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a b s t r a c t

Objective: Nowadays recombinant factor VIII is produced in murine cells including in Chi-

nese hamster ovary (CHO) and baby hamster kidney cells (BHK). Previous studies, using the

murine leukemia virus-derived retroviral vector pMFG-FVIII-P140K, modified two recom-

binant human cell lines, HepG2 and Hek293 to produce recombinant factor VIII. In order

to characterize these cells, the present study aimed to analyze the integration pattern of

retroviral vector pMFG-FVIII-P140K.

Methods: This study used ligation-mediated polymerase chain reaction to locate the site of

viral vector integration by sequencing polymerase chain reaction products. The sequences

were compared to genomic databases to characterize respective clones.

Results: The retroviral vector presented different and non-random profiles of integration

between cells lines. A preference of integration for chromosomes 19, 17 and 11 was observed

for HepG2FVIIIdB/P140K and chromosome 9 for Hek293FVIIIdB/P140K. In genomic regions

such as CpG islands and transcription factor binding sites, there was no difference in the

integration profiles for both cell lines. Integration in intronic regions of encoding protein

genes (RefSeq genes) was also observed in both cell lines. Twenty percent of integrations

occurred at fragile sites in the genome of the HepG2 cell line and 17% in Hek293.

Conclusion: The results suggest that the cell type can affect the profile of chromosomal

integration of the retroviral vector used; these differences may interfere in the level of

expression of recombinant proteins.
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Introduction

Hemophilia A is an X-linked bleeding disorder caused by
the absence or abnormality of factor VIII (FVIII), a cofactor
necessary to generate fibrin. Deficiency of FVIII is the most
common coagulation disorder with an incidence of approx-
imately one in 5000 men; it currently affects about 400,000
people worldwide.1,2 Intravenous administration of plasma-
derived or recombinant FVIII (rFVIII) protein is the most
accepted treatment for bleeding episodes in hemophilic
patients.

The production of recombinant FVIII by biopharmaceuti-
cal industries mostly uses murine cell lines such as Chinese
hamster ovary cells (CHO) and baby hamster kidney cells
(BHK) with many studies having shown the efficacy and
safety of these strains.3–5 However, there are some human
pattern post-translational modifications which the murine
cell lines are not able to emanate as these cells do not
present the necessary cellular machinery.6,7 An alternative
would be to use human cell lines capable of performing
the post-translational modifications that occur in the human
body.7

FVIII is one of the most complex proteins produced by
recombinant DNA technology. Although recombinant coag-
ulation factor products have been available in the market
for 20 years,8–10 the heterologous expression of FVIII still
presents some problems such as: gene size, low mRNA
expression, and low protein secretion as most is trapped in
the endoplasmic reticulum. Moreover, all currently approved
recombinant products are produced using murine cells that
have a non-human pattern of post-translational modifica-
tions.

This work generated two human cell lines: HEK293, derived
from kidney, and HepG2, derived from liver tissues which were
genetically modified using a new retroviral vector derived from
the murine leukemia virus (MLV). The pMFG-FVIII-P140K vec-
tor contains the human FVIII gene with the B domain deleted
and the selection marker gene (P140K) that confers resistance
to the drugs, O6-benzylguanine and temozolomide. With this
system, high levels of recombinant FVIII were produced in
HepG2 cells (8 IU/mL).

Selecting a human cell line with high productivity of
recombinant FVIII is the first step in the future production
of a recombinant protein more similar to that produced by
the human body with a resulting low risk of inhibitory anti-
body development, thereby providing a better quality of life
for hemophiliac patients.

The goal of this study was to characterize and map the inte-
gration sites of this new vector in two human cell lines. Highly
sensitive ligation-mediated polymerase chain reaction (LM-
PCR) was combined with sequencing to identify integration
patterns of a MLV vector carrying rFVIII. In this work, a detailed
mapping of integration sites of the human cell expression
of recombinant FVIII was performed using a very stringent
selection method. Analyses are very important to understand
the behavior of these viral vectors and whether their inte-

gration sites can influence the expression of recombinant
proteins.
2 0 1 4;36(3):213–218

Methods

Cell lines and retroviral vector

Human hepatocellular carcinoma cell (HepG2 – ATCC num-
ber HB-8065) and human embryonic kidney cell lines (Hek293
– ATCC number CRL-1573) were transduced with a retro-
virus vector (pMFG-P140K) that contains elements derived
from the Moloney murine leukemia virus (MoMuLV). This is
a bicistronic vector, which can express the P140K resistance
gene and the human B-domain-deleted FVIII coagulation fac-
tor. Stable recombinant human FVIII-producing cell lines were
obtained by highly stringent O6-benzylguanine and temo-
zolomide treatment. The rFVIII expressing cells were named
HepG2FVIIIdB/P140K and Hek293FVIIIdB/P140K.

Factor VIII activity quantification

Supernatants were harvested and analyzed for FVIII expres-
sion using a one-stage clotting assay (activated partial
thromboplastin time – aPTT). The FVIII concentrations are
given as international units (IU) as defined by the World Health
Organization; 1 IU/mL FVIII is equivalent to 200 ng/mL. Briefly,
a test sample of 100 �L of FVIII-deficient plasma (Biomerieux,
Durham) was incubated at 37 ◦C with 100 �L of the APTT
reagent (Platelin® LS – Biomerieux). Clotting was initiated
by the addition of 100 �L 25 mM CaCl2 and clotting times
were determined using the COAG-A-MATE device (Organon
Teknika).

Ligation-mediated polymerase chain reaction

Integration sites were cloned by LM-PCR as previously
described.11 Briefly, genomic DNA was extracted from 3 × 106

cells digested with MseI and SacI to prevent amplification of
internal 5′ long terminal repeat (LTR) fragments, and bound
to a MseI double-strand linker. LM-PCR was performed with
nested primers specific for the LTR and the linker.11 PCR
products were shotgun-cloned by the TOPO TA cloning kit
(Invitrogen) into libraries of integration junctions which were
sequenced to saturation.

Sequence analysis

The sequences generated were subjected to an initial anal-
ysis using the ChromasPro computer program. In this first
stage, only the sequence that contained the adapter sequence
(linker) at one end and the sequence related to the retro-
viral LTR at the other end were selected. The sequences were
converted into Fasta format and sent to the Human Genome
BLAT database12 to analyze the homology of the human
genome. Only sequences that showed over 95% homology with
sequences stored in the database were considered.

Then, sequences were submitted to analysis using the pub-
lic Quickmap tool,13 which allows detailed mapping of local

14
range of data on genomic features (genes, transcription start
sites, CpG islands, and TFBS, among others) in a window
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Table 1 – Biological activity of recombinant FVIII in
HepG2FVIIIdB/P140K and Hek293FVIIIdB/P140K cell
lines.

Sample IU/mL

DMEM medium 0.01
Supernatant HepG2 (non-transduced) 0.04
Supernatant Hek293 (non-transduced) 0.12
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Supernatant HepG2FVIIIdB/P140K 7.90
Supernatant Hek293FVIIIdB/P140K 2.10

f ±250 kb around the vector integration site. Moreover, the
trands on either side were analyzed separately and the indi-
idual distance of each feature to the base of integration was
alculated in base pairs.

tatistical analysis

s described by Laufs et al. in 2006, in order to test whether
he number of integrations is equally distributed along the
hromosomes, the chi-squared goodness-of-fit test was used
o analyze whether the observed number of integrations (oi)
rose from a multinomial distribution with specified expected
ntegrations (ei) for the 24 chromosomes (22 autosomes as well
s the sex chromosomes, X and Y). The differences obtained
ere highly significant as evidenced by the retroviral inser-

ion site in chromosome score (RISC) defined as: (oi − ei)2/ei
alues [oi < ei then RISC score × (−1)].15,16 For the detection of
referred genomic integration sites a cut-off of (oi − ei)2/ei = 3
as set.

Fisher’s exact test was used to determine whether there is
n association between the integrations and the TFBS or CpG
sland regions in the two cell lines (p-value ≤ 0.05).

esults

ctivity analysis of biologically active recombinant factor
III

or the characterization of recombinant cell lines, rFVIII activ-
ty levels were determined as previously detailed.

As shown in Table 1, the HepG2FVIIIdB/P140K and
ek293FVIIIdB/P140K cell lines showed high secretion of
iologically active recombinant FVIII (about 7.9 IU/mL and
.1 IU/mL, respectively).

hromosomal integration pattern

total of 422 clones were sequenced of which 201 were derived
rom HepG2FVIIIdB/P140K and 221 from Hek293FVIIIdB/P140K
ells. Of these, 302 (71.56%) sequences were found in the
uman DNA database with identities ≥98% (123 from HepG2
nd 179 from Hek293 cell lines). The integration sites were
equenced to saturation; these sites began to repeat sub-
equent to the integrations described here. DNA sequences
ere submitted to an analysis using the Quickmap tool,12
hich classifies sequences as ‘true’ when they are homol-
gous to only one place in the human genome, or ‘false’
hen sequences are ambiguous, i.e. they are homologous

o more than one location in the genome. Of the 123
1 4;36(3):213–218 215

HepG2FVIIIdB/P140K sequences, 73 were considered true
whereas the remaining 50 were ambiguous. For the 179
Hek293FVIIIdB/P140K sequences, 64 were true and 115 were
ambiguous.

HepG2/FVIIIdBP140K clone sequences showed that inte-
grations occurred in 18 of 23 chromosomes with preference
for specific chromosomes. For these cells, 19% of the inte-
grations occurred within chromosome 19, followed by 16%
within chromosome 17 and 9.6% within chromosome 11. For
the Hek293FVIIIdB/P140K cells, insertions affected 20 of the 23
chromosomes, with high frequencies of integrations occurring
within chromosomes 9 (14%) and X (9%) (Figure 1A).

Statistical analysis of the number of integrations observed
versus expected number of integrations is given by the RISC
score. Using a cut-off of 3, the profiles of integration of
retroviral vectors are not random and differ between the
cells studied. For the HepG2 cell line there was a preference
for chromosomes 19 (RISC = 94.28), 17 (RISC = 49.28) and 11
(RISC = 3.44), and for the HEK293 cell line, a preference for chro-
mosome 9 (RISC = 10.67) was observed as shown in Figure 1B.

Frequency of integration near transcription factor binding
sites and CpG islands

In this study, a total of 140 TFBS were affected by integrations
that occurred in HepG2FVIIIdB/P140K cells. Of these, five inte-
grations occurred in areas within 5 kb, nine integrations within
10 kb and 39 within 30 kb of TFBS. In Hek293FVIIIdB/P140K
kidney cells, a total of 117 TFBS were affected, and only two
insertions occurred within 5 kb, one integration within 10 kb
and nine within 30 kb of TFBS. The integration profiles of
TFBS regions showed no statistically significant differences
between the two cell lines according to Fisher’s exact test (p-
value = 0.606) as shown in Figure 2A.

The distance of integration sites from the next CpG islands
up- or down-stream was also quantified. Of 73 integrations
of the retroviral vector, 106 CpG islands were affected in
the HepG2 cell line. Of these, 17 occurred in areas within
5 kb, eight integrations within 10 kb and 25 within 30 kb
of CpG islands. Of 64 integrations of the retroviral vector
in Hek293FVIIIdB/P140K kidney cells, 81 CpG islands were
affected with six of these insertions occurring within 5 kb, only
one integration within 10 kb and seven within 30 kb of CpG
islands. As shown in Figure 2B, there was no statistical dif-
ferences between cell lines related to the integration profiles
of the retroviral vector pMFG-FVIII-P140K near CpG islands
(Fisher test; p-value = 0.5462).

Analysis of targeted genes

Of the 73 sequences analyzed from HepG2/FVIIIdBP140K cells,
38 (52%) were located in reference sequence (RefSeq) genes.
Of all integrations, only 6% were in exons and 94% were in
intronic regions. For the 64 clones of the Hek293/FVIIIdBP140K
cell line, 28 (44%) were integrated into RefSeq genes; 10% were

in exons and 90% in regions of introns. The frequency of retro-
viral vector insertions in RefSeq genes in HepG2 cells (52%)
was higher than the results generated by a set of 10,000 ran-
dom integrations simulated by the Quickmap program (about
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Figure 1 – (A) Integration pattern of retroviral vector pMFG-FVIII-P140K in the 23 chromosomes of two cell lines producing
recombinant factor VIII. (B) RISC score – number of chromosomal integrations observed versus number of expected

IIIdB
integrations of the PMFG-FVIII-P140K vector in the HepG2FV

40%). Hek293 cells showed a similar frequency to that expected
randomly (44%).

For HepG2 cells, of the 38 integrations in RefSeq genes,
the gene with the largest number of insertions (32%) was
the collagen type 1 (COL1A1) gene, followed by the Down syn-
drome cell adhesion molecule (DSCAML1) gene (13%). These genes
are located on chromosomes 17 and 11 respectively. Hek293
cells had a total of 28 integrations in RefSeq genes with 29%
occurring in the PPAPR3 gene, which is part of the lipid phos-
phatases family and is located on chromosome 9.

Integration in fragile sites

When retroviral integrations in fragile sites were analyzed,
the HepG2/FVIIIdBP140K cells showed 20% of integrations
in fragile sites whereas Hek293/FVIIIdBP140K cells showed
around 17%. Fragile sites are classified into rare and common
according to their frequency and characteristics on chromo-
somes. Integrations were observed in both groups. As shown
in Figure 3, the most affected fragile sites of HepG2 cells were

FRA11G (5.35%) and FRA11B (5.35%), whereas the most affected
sites for Hek293 were FRA2B (3.77%) and FRA1H (3.77%). When
these results are compared with a set of 10,000 random inte-
grations simulated by the Quickmap computer program, there
/P140K and Hek293FVIIIdB/P140K cell lines (cut-off = 3).

was a difference in the percentage of integration as the inte-
gration was random; expected frequencies would be 0.18% of
fragile sites for HepG2 and 0.44% for Hek293.

Discussion

The present study aimed to characterize the integration pat-
tern of the retroviral vector pMFG-FVIII-P140K in two cell
lines producing recombinant B-deleted FVIII. The strains used
were grown in artificial in vitro conditions using culture and
selected by very stringent treatment using chemotherapeutic
drugs (temozolomide and O6-benzylguanine). The integration
profile of the retrovirus described is specific to these popula-
tions. The cell lines used in this work serve as a model that
may not accurately represent the biology of normal primary
cells.

Through an analysis in the integration sites of the retroviral
vector pMFG-FVIII-P140K, a non-random pattern was observed
for both cells since there was a preference for insertion into
specific chromosomes (19 and 17 in HepG2 and 9 in Hek293) in

a pattern that was not proportional to the size of the chromo-
somes. The distribution of integration sites can be influenced
by various characteristics of the cell population including the
fact that these cells were selected with high stringency and
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have a difficult karyotype to define.17 The differences in the
integration frequencies between chromosomes are in part a
function of gene density. For example, Mitchell et al. in 2004
described that the gene-rich Chromosome 19 showed more
integration than expected by chance, whereas the gene-poor
Chromosome 18 showed less integration.18 The intracellular
location of the chromosomes can also influence integration, as
it has been suggested that this is relatively fixed for each cell
type but differs between cell types.18–20 Moreover, retroviral
vector integration into chromosomes with high gene density
could explain why, when the two cell lines were compared in
this study, the expression of rFVIII in HepG2 was almost four
times higher than for HEK293 cells.

The analysis of insertion in genomic regions showed that
for the HepG2 cell line, 52% of the integrations were in genes
encoding proteins, whereas for HEK293 this figure was 44%.
These results corroborate those of other authors who reported
that the integration of viral vectors derived from MLV are
greater than 45% in cells such as the hematopoietic stem
cells of rhesus monkeys,21 CD34+ cells and HeLa cells.22 It is
worth mentioning that despite the high frequency of integra-
tion within protein-coding genes, more than 90% occurred in
intronic regions in both cell lines. Ustek et al., using next gen-
eration sequencing technology, showed a high frequency of
intragenic integration sites in 293T cells using the lentiviral
vector pLVTHM.23

In regard to the integration into genomic regions, such
as CpG islands and TFBS, the HEK293 and HepG2 cell lines
showed similar integration patterns. However it is interesting
to note that when the distance of retroviral vector integra-
tion was analyzed, the results for integration within 1 kb
of CpG islands and TFBS are not in agreement with the
literature11,17,18,24 as most of the integrations occurred at

a distance of between 30 and 60 kb. This finding may be
related to the fact that in most published studies the authors
used infected cells and analyzed the integration within a

 frequency (%)
3,0 4,0 5,0 6,0

Hek293FVIIIdB/P140K Random

ector in fragile sites of both HepG2FVIIIdB/P140K and
om integration.
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maximum of 48 h and did not use any selection strategy, unlike
the present study in which the cells remained in a culture after
transduction of the retroviral vector and underwent highly
stringent treatment to select a cell clone producing FVIII.

A study by Russo-Carbolante et al., using the Sk-Hep and
293T cell lines and Green Fluorescent Protein (GFP) for selec-
tion, showed that the lentiviral vector had different integration
profiles for the two strains.25 However, when analyzing inser-
tion to specific regions of the genome, such as CpG islands
and transcriptional start sites (TSS), both cells showed similar
integration patterns with over 50% of the integrations occur-
ring at a distance of within 30 kb,25 thus in accordance with the
present study. Since the cells and viral vectors used were dif-
ferent and the integration pattern was similar between cells,
this suggests that it is possible that the selection strategies
used may have an influence on the identification of cell clones
with similar integration sites.

Conclusion

These results show that the vector integration profiles of both
cells were different from those described in the literature pos-
sibly because of the use of selection systems. There is evidence
that there is no preferential integration site of the vector when
the integration profiles into genomic regions are analyzed.
However, the vector showed non-random patterns of chro-
mosomal integration which differ between the studied cell
lines.

HepG2FVIIIdB/P140K cells expressed higher levels of FVIII
compared to Hek293FVIIIdB/P140K, possibly due to a higher
number of integrations in chromosomes with high gene den-
sity (chromosomes 17 and 19).

Together, these results suggest that cell type can affect
the profile of chromosomal integration of the retroviral vec-
tor used and such discrepancies may interfere in the level of
expression of recombinant proteins.
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