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Background: Reports of posttreatment control following antiretroviral therapy (ART)
have prompted the question of how common immune control of HIV infection is in the
absence of ART. In contrast to adult infection, where elite controllers have been very
well characterized and constitute approximately 0.5% of infections, very few data exist
to address this question in paediatric infection.

Methods: We describe 11 ART-naive elite controllers from 10 cohorts of HIV-infected
children being followed in South Africa, Brazil, Thailand, and Europe.

Results: All but one of the elite controllers (91%) are females. The median age at which
control of viraemia was achieved was 6.5 years. Five of these 11 (46%) children lost
control of viraemia at a median age of 12.9 years. Children who maintained control of
viraemia had significantly higher absolute CD4þ cell counts in the period of elite
control than those who lost viraemic control. On the basis of data available from these
cohorts, the prevalence of elite controllers in paediatric infection is estimated to be
5–10-fold lower than in adults.
 Copyright © 2018 Wolters Kluwer Health, Inc. All rights reserved.
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Conclusion: Although conclusions are limited by the study design, these data suggest
that, whilst paediatric elite control can be achieved, compared with adult elite
controllers, this occurs rarely, and takes some years after infection to achieve. Also,
loss of immune control arises in a high proportion of children and often relatively
rapidly. These findings are consistent with the more potent antiviral immune responses
observed in adults and in females.

Copyright � 2018 Wolters Kluwer Health, Inc. All rights reserved.
AIDS 2019, 33:67–75
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Introduction

The large majority of HIV-infected children rapidly
develop AIDS in the absence of antiretroviral therapy
(ART) [1]. In comparison with adults, the children
progress faster without ART, 50% developing AIDS
within 1 year and 60% have died by 2.5 years [1,2].
Surprisingly, ART-naive HIV-infected individuals with
the spontaneous capacity to maintain normal CD4þ T-
cell counts, known as nonprogressors, are more common
in children than adults and constitute 5–10% of ART-
naive HIV-infected children [3–5]. The features of
paediatric nonprogressors (PNP) are high viraemia in the
presence of normal CD4þT-cell counts, reduced CCR5
expression in the central memory CD4þ T-cell subset,
low immune activation, and no correlation with
protective major histocompatibility complex (MHC)
class I molecules (HLA-B�27, HLA-B�57, HLA-
B�58:01 and HLA-B�81:01) [6,7]. Many of these
features are similar to those described in natural hosts
of simian immunodeficiency virus (SIV) infection such as
the sooty mangabey [8,9]. Adult viraemic nonprogressors
(AVNP) appear to be broadly similar [10,11] to PNP but
AVNP are exceptionally rare. Adult nonprogressors
typically have normal CD4þ cell counts but low or
undetectable viral loads and most express the protective
human leukocyte antigen (HLA) alleles described above
[12,13].

Although the nonprogressor status is more frequently
seen in the paediatric population, children with
spontaneous control of viraemia – often termed ‘elite
controllers’ (EC) – have been scarcely described [7].
Definitions of elite controllers in HIV-infected individu-
als have varied but one that reached acceptance is: three or
more consecutive viral loads spanning at least 1 year below
50 HIV RNA copies/ml, in the absence of ART [14–
16]. Estimates of the frequency of elite controllers in adult
infection range between 0.18 and 0.56% [15–19]. The
immune features responsible for elite control of viraemia
remain incompletely understood, although contributing
factors include the spectrum of MHC class I and killer
cell immunoglobulin-like receptors (KIR) molecules
Copyright © 2018 Wolters Kluwer H
expressed, as well as specificity and functionality of the
HIV-specific CD8þ T-cell response [12,13,20–22].

Here we describe a group of 11 ART-naive, vertically
HIV-infected children who fulfil the criteria of elite
controllers. We also describe a larger number of ART-
naive HIV-infected children who achieved transient
aviraemia on one or more occasions but who did not
meet the elite controller criteria. Identifying these
paediatric elite controllers provides an approximate
estimate of the frequency of natural immune control of
HIV infection in children and provides a context
for anecdotal paediatric cases of posttreatment control
[23–25].
Material and methods

Study participants
We defined paediatric elite controllers as vertically HIV-
infected, ART-naive children with three or more
consecutive viral load measurements over a year or
more, that were below the limit of detection. The limit of
detection varied according to centre and the historical
period when the assays were done, and ranged between
less than 150, less than 100, less than 50, and less than
20 copies/ml. ‘Blips’ higher than 1000 copies/ml were
not allowed [15,16,18]. The transient aviraemia (group
was defined as ART-naive, vertically infected children in
whom one or more HIV RNA measurements were
below the limit of detection, but without fulfilling the
elite contoller criteria. The CD4þ T-cell count was not
considered in the definition. Medical records were
reviewed for clinical data, viral loads and CD4þ and
CD8þ T-cell counts. All patients were diagnosed before
10 years of age and/or were born to a mother with
confirmed HIV infection, supporting the notion that
infection had occurred perinatally via mother-to-
child transmission.

Our study involved 10 clinics caring for HIV-infected
children around the world: Kimberley Hospital (Kim-
berley, South Africa), Ithembalabantu Clinic (Durban,
ealth, Inc. All rights reserved.



Elite control in HIV-infected children Vieira et al. 69

ti
ca

ll
y

in
fe

ct
ed

p
ae

d
ia

tr
ic

el
it

e
co

n
tr

o
ll

er
s.

C
o
u
n
tr

y
o
f

o
ri

gi
n

N
u
m

b
er

in
co

h
o
rt

a
Se

x
Ev

id
en

ce
o
f

M
T
C

T
b

Y
ea

r
o
f

b
ir

th
A

ge
at

en
ro

ll
m

en
t

(y
ea

rs
)

A
ge

at
EC

(y
ea

rs
)

A
ge

at
lo

ss
o
f

vi
ra

l
co

n
tr

o
l

(y
ea

rs
)

G
h
an

a
4
0
0

Fe
m

al
e

a,
b

2
0
0
4

3
6

–
So

u
th

A
fr

ic
a

2
0
0

Fe
m

al
e

a,
b

2
0
0
2

8
1
1

–
,

B
ra

zi
lc

B
ra

zi
l

6
4
4

Fe
m

al
e

a,
b

1
9
9
3

4
<

4
–

So
u
th

A
fr

ic
a

2
5
0
1

M
al

e
a,

b
2
0
0
7

3
6

1
0
.4

(s
ta

rt
ed

A
R

T
)

SA
So

u
th

A
fr

ic
a

9
0
3
8

Fe
m

al
e

a,
b

1
9
9
9

1
0

<
1
0

–
in

c
Et

h
io

p
ia

1
0
0

Fe
m

al
e

a
2
0
0
2

8
9

–
U

ga
n
d
a

2
7
8

Fe
m

al
e

a,
b

2
0
0
1

1
2

<
1
2

1
3

Z
im

b
ab

w
e

2
7
8

Fe
m

al
e

a,
b

2
0
0
0

7
1
0

1
2
.6

SA
So

u
th

A
fr

ic
a

9
0
3
8

Fe
m

al
e

a,
b

2
0
1
0

2
2

3
.9

il
c

B
ra

zi
l

5
0
0

Fe
m

al
e

a,
b

1
9
9
9

3
4

8
an

d
c

T
h
ai

la
n
d

3
8
2

Fe
m

al
e

a,
b

1
9
9
6

6
<

6
1
3
.7

EC
,

el
it

e
co

n
tr

o
ll
er

;
M

T
C

T
,

m
o
th

er
-t

o
-c

h
il

d
-t

ra
n
sm

is
si

o
n
.

tu
d
y

co
h
o
rt

w
h
o

d
id

n
o
t

m
ee

t
th

e
cr

it
er

ia
fo

r
b
ei

n
g

an
el

it
e

co
n
tr

o
ll

er
.

:
m

o
th

er
w

it
h

kn
o
w

n
H

IV
in

fe
ct

io
n
.

tr
o
ll

er
n
u
m

b
er

an
d

co
h
o
rt

si
ze

ca
n

n
o
t

re
p
re

se
n
t

th
e

H
IV

-i
n
fe

ct
ed

ch
il
d
re

n
p
o
p
u
la

ti
o
n

in
th

at
re

gi
o
n
.

South Africa), the Family Clinical Research Unit in
Tygerberg Academic Hospital (Cape Town, South
Africa), Instituto Emı́lio Ribas (Sao Paulo, Brazil),
Universidade Federal de Minas Gerais (Belo Horizonte,
Brazil), Great Ormond Street Hospital (London, United
Kingdom), St Mary’s Hospital (London UK), Karolinska
University Hospital (Stockholm, Sweden), Sant Joan de
D�eu Children’s Hospital (Barcelona, Spain), and The
HIV Netherlands Australia Thailand Research Collabo-
ration, Thai Red Cross AIDS Research Centre
(Bangkok, Thailand). The cohorts selected were designed
to enable us to identify any children meeting the criteria
for paediatric elite controllers. We, therefore, sought large
cohorts of HIV-infected children in South Africa, the
country with the largest number of paediatric HIV
infections worldwide, as well as in Brazil and Thailand,
countries also with substantial paediatric HIV epidemics,
in order to sample study populations inside and outside of
Africa, respectively. Finally, we sought paediatric elite
controllers among some of the smaller paediatric HIV
cohorts being followed in Europe, which nonetheless are
largely constituted of HIV-infected African children.
Informed consent was obtained from all study partici-
pants, and for underage children, from their caregivers.

Statistical methods
Clinical and laboratory results were described using absolute
numbers, percentages, medians, and interquartile ranges
(IQR). Comparisons were performed using Wilcoxon
rank-sum test for continuous variables and chi-square or
Fisher’s exact test for categorical variables as appropriate.Age
to achieving paediatric elite controller status was compared
among those who maintained elite control and those who
reboundedviaKaplan–Meier survival analysis using the log-
rank test. We assumed a two-sided alpha error of 0.05 and
used the statistical software StataSE 15.0 (StataCorp LP,
College Station, Texas, USA), and GraphPad Prism Version
7 (GraphPad Software, La Jolla, California, USA). To test
whether absolute or relative CD4þ cell counts are different
between the elite controller who maintained viraemia
control and those who lost, the R package lmer4 was used to
produce linear mixed-effects models. Age was modelled as a
fixed effect and CD4þ cell count (or percentage) as a
random effect of each individual. P values were calculated
using the ANOVA function in R to compare two models.
The null model states that CD4þ cell count (or percentage)
is proportional to age and the alternative model states that
CD4þ cell count (or percentage) is proportional to age and
viraemic control status.
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Results

We identified 11 vertically infected paediatric elite
controllers according to the criteria described above
(Table 1 and Fig. 1). Ten (91%) were females. The median
age at enrolment was 6.7 years (IQR 2.9–8.1years). The
group included eight (73%) patients born in African
 Copyright © 2018 Wolters Kluwer Health, Inc. All rights reserved.
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Fig. 1. Longitudinal data of viral load (red), absolute CD4R (blue), relative CD4R (green), and CD4R:CD8R (pink). (a) Paediatric
elite controllers maintaining control of viraemia after achieving elite control. (b) Paediatric elite controllers who become viraemic
after a period of elite control. Hashed-line represents the RNA HIV limit of detection of 50 copies/ml. The empty triangles represent
viral load assays with the limit of detection above 50 copies/ml. The 10th, 50th and 90th percentiles are represented by the three
grey lines for absolute CD4þ cell count and CD4þ percentage.
countries, two (18%), in Latin America, and one (9%)
in Asia.

Among the 11 study participants, seven were viraemic
when enrolled but became aviraemic subsequent to
enrolment, whereas four participants were already
aviraemic elite controllers when enrolled (Table 1).
The median age at which viraemic control was first
achieved was 6.5 years (IQR 5.2–10.0) (Fig. 2a). Only
three patients, EC-3, EC-4 and EC-9 achieved viraemic
control before 5 years of infection. Five of the 11 children
(46%) became viraemic during follow-up. The viral
rebound arose at a median age of 12.6 years (IQR 7.9–
 Copyright © 2018 Wolters Kluwer H
13.1). The age at which elite control was achieved did not
predict whether elite control would be maintained
subsequently (Log-rank P¼ 0.43; Fig. 2b).

The median absolute CD4þ T-cell count and percentage
in the 11 patients at enrolment were 1170 cells/ml (IQR
726–1808) and 34% (IQR 31–38), respectively. All
patients had an absolute and relative CD4þ cell count
within the normal range for age during the period of elite
control apart from EC-11 (Fig. 1). In a linear mixed
model analysis, absolute CD4þ cell count was signifi-
cantly higher in elite controllers who maintained control
of viraemia than those who subsequently lost it (Fig. 2c,
ealth, Inc. All rights reserved.
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Fig. 2. Kaplan-Meier survival analysis and mixed lineal model comparing those who maintained EC and those who rebounded.
(a) Kaplan–Meier curve for age to achieve paediatric elite controller status among the 11 participants. (b) Kaplan–Meier curves for
age to achieve paediatric elite ontrolle status among those who maintained elite control and those who rebounded; log-rank test
was used to compare the curves. (c and d) Mixed linear model of absolute and relative CD4þ cell count, respectively, for those with
persistent elite controller status (blue) and transient elite controller status (red). EC, elite controller.
P¼ 0.03). CD4% was also higher among those main-
taining viraemic control, although this did not reach
statistical significance (P¼ 0.72, Fig. 2d).

An additional group of ART-naive children with
spontaneous transient aviraemia was identified within
the same cohorts. Twenty-one children had at least one
timepoint with viraemia below the limit of detection and
four had transiently suppressed the virus for more than
one timepoint, however, without fulfilling the criteria for
elite controller (Supplemental Table 1, http://links.lww.-
com/QAD/B379 Fig. 3). Of note, transient aviraemia
(2)-1 was aviraemic on three occasions, but these spanned
less than 1 year. In this child, the viral load was always
below 1000 copies/ml over a follow-up period of 9 years.
Discussion

To identify paediatric elite controllers, we applied the
definition described for elite controller adults by Olson
et al. [16] and Yang et al. [15], being three consecutive
 Copyright © 2018 Wolters Kluwe
undetectable plasma viral load measurements spanning at
least 1 year in ART-naive individuals, without viraemic
spikes higher than 1000 HIV RNA c/ml. Ten cohorts of
HIV-infected children were studied, from South America
(Brazil), Europe (UK, Spain and Sweden), Africa (South
Africa) and Asia (Thailand). Within these cohorts, we
identified 11 children qualifying as elite controllers.
Although four of the paediatric elite controllers were
identified within European cohorts, all originated from
sub-Saharan Africa. This group, thus likely represents a
broad range of populations and subclades of HIV
according to the global distribution: subtype B (Brazil),
subtype C (Southern Africa and Ethiopia), subtype D
(Uganda) and subtype CRF01_AE (Thailand) [26].

Several features of paediatric elite controllers are apparent
even from this small group. The high proportion of
females (91%) is consistent with the observation that adult
females are five-fold more likely than males to be elite
controllers [15]. Although there appears to be an
increased susceptibility among females specifically to in
utero MTCT [27–31], this does not appear to apply to
r Health, Inc. All rights reserved.
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Fig. 3. Longitudinal data of viral load (red), absolute CD4R (blue), relative CD4R (green), and CD4R:CD8R (pink). (a) Transient
aviraemia with 2 or more viral loads below the limit of detection. (b) Transient aviraemia with one viral load below the limit of
detection. Hashed-line represents the RNA HIV limit of detection of 50 copies/ml. The empty triangles represent viral load assays
with the limit of detection above 50 copies/ml. The 10th, 50th and 90th percentiles are represented by the three grey lines for
absolute CD4þ cell count and percentage CD4þ.
intra partum or post partum infections [28,29], so overall,
the numbers of females infected via MTCT do not
exceed those of males by more than approximately 10%
[28]. As in adult infection, where viral loads are typically
lower in females than males [32], in some studies female
children also have been shown to have lower viral loads
[31,33], although this sex difference was not observed in
one large study of greater than 2000 ART-naive children
[34]. Among 282 paediatric slow progressors (PSP),
defined as ART-naive children maintaining absolute
CD4þ cell counts above 350 cells/ml and not meeting
clinical criteria (WHO clinical disease stage 3 or 4) to
initiate ARTuntil at least 5 years of age, 59% were female
[34], indicating that in female children absolute CD4þ

cell count declines more slowly than males. Nonetheless,
the numbers of female in the group of children identified
here are significantly higher than that of this large PSP
 Copyright © 2018 Wolters Kluwer H
cohort (P¼ 0.05), suggesting that female children control
viraemia better than males, as well as maintaining higher
absolute CD4þ cell counts. This is consistent with adult
studies demonstrating that the initial viral setpoint in
females is lower than in males [35–37], in association with
a more vigorous type I interferon response in acute
infection in females [32,38].

Despite the limitations inherent in the fact that these are
not birth cohorts that were studied, many of the other
features of paediatric elite controllers appear to contrast
with observations in adult elite controllers. First, the time
to achieve control of viraemia in this group of 11 children
is a median of 6.5 years, whereas in adults the time to viral
setpoint is approximately 6 weeks [39]. Again, it should be
noted that this estimate of the time to achieve elite control
among children does not take into account the possibility
ealth, Inc. All rights reserved.
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that some elite controller children who achieved elite
control at an earlier age were not recognized as elite
controllers as a result of having lost elite control status by
the time they presented; indeed, EC-1 and EC-6
experienced periods of undetectable viral load prior to
fulfil the criteria of elite controllers (Fig. 1), and some
transient aviraemias experienced more than one period of
aviraemia (Fig. 3). Equally, other children who would
achieve elite control at a future date were not included as
elite controllers because they had not yet achieved elite
controller status at the time of the study. Second, elite
controller status appears to be more short-lived in
children than in adults, in whom the median time to viral
rebound among adult women is greater than 30 years
[15]. The relatively common occurrence of children
identified as achieving undetectable viral loads only
transiently (Fig. 3, Supplemental Table 1, http://
links.lww.com/QAD/B379) prompts the hypothesis that
the developing immune response over childhood helps to
bring viral load down over a period of years, but once
sufficient selection pressure is brought to bear on the
virus, in most cases it can escape. By contrast, in adults the
critical battles between the immune system and the virus
are waged chiefly, although not exclusively, in the first
weeks of infection [40–42]. Although lack of sample
availability prevents precise measurement of the viral load
among the elite controller children here, certainly the
number and frequency of blips of less than 1000 copies/ml
among the paediatric elite controllers suggests that
control of viral replication is more profound among
adult elite controllers. The average viral load among adult
elite controller is reportedly 1–5 RNA copies/ml [43–
46]. All these above-mentioned differences between
paediatric and adult elite controller are consistent with the
aggressive antiviral immune response observed in adults
compared with the relative tolerogenic immunity in
childhood. In particular, HIV-specific CD8þ T-cell
activity, representing the most potent arm of the antiviral
immune response, does not reach adult levels until well
into adolescence [47]. This explains the strong association
between adult elite controller and expression of certain
‘protective’ HLA, such as HLA-B�57 and HLA-B�27,
that mediate an effective cellular immune response against
HIV [12,13,20]. Although lack of sample availability here
prevents an assessment of the HLA type among the 11
paediatric elite controllers identified, HLA that are
protective in adult infection have less impact in PSP,
consistent with a lesser role played by virus-specific
CD8þ T cells in paediatric infection [7].

The apparent temporal association between loss of elite
controllers status and puberty in some cases (loss of
viraemic control arising at 12–14 years of age in EC7,
EC8 and EC-11) might seem surprising if greater
potency of the HIV-specific CD8þ T-cell response
develops through adolescence. However, in many PSP,
the higher frequency and broader HIV-specific CD8þ

T-cell responses observed with increasing age are
 Copyright © 2018 Wolters Kluwe
accompanied by increased immune activation, CD4þ

decline and, ultimately, increased viraemia [6].

The question of the prevalence of elite controllers among
infected children versus adults is difficult to address when
analyzing this study’s data, given that the paediatric
cohorts from which these 11 children have been
identified have not been followed from birth. In
particular, the European cohorts, that are largely
constituted of children who were born in sub-Saharan
Africa, are clearly selected for those who survived long
enough to have emigrated. The fact that the average age at
enrolment of these children is 6.7 years illustrates the
point that many healthy children are likely to remain
undiagnosed, especially in less well resourced countries
with high adult seroprevalence where the priority is to
treat adults and children with known infection and
prevent disease progression. The most accurate estimates
of elite controller prevalence in paediatric HIV are from
Kimberley, Northern Cape and Stellenbosch, Western
Cape, South Africa, in which the structure of paediatric
care is such that a high proportion of HIV-infected
children have been followed. In these two provinces, of
11 539 children followed, there were three paediatric elite
controllers. These data would yield an estimated
prevalence of 0.026% (95% CI 0–0.06%). This may
represent an underestimate as healthy elite controller
children are less likely to be identified in such settings.
Furthermore, as it appears that maintenance of elite
control status can be quite short-lived in paediatric
infection, it is likely that some paediatric elite control
have lost control of viraemia by the time that they present
to clinicians. Conversely, other children who are future
elite controllers have not achieved control of viraemia
when first presenting.

The other eight cohorts studied, as described above, are
relatively selected, and therefore, would represent an
overestimate of prevalence. Overall, the 10 cohorts
provide a paediatric elite controller prevalence estimate of
0.08% (95% CI 0.04–0.14%). Given the prevalence of
elite controllers among adult cohorts of �0.5%, and even
after considering the imperfections of prevalence estimate
here of paediatric elite controllers, these data suggest that
elite controller prevalence is 5–10-fold lower among
infected children than adults.

The observation of transient aviraemia in a number of
ART-naive children, as noted above, is not described in
adult infection nor has it been noted in paediatric
infection. Possible reasons why transient aviraemia have
not been described in paediatric infection previously,
even though within the Kimberley cohort alone, some 20
paediatric transient aviraemia were identified (Supple-
mental Table 1, http://links.lww.com/QAD/B379),
include the fact that the HIV-infected children whose
viral loads are most frequently monitored are the
relatively rare ones being cared for in well resourced
r Health, Inc. All rights reserved.
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settings in Europe or North America. By contrast, in the
more poorly resourced sub-Saharan African countries
where greater than 90% HIV-infected children live,
dedicated outpatient follow-up facilities, let alone
frequent and regular monitoring of viral loads, are only
encountered exceptionally. The mechanisms underlying
transient aviraemia remain unknown. It is possible that a
proportion of these would eventually become elite
controllers, but in the majority, an undetectable viral load
is followed by a viral load 2 log10 higher. One might
speculate that, as the paediatric immune response
becomes more effective at controlling viraemia with
increasing age, so the strength of selection pressure for
escape mutants intensifies. Further studies to define the
mechanisms of immune control and loss are relevant to
designing of strategies to achieve posttreatment control in
children. However, it is of interest that among these
paediatric transient aviraemias, eight of 21 (38%) are boys,
a proportion similar to that among PSPs (41%) [34] and
higher than among elite controllers. Numbers are too
small to be definitive but these suggest the possibility that
male children might be more susceptible to viral rebound
once aviraemia has been achieved compared with
female children.

The present study has several limitations resulting from
the unstructured availability of paediatric cohorts and the
absence of longitudinal data from birth. The rarity of
paediatric elite controllers limits the analyses that are
possible in order to describe this unique group more fully.
Furthermore, paucity of samples from the majority of
these individuals, many of whom are no longer being
followed up, prevents a more comprehensive analysis of
the potential immune mechanisms that may be operating
in the children to achieve control of viraemia. However,
this study does provide the first initial description of a
group of longitudinally tracked paediatric elite con-
trollers, and the striking differences that exist between
these and adult elite controllers. Finally, the prevalence
estimates of paediatric elite controllers is relevant in
future studies of posttreatment control in children where
the impact of ART or another intervention is
being evaluated.
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