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ABSTRACT. River-floodplain systems are known for their heterogeneity of habitats and the hydrological pulse, 
the main driving force, which increases nutrient concentrations at the onset of the flood due to leaching from the 
littoral region and decomposition. This decaying organic matter tends to be deposited in the sediment, where 
occur biogeochemical processes associated with microorganisms. This study aimed to characterize the vertical 
distribution of bacterial density in the sediment strata of six environments of the Upper Paraná River floodplain, 
checking similarity as for bacterial density and physical and chemical conditions. To this end, we analyzed the 
following factors: total phosphorus, total Kjeldahl nitrogen, levels of organic and inorganic material, oxidation 
potential and particle size. The results evidenced a gradient of vertical distribution of bacterial density, with 
predominance of cocci, which possibly indicates no nutrient limitation in this limnic compartment. The analysis 
of variance was applied to determine significant differences between the layers of the sediment and 
environments. It can be observed a tendency of deposition of total-P and MI within the upper layers of all 
environments. More reducing potentials in the initial layers indicate a higher bacterial activity, since this region 
possesses a greater availability of most easily decomposable material. 
Keywords: bacterium, energy resources, phosphorus. 

Relação entre densidade bacteriana e fatores abióticos em diferentes profundidades do 
sedimento em lagoas da planície de inundação do Alto Rio Paraná 

RESUMO. Sistemas rios-planície de inundação são conhecidos pela sua heterogeneidade de habitats e pelo pulso 
hidrológico, principal função de força atuante, que aumenta as concentrações de nutrientes no início devido à 
lixiviação da região litorânea e à decomposição. Essa matéria orgânica tende a ser depositada no sedimento, onde 
ocorrem processos biogeoquímicos associados a microrganismos. O objetivo deste estudo foi caracterizar a 
distribuição vertical da densidade bacteriana em estratos do sedimento de seis ambientes da planície de inundação 
do Alto Rio Paraná, verificando a similaridade entre os mesmos em relação à densidade bacteriana e condições 
físicas e químicas. Foram analisados os seguintes fatores: Fósforo total (P-total), nitrogênio total Kjeldahl (NTK), 
material orgânico (MO) e inorgânico (MI), potencial oxidativo e granulometria. Os resultados mostraram um 
gradiente de distribuição vertical da densidade bacteriana, com predomínio da forma cocos, possivelmente 
indicando que não há limitação de nutrientes nos estratos. Análise multivariada mostrou grupamentos por 
ambientes, ressaltando a grande heterogeneidade de condições limnológicas e de habitats. Pôde-se observar uma 
tendência de deposição de P-total e MI nas ultimas camadas de todos os ambientes. Potenciais mais redutores nas 
camadas iniciais indicam maior atividade bacteriana, visto que nesta região há maior disponibilidade material mais 
facilmente decomponível. 
Palavras-chave: bacteria, recursos energéticos, fósforo. 

Introduction 

In river-floodplain systems, the hydrological pulse, 
the main driving force, provides heterogeneous aquatic 
habitats, creating favorable conditions for the 
maintenance  of high biodiversity (JUNK et al., 1989; 
NEIFF, 1990). On the other hand, the rising 
water level increases the connectivity between 

different habitats of the floodplain, favoring the 
exchange of biological, physical and chemical 
material, enhancing the similarity between 
habitats (THOMAZ et al., 2007). 

In these systems, the concentrations of nutrients, 
especially nitrogen and phosphorus, increase early in 
the flood due to leaching from the littoral region and 
the decay of aquatic macrophytes (THOMAZ et al., 
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2004). This decaying organic matter tends to be 
deposited in the sediment, which comes to be the 
appropriate site to biogeochemical processes 
associated with microorganisms (D’HONDT et al., 
2004; NELSON et al., 2007), and is crucial to the 
functioning of aquatic ecosystems (McDONALD  
et al., 2004). 

The high deposition of organic matter in the littoral 
region of aquatic environments favors a rapid aerobic 
degradation in water-sediment interface, affecting the 
biogeochemical cycling of carbon and nutrients 
(HEDGES et al., 1999), and the process of 
decomposition and mineralization of this material is 
carried out by bacteria and supplies nutrients to 
primary producers (AZAM et al., 1983). Moreover, the 
bacteria consume a significant part of the total 
photosynthetic production (BRUM; ESTEVES, 2001). 

The littoral sediment of floodplain lakes provides 
ample habitat for heterotrophic bacteria from the 
water/sediment interface until greater depths 
(SHIVAJI et al., 2011). Thus, these organisms 
contribute significantly to the organic matter cycling 
in aquatic ecosystems (RHEINHEIMER, 1984; 
SINSABAUGH et al., 1997). 

During the flood occurs entrainment of water 
sediment with high levels of dissolved organic 
carbon, accompanied by high extracellular bacterial 
enzyme activity (BURNS; RYDER, 2001). Studies 
report that heterotrophic bacteria are more abundant 
in association with the organic matter (AZAM et al., 
1983; GONZALES et al., 2006; KOLM et al., 2007). 
Being a limiting factor for the growth of 
heterotrophic microorganisms, organic carbon 
(O’LOUGHLIN; CHIN, 2004) and nitrogen 
(SCOW, 1990) are the major forms found in 
sediment layers deposited more recently. 

Studies also reveal that biodegradation generates 
a large number of ionizable compounds, especially 
carboxylic and phenolic groups, which are difficult 
to degrade by microorganisms, and can provide 
particular characteristics to the aquatic environment 
(EPHRAIM; MARINSKY, 1986; TIPPING; 
HURLEY, 1992). In this way, the amount and 
origin of organic matter in aquatic environments 
may be decisive for the functioning of these 
ecosystems (McDONALD et al., 2004) because they 
can influence the distribution of bacterial 
communities. Furthermore, under anaerobic 
conditions, as in sediments, bacteria use humic 
substances as electron acceptors and energy source 
during carbon assimilation (COATES et al., 2002). 

The greater the amount of decomposable 
organic material, the greater the activity of 
microorganisms, especially at the start of leaching 
(BLUM; MILLS, 1991), and more intense the 

reduction processes in the environment 
(LIIKANEN; MARTIKAINEN, 2003). The 
intensification of redox processes indicates greater 
precipitation of ions in more oxidized layers and 
interruption of the flow of ions from the 
sediment into the water column (ESTEVES, 
2011). Thus, the redox potential can directly 
influence the flow of ions such as, for example, 
phosphorus forms (PENG et al., 2007). In 
particular the availability of phosphorus 
influences significantly the productivity of these 
environments (SCHINDLER, 1974). 

The goal of this study was to characterize the 
vertical distribution of bacterial density in the 
sediment layers of lakes of the Upper Paraná River 
floodplain in relation to physical and chemical 
condition of the sediment, checking the similarity 
between the environments. To this end, the 
working hypothesis was that bacterial density is 
directly related to limnological conditions of the 
sediment, being influenced by a bottom-up process 
especially in relation to concentrations of TKN and 
total-P. 

Materials and methods 

Study area 

The lakes selected for this study are located in 
the Upper Paraná River floodplain (Figure 1), where 
there are various biotopes formed by different 
topographic differences, hydrological regime of the 
main river and local characteristics such as rainfall 
and wind action, being the last dam-free stretch of 
the Paraná River, and the main tributaries are 
Ivinhema and Baía rivers. 

The Patos Lake (S22º49'471” W053º33’26.8”) is 
the largest lake sampled in this study, made up of 
small bays with an average depth of 3.5 m and area 
of approximately 113.8 ha, situated on the left bank 
of the Ivinhema River, with which has a 
communication through a channel with high 
diversity of macrophytes). The Ventura Lake 
(S22º51’23.7” W053º36’102”) is on the left bank of 
the Ivinhema River, separated from it by a marginal 
levee of 3 m, and 200 m far from the river. It has an 
area of approximately 89.8 ha, average depth of 
2.16m (AGOSTINHO et al., 2002). 

The Guaraná Lake (S22º90’633” W053º16’5.54”') 
is located on the right bank of the Baía River and 
connected to it by a short channel with high density 
of macrophytes, has rounded shape with area of 
about 4.2 ha and average depth of 2.1. 
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1- Patos Lake, 2- Ventura Lake, 3- Guaraná Lake, 4- Fechada Lake; 5- Garças Lake, 6- Osmar Lake). 

Figure 1. Location of sampling sites in the Upper Paraná River floodplain. 
Source: Jaime Luis Lopes Pereira-Nupelia/UEM 

The Fechada Lake (S22º42’697”' 
W053º16’33.06”') is on the left bank of the Baía 
River, inside the floodplain that separates it from the 
Paraná River, and shows a connection in its upper 
portion only during flood periods (AGOSTINHO 
et al., 2002). 

The Garças Lake (S22o43’27.18” W053o13’4.56”) 
is located on the right bank of the Paraná River, with 
direct connection with the channel of the main river 
through a channel, average depth of 2.0 m and area 
of 14.1 ha. Its banks are covered by several strata of 
riparian vegetation and macrophyte stands. The 
Osmar Lake lies on the Porto Rico Island 
(S22o46’26.64” W053o19’56.16”) on the left bank of 
the Paraná River, average depth of 1.1 m and area of 
approximately 0.006 ha. It has elongated shape 
typical of fluvial islands of the region, and in periods 
of high waters connects with the channel of the 
Paraná River through its lower portion 
(AGOSTINHO et al., 2002). 

Field Sampling 

In March 2009, sediment samples were taken in 
triplicate, with the aid of a Corer sediment sampler 
with transparent acrylic tube, in the littoral region of 
the lakes Patos, Ventura, Guaraná, Fechada, Garças and 
Osmar, located in the Upper Paraná River floodplain 
(Figure 1). After collection, excess water was siphoned 
off from the collector using hose with 8 mm diameter. 
Using the same procedure, we siphoned off the water 
directly in contact with the surface of the sediment (3 
cm above the sediment) (sediment-water interface) 
which was fixed with formaldehyde solution filtered 
(SHERR; SHERR, 1993). 

The sediment from the collector taken from each 
environment was fractionated every 2 cm deep (0-2, 2-
4, 4-6, 6-8, 8-10) to 10 cm, and packed in polyethylene 
pots, kept under refrigeration and protected from light 
for further analysis in the laboratory. 

The oxidation-reduction potential (Eh) was 
obtained in situ with a portable digital potentiometer 
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(Digimed) in each aliquot fractionated. Sediment 
samples were taken with a modified Petersen grab 
for particle size analysis. 

Also samples were collected in the subsurface of 
the water column near the littoral region of each 
environment for analysis of the density of 
planktonic bacteria and comparison with the vertical 
strata of the sediment. These samples collected in 
triplicate were fixed with the same formaldehyde 
solution filtered (SHERR; SHERR, 1993). 

Laboratory 

In order to estimate the bacterial biomass and 
density of total heterotrophic bacteria of the 
sediment, samples were diluted in deionized 
water to extract the bacteria following the 
methodology of Kolm et al. (2007): 15 ml of the 
supernatant was fixed with formaldehyde solution 
filtered (SHERR; SHERR, 1993). The water 
samples of the sediment surface, of the sediment 
and of the water column were quantified using 
the same methodology, where an aliquot (0.1 ml) 
was filtered through 0.2 μm black polycarbonate 
membranes (Nuclepore®) stained with DAPI 
(fluorochrome-4-6-diamidino-2-phenylindole) 
(PORTER; FEIG, 1980) for subsequent 
microscopic analysis. The bacteria were then 
quantified in an epifluorescence microscope at 
1000 x magnification. 

For analysis of total Kjeldahl nitrogen (TKN) 
and total phosphorus (TP) in the sediment, 
samples were oven dried at 90°C and ground in a 
porcelain mortar. For analysis of total 
phosphorus, an aliquot of the dried material was 
subjected to nitroperchloric digestion and then 
diluted (ZAGATO et al., 1981), afterphosphorus 
concentration determined spectroscopically 
(GOLTERMAN et al., 1978). The total Kjeldahl 
nitrogen (TKN), was quantifield according by 
MacKereth et al. 1978. 

The amounts of organic matter were measured 
gravimetrically after incinerated in a muffle 
furnace at 550°C according to Teixeira et al. 
(1965). To determine the granulometric texture, 
samples were dried at 80°C, following the 
Wentworth scale. 

Statistical analysis 

For determining the main factors that influence 
bacterial abundance, we performed a Principal 
Component Analysis (PCA) which was performed 
with the mean value of the variables for each pond 
and each layer. For the selection of axes used in the 
interpretation we followed the criteria of Broken-

Stick. In this analysis we used the program PC-
ORD (McCUNE; MEFFORD, 1999). To test the 
observed clusters, a nonparametric analysis of 
variance (Kruskal-Wallis test) was run with scores of 
axes selected in the analysis. 

Aiming to check for possible correlations and 
distribution patterns of biota in sediment of 
environments in the Upper Paraná River floodplain, 
Spearman correlations were applied between the 
scores of the selected PCA axes and bacterial density. 

The analysis of variance was applied to determine 
significant differences between the layers of the 
sediment and the environments (two factor). Analyses 
of variance, correlations, and graphs were made by the 
package Statistica 7.1 (STATSOFT, 2005). 

Results 

The vertical distribution of bacterial density is 
illustrates by Figure 2 (log-density cm-3) with values 
of bacterioplankton ranging from 7.45 x 107cels mL-1 
for the Patos Lake to 1.18 x 1010 cels mL-1 for the 
Ventura Lake. Bacterial density in the water/ 
sediment interface the values varied between 5.88 x 
1010cels mL-1 for the Patos Lake and 1.01 x 1013 cels 
mL-1 for the Ventura Lake. For the sediment 
between 4.27 x 1010  cels mL-1 for the Patos Lake and 
6.19 x 1012 cels mL-1 also in the Ventura Lake. All 
lakes showed the same trend of stratification, with a 
density reduction just below the upper four 
centimeters of the sediment, highlighting the still 
Patos lake had the lowest density in all layers. 

Among the cells observed, cocci were the 
predominant form in all strata, with relative density 
higher than 80% (Figure 3). Among the lakes and 
layers studied, rods > 0.2 μm3 were the less dense 
cell form especially in the upper strata. 

The first two axes of the analysis explained 
74.0% of the total variability of the data. The axis 
1 (39.1%) was negatively influenced by fine sand 
and very fine sand (particle size less than  
0.25 mm) and positively by granules and very 
coarse sand (particles 1-4 mm). The axis  
2 (34.9%) was negatively influenced by TKN and 
total P, and positively by inorganic material and 
redox potential (Figure 4). This analysis allowed 
the visualization of the spatial distribution of the 
environment, proven by the nonparametric analysis 
of variance (Kruskal-Wallis test) which revealed 
significant differences between the lakes sampled (Axis 
1: H(5, 90): 84.32; Axis 2 H(5, 90): 83.46, p < 0.05). 

The analysis of variance evidenced that Patos 
and Guaraná lakes, both connected to the rivers 
(Ivinhema and Baía, respectively) showed no 
significant differences  to each  other with respect 
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PAT= Patos Lake; VENT= Ventura Lake; GUA= Guaraná Lake; FEC= Fechada Lake; GAR= Garças Lake; OSM= Osmar Lake. 

Figure 2. Vertical distribution of bacterial density (log cels mL-1) in plankton, in water-sediment interface and in sediment layers of lakes 
of the Upper Paraná River floodplain. 

to the variables that influenced most the axis 1 
(H(5, 30) =84.32; p < 0.01) (Figure 5-a). The 
same behavior occurred with Fechada and Garças 
lakes (Baía and Paraná, respectively) and Patos 
and Ventura (Ivinhema). 

Regarding the variables of greatest influence for 
axis 2, analysis of variance indicated no significant 
differences between the lakes Ventura and Garças 
(Ivinhema and Paraná) and Osmar and Guaraná 
(Paraná and Baía), even being environments with 
and without direct communication, respectively, 
with the main river channel (H(5, 30) = 83.46; p < 
0.01) (Figure 5-b). The same was observed for 
Fechada and Osmar lakes, both without direct 
communication with the main river channel (Baía 
and Paraná, respectively). 

The scores of the PCA were positively correlated 
with bacterial density (Axis 1: ρ = 0.26, p <0.05 and 
Axis 2: ρ = 0.52, p < 0.05). According to the 
analysis, most influential variables for axis 2, i.e. 
nutrient concentrations, were the most correlated 
with the total density of heterotrophic bacteria. 

The two factor analysis of variance with the 
variables measured in the study, concentrations of 
TKN (from 4.88 mg g-1 in the Fechada Lake to  
0.36 mg g-1 in the Ventura Lake), total-P (from 12.92 

mg g-1 in the Patos Lake to 1.50 mg g-1 in the 
Ventura Lake), content of organic matter (21.41% in 
the Patos Lake and 3.84% in the Ventura Lake) and 
inorganic matter (96.15% in the Ventura Lake and 
78.59% in the Patos Lake), redox potential (-206 mV 
in the Fechada Lake and 24.8 mV in the Garças 
Lake) and bacterial density (log-transformed data) 
(Figure 6), was performed to check for significant 
differences between environments and depths of the 
sediment analyzed. As for concentrations of total-P 
(Figure 6-a), the lakes Ventura and Osmar showed 
no significant difference between strata examined  
(p < 0.05). In the Ventura and Garças lakes, it was 
observed a decrease in concentrations of phosphorus 
in the lower layers of the sediment. Unlike, Patos 
and Fechada lakes were the environments that 
tended to accumulate total-P (Figure 6a). 

The concentrations of total and nitrogen 
phosphorus in the sediment were higher in the lakes 
Patos and Fechada (Figure 6a and b). 
Concentrations of TKN, in the lakes Ventura and 
Fechada showed no significant differences between 
the layers (Figure 6b). For the other environments, 
concentrations were highest in the surface layers, 
which may indicate a recent deposition of organic 
nitrogen forms. 
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Figure 3. Distribution of relative densities of bacterial forms found at different sediment depths;        =Vibrio; =Rod > 0.2 μm3;  

 = Rod< 0.2 μm3;  = Cocci >0.05 μm3;   Cocci < 0.05 μm3.  

In the analysis of organic and inorganic matter at 
different layers of the sediment (Figure 6c and d), for 
all environments, the inorganic matter had higher 
values, with a nearly homogeneous distribution 
between the different depths. However in the Patos 
Lake, we verified a trend of deposition of this matter. 
The same behavior was registered for the values of 
organic matter, the Ventura Lake was the most distinct 
environments, with the lowest value. 

The environments were statistically different from 
each other for the values of redox potential (Eh)  of  the  

sediment. The Garças Lake presented more oxidized 
sediment (higher values of Eh), and the Fechada Lake 
more reduced sediment (lower values  of  Eh)  
(Figure6e). This may suggest that in this latter 
environment there was a greater amount of 
decomposable organic material, thus favoring a higher 
activity of microorganisms, compared with other 
environments. Another factor is the tendency of lakes 
Ventura, Guaraná and Fechada in presenting lower 
oxidative potential in the deeper layers of the sediment. 
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PAT= Patos Lake; VENT= Ventura Lake; GUA= Guaraná Lake; FEC= Fechada Lake; GAR= Garças Lake; OSM= Osmar Lake. 

Figure 4. Scatterplot of the principal components analysis (a) and (b) ordination of the environments of the Upper Paraná River 
floodplain, according to the sediment. 
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PAT= Patos Lake; VENT= Ventura Lake; GUA= Guaraná Lake; FEC= Fechada Lake; GAR= Garças Lake; OSM= Osmar Lake. 

Figure 5. Nonparametric analysis of variance (Kruskal-Wallis test), with the scores selected for interpretation from the principal 
component analysis. (a) principal component 1 and (b) principal component 2. 

Significant differences were detected between 
the environments and the sediment layers for 
bacterial density (Figure 6f). In all lakes, the greatest 
densities were observed in the upper layers (0-4 
cm). It is worth noting the Patos Lake as the 
environment with lower bacterial densities. 

In all environments, concentrations of total-P in 
the sediment analyzed were greater than NTK 
(mean: 8.06 mg g-1 total-P, 2.69 mg g-1 TKN). For 
Patos and Garças lakes, concentration of total-P was 
approximately 2.5 times greater than total-N and in 
the Osmar Lake, only 1.1 (Figure 6g).  

Discussion 

Rheinheimer et al. (1989) studied marine 
environments and reported higher bacterial activity in 
compartments  with  more  favorable  conditions  for 

theirdevelopment, like oxygen and organic matter. 
This was corroborated in the present study by the 
vertical distribution of heterotrophic bacteria in 
sediments of different environments of the Upper 
Paraná River floodplain. In these environments, 
characterized by high availability of organic matter, the 
aerobic oxidation prevails at high rates in the surface 
layers of the sediment, providing carbon, nitrogen, and 
phosphorus, resulting in a more efficient combination 
for bacterial productivity (FARJALA et al., 2002). Even 
in the absence of oxygen, bacteria are in high density 
for being organisms that are extremely versatile in 
energy uptake (NEALSON, 1997).  

In the present study we detected higher bacterial 
density in the sediment-water interface and in vertical 
strata, compared to the water column. This is 
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PAT= Patos Lake; VENT= Ventura Lake; GUA= Guaraná Lake; FEC= Fechada Lake; GAR= Garças Lake; OSM= Osmar Lake. 

Figure 6. Two factor analysis of variance between sampled environments and sediment depths:    = 0-2 cm;    = 2-4 cm;     = 4-6 cm; 
    = 6-8 cm;    = 8-10 cm; because the sediment presents higher concentrations of organic carbon, which stimulates bacterial growth (SHIVAJI 
et al., 2011) besides having high diversity (FENG et al., 2009) and activity of bacteria (GANTZER; STEFAN, 2003). 
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In all environments studied, the highest densities of 
bacteria found in the sediment-water interface are 
due to constant exchanges between these 
compartments, and to conditions of oxygenation 
promoted by the water column. According to 
Liikanen and Martikainen (2003) this region is 
extremely favorable to the development of 
heterotrophic bacteria. The highest values of 
bacterial density obtained at the surface layers (0-4 
cm) followed by a marked decrease in density 
toward the deeper layers can be a result of the 
transition from an oxide environment to an anoxic 
condition, which occurs in a vertical profile (GAST; 
GOCKE, 1988; SHIVAJI et al., 2011). 

The predominance of small sized coccoid bacteria 
in all environments and sediment layers suggests that 
bacterial growth in the studied environments is not 
limited by nutrient availability, corroborating studies of 
Sigee (2005) and Øvreas et al. (2003). Another factor 
that enables the dominance of this cell shape is the 
surface/volume ratio, which directly involves the 
absorption capacity of nutrients (SIGEE, 2005). 

Despite high bacterial densities found in different 
environments, the Patos Lake differed from others by 
low values in all samples and layers. This assumes the 
occurrence of a relationship between quantity and 
quality of carbon once Azevedo et al. (2008) observed 
that this water environment presents a great amount of 
allochthonous carbon, especially fulvic acids, both in 
the water column and sediment. Furthermore, studies 
report that increased bacterial densities are obtained in 
the presence of more labile carbon (TEIXEIRA et al., 
2011). 

The clear separation of the environments 
indicated by principal component analysis, proven 
by analysis of variance, points out that although 
environments belonged to the same sub-basin, local 
factors may be more important for the dynamics and 
functioning (ROCHA; THOMAZ, 2004). Thus, 
these peculiarities have high relevance contributing 
to the maintenance of high diversity in river-
floodplain systems (AGOSTINHO et al., 2000). 

Moreover, the sediment grain size seems to play an 
important role in the structure of environments, as 
evidenced by the results of the lakes Fechada and 
Garças, which were similar as for the scores of the axis 
1 of the principal component analysis, which was 
affected by this variable, even differing in the degree of 
communication (with and without communication, 
respectively) with the main river (Baía and Paraná). 

The weak correlation between bacterial density 
and the scores of the first axis of the principal 
component analysis corroborates the idea that 
bacterial activity is more intense in the presence of 
finer particles (JACKSON; VALLAIRE 2007). This 

probably occurs due to the presence of more labile 
organic compounds in a certain stage of 
decomposition (BERTILSSON; TRANVIK 2000) 
which becomes easily assimilated by bacteria 
(D’HONDT et al., 2004; TEIXEIRA et al., 2011). 

As both PCA axis were positively correlated with 
bacterial density, the results indicate dependence of 
the increase in the number of cells on physical and 
chemical properties of the sediment, as reported by 
Coveney and Wetzel (1992) and Rejas et al. (2005), 
which reported a limitation of bacterial growth by 
the concentration of inorganic nutrients. However, 
the data did not determine what the limiting factor 
for the bacterial growth in the sediment of studied 
environments. 

According to Toolan et al. (1991) and Morris and 
Lewis Jr. (1992) the availability of nutrients can 
control the bacterial density. Therefore, the 
distinction between the environments especially in 
relation to the concentrations of TKN and total-P 
may be due to the biodegradation and influence of 
decomposition, as there are differences in the release 
of nutrients depending on the stage of the process 
(PADIAL; THOMAZ 2006). This process originates 
many compounds difficult to degrade by 
microorganisms, and can provide particular 
characteristics to aquatic environments (EPHRAIM; 
MARINSKY, 1986; TOOLAN et al., 1991). 

There was a tendency for deposition of 
concentrations of total phosphorus in the deeper 
layers of the sediment (6-10 cm), except for the 
Garças Lake. The cycling of this element, limiting 
factor in the productivity of aquatic environments 
(SCHINDLER, 1974), is ruled by the physical and 
chemical environment at the sediment-water 
interface and by the activity of microorganisms in 
the sediment (GÄCHTER; MEYER, 1993), thus 
indicating conditions that contribute to the 
conservative characteristics of this compartment. 
The lowest concentrations of this nutrient were 
observed in environments that showed smaller 
particle size, contradicting the idea that larger 
particles would facilitate the release of this nutrient 
to the water column (GAINSWIN et al., 2006). 

Another factor was the low availability of TKN 
in different sediment layers and environments, 
resulting in a low N:P ratio (about 2 times more 
phosphorus than nitrogen). It should be emphasized 
that this ratio is only an estimate, since for such a 
relationship were not obtained inorganic forms of 
nitrogen. 

The low availability of NTK, which is the organic 
and ammonia fraction of nitrogen forms, can be 
explained by the preferential use of amino acids by 
bacterial community during the warmer season 
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(sampling period) (CHRISTIAN; LIND 2007). This 
leads to a reduction in the availability of nitrogen 
forms, mainly in regions of greater bacterial density, 
the first few centimeters of the sediment in this study. 

The environments that had higher nutrient 
concentrations showed more reducing redox potential 
(Eh) in the sediment, thus obtaining a negative 
correlation between Eh and concentrations of nutrients 
(total-P and TKN). This indicates that the deposition 
of organic matter favors the development of organisms 
that utilize the energy involved in the oxidation process 
of this material, thus releasing metal ions to the water 
column. Liikanen and Martikainen (2003) reported 
that the smaller the environment, possibly more 
intense is the microbial activity, thus explaining the 
correlation obtained. Probably this may have occurred 
in the Garças Lake, which showed more oxidative 
potential and high bacterial densities. Yet this lake has a 
high degree of connectivity with the Paraná River, also 
presenting high levels of dissolved oxygen in the water 
column (ROBERTO et al., 2009). 

Conclusion 

In short, our results revealed that the 
predominance of coccoid bacterial forms may 
indicate the high availability of energy resources to 
heterotrophic bacteria in the sediment of lakes in the 
Upper Paraná River floodplain. Bacterial density was 
correlated with the physical and chemical properties 
of the sediment; moreover, high bacterial density 
especially in the surface layers can interfere with the 
values of redox potential, and with the deposition 
and/or uptake of nutrients in this region. It was also 
noted evidence of deposition of phosphorus forms 
mainly in the lower layers. Moreover, the spatial 
distribution of the environments studied 
emphasized once again the high heterogeneity of 
habitats present in river-floodplain systems. 
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