm sido empregados 
para avaliar o comportamento à fadiga desses sistemas. 
Entretanto, cabe salientar que, considerando-se o con-
texto no qual a maioria dos estudos foi conduzida, a 
extrapolação dos resultados para a prática clínica deve 
ser realizada com muita cautela. 

Palavras-chave: Fadiga. Técnicas In Vitro. Dente Não 
Vital. Técnica para Retentor Intra-radicular.
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