
 

Pesquisa Brasileira em Odontopediatria e Clinica Integrada 2018, 18(1):e3892 
DOI: http://dx.doi.org/10.4034/PBOCI.2018.181.26 

 

ISSN 1519-0501  
 

 
1 

ORIGINAL ARTICLE 

 
 

Influence of Functional Clinical Temperature over Compressive Strength 
and Diametral Tensile Strength of Various Luting Cements 

 
 
 

Satheesh B. Haralur1, Sami Saeed Al Shahrani2, Rakan Mohammed Al-Ahmri2, Sultan Amer Al Yazid 
Assiri2, Ahmed Hassan Al Gufily2 

 
 
 

1Associate Professor, Department of Prosthodontics, College of Dentistry, King Khalid University, 
Kingdom of Saudi Arabia. 
2Intern Dentist, College of Dentistry, King Khalid University, Kingdom of Saudi Arabia. 
 
 
Author to whom correspondence should be addressed: Satheesh B. Haralur, Department of 
Prosthodontics, College of Dentistry, King Khalid University, Kingdom of Saudi Arabia. Phone: 
+966555835386. E-mail: hb_satheesh@yahoo.com. 
 
 
Academic Editors: Alessandro Leite Cavalcanti and Wilton Wilney Nascimento Padilha 
 
 
Received: 23 November 2017 / Accepted: 08 February 2018/ Published: 15 February 2018 
 

Abstract 

Objective: To estimate the effect of temperature over the physical properties of 
commonly used luting cements. Material and Methods: The two set of cylindrical 
shaped cement samples measuring 12mm X 6mm and 4mm X 8mm were fabricated 
from non-eugenol zinc oxide, glass ionomer, zinc phosphate, Zinc polycarboxylate, resin 
cements. These two sets of samples were utilized to test compressive and diametral 
tensile strength respectively. Forty cement samples from each mold were fabricated and 
distributed between 14, 22, 37 and 550C (N=10). The samples were tested under 
universal testing machine, and data subsequently analyzed using One-way ANOVA and 
Tukey multiple comparison's statistical methods at p > 0.05. Results: The higher 
temperature resulted in noticeable reduction in the compressive strength of non-eugenol 
-zinc oxide, Zinc-phosphate, Zinc poly carboxylate cements. The highest compressive 
strength was recorded for non-eugenol zinc oxide (8.08 Mpa) at 370C, Zinc phosphate 
(91.01Mpa) at 140C, and for zinc polycarboxylate (83.06 Mpa) at 370C. The comparative 
values for respective cements at 550C were 6.40Mpa, 59.80Mpa, and 52.88 Mpa. The 
higher temperature had insignificant effect on the compressive strength of glass 
ionomer cement, while composite resin cement indicated minor deterioration. 
Conclusion: The relative mouth temperature influences the physical properties of the 
luting cements. 
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Introduction 

The luting cements performs as the adhesive between casting and tooth structure; holds 

them together [1]. They are essential to seal the space between restoration and tooth, thereby 

prevents the microleakage. Previous authors described the ideal requisites of luting cement as 

biocompatible, less water soluble, adhesive, radiopaque, aesthetic and easy for manipulation [2].  

The dental literature reports indicate none of the luting cements satisfies all the 

requirements of ideal cement. In the contemporary dentistry plethora of luting cements are available 

for the dentist to select. Besides the biocompatibility and aesthetic requirements, the luting cement 

should resist the functional occlusal forces and resultant cyclic fatigue for lifetime [3]. The 

mechanical properties like compressive strength, flexural strength, diametral tensile strength, 

modulus of elasticity, fracture toughness and hardness are considered as predictors for the longer 

clinical performance of the luting cements [4]. 

The in-vitro tests to evaluate the physical properties are routinely conducted in the room 

temperature of approximately at 230C. The ISO 4049 recommends the preparation and testing of 

specimens at 23±10C and controlled relative humidity greater than 30%. Reports from earlier 

research indicated, the tooth structures, and dental restorations are exposed to the diverse range of 

temperature due to the ingestion of hot and cold liquids. The results from the previous research 

showed the temperature extremes observed in the maxillary anterior region and mandibular molar 

regions at 62.60C [5]. 

A previous study recorded the temperature beneath the restorations ranging from 9-520C 

[6]. The temperature variations are recognised to hasten the degradation process like absorption, 

solution and disintegration of restorative materials. The compressive strength and modulus of 

elasticity of luting cement are also affected due to temperature variation and consequently; it 

decreases the clinical performance of the indirect restorations. 

The clinical application of all ceramic restorations is on a constant rise due to aesthetic 

conscious contemporary society. The composite resin cements are regularly used for the cementation 

of partial and full veneer all ceramic crowns. In addition to the superior physical properties, the resin 

cements credited with improved bonding strength and enhancing the strength of ceramic 

restorations [7,8].  

The previous researchers reported the significant reduction in physical properties of EBA-

reinforced zinc oxide/eugenol cement at higher temperatures of 370C and 500C [9]. The de-

cementation is recorded as the second major etiological factor in failures of indirect restoration 

preceded by secondary caries [10]. Hence the selection of luting cements requires careful 

considerations regarding the clinical situations and mechanical properties of luting cements. The 

eventual success of restoration to the larger extent depends on the accurate cement selection. 

Though the multiple studies have evaluated the physical and mechanical properties of the 

luting cement; the dental literature is in further need of investigations to evaluate the physical 

properties of contemporary luting cements like composite resin during clinical functional 
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temperature. Hence, this in-vitro study was designed to with an objective evaluate the influence of 

heat over the compressive strength, diametral tensile strength of commonly used luting cements. 

 

Material and Methods 

In this in-vitro experimental study, the contemporary dental luting cements like non-

eugenol temporary (Temp-Bond, Kerr Corporation, Orange, United States), zinc-phosphate 

(Harvard Dental International GmbH, Hoppegarten, Germany), zinc-polycarboxylate (Poly-F Plus, 

Dentsply IH Ltd, Weybridge, United Kingdom), glass-ionomer (AquaCem, Dentsply IH Ltd, 

Weybridge, United Kingdom) and composite resin (RelyX, 3M ESPE, Maplewood, MN, USA) were 

evaluated. 

As reported by the earlier studies the intra-oral temperature recorded during the ingestion of 

hot and cold foods was between 14- 600C. This temperature range also well tolerated by the soft 

tissues and teeth. Hence, temperature selected for testing the luting cement sample was 140C, 230C, 

370C and 600C. 

The two cylindrical shaped silicone moulds were fabricated. The first mold was used to make 

cement cylinders with the dimension of 12 mm in height and 6 mm in diameter. The second mold 

was utilized to fabricate the cement sample with the dimensions of 4 mm height and 8 mm diameter 

[11]. 

The former samples were used for testing the compressive strength, and later samples were 

used for the diametral tensile testing. Total of 40 samples from each cylinder type were fabricated for 

every single cement; ten samples were randomly distributed to each temperature range of 140C, 

230C, 370C and 600C. The cements were manipulated according to the manufacturer's instruction as 

described in Table 1. The materials required for fabrication of testing samples were weighted in a 

precision scale (Sartorius, Data Weighing Systems, Inc.Elk Grove, USA), and mixed with a plastic 

spatula on impervious paper. 

 

Table 1. Description of the luting cement groups, and manipulation. 
Group Cement Manufacturer Steps of Application 

I Non-Eugenol Temporary Temp-Bond NE, Kerr 
Corporation, Michigan, USA 

Dispense equal length from base and activator tube. Mix it for 30 
seconds, until homogenous color is achieved 

II Zinc- Phosphate Harward normal setting, 
Harvard Dental International 

GmbH, Hoppegarten, 
Germany 

The proportion of 1.5 gm was determined with precision 
weighing machine. Mixed on glass slab with sequential inclusion 
of powder portion of 1/8,1/8,1/4 and 1/2. The missing was 
completed in 90 seconds 

III Zinc- Polycorboxylate Poly-F Plus, Dentsply DeTrey 
GmbH, Konstanz, Germany 

The proportion of powder: liquid ratio was 5 gm: 1gm.Mixed for 
15 seconds over the glass slab, with sequential addition of two ½ 
powder portions 

IV Glass-ionomer AquaCem, Dentsply DeTrey 
GmbH, Konstanz, Germany 

The proportion of powder: liquid ratio was 3.3 gm: 1gm.Mixed 
for 15 seconds over the glass slab 

V Composite Resin Relyx Unicem, 3M ESPE,St. 
Paul, MN, USA 

Equal amount of base/ activator paste missed on impervious 
paper for 15 seconds 

 

Freshly mixed cement was poured into the silicone mold under vibration to avoid the 

inclusion of voids. The mold was slightly over filled and the glass plate was placed over the mold. 
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The mold was kept under a hydraulic bench (Wassermann Dental-Maschinen Gmbh, Hamburg, 

Germany) press with constant pressure of 10 kilograms during setting. According to ANSI/ADA 

Specification No. 96 [12], the cement sample mixing and subsequent setting for one hour was done 

under controlled temperature of 23±20C and relative humidity of 50±10%.  Post one-hour setting, 

the cement samples were removed from the mold and stored in distilled water at 370C for next 23 

hours. The temperature of the samples was maintained with the thermo-regulated water bath. The 

samples with large defects, voids and irregularity were discarded. The cylinder's ends were flattened 

with the fine-grit silicon carbide paper. The samples were examined for any defect by one clinician 

before including them in study. 

Randomly selected 10 specimens per temperature variable of 140C, 230C, 370C and 550C were 

utilized for testing. The specimen temperature was regulated according to the group by placing them 

inside the thermostatically controlled water bath for fifteen minutes prior to the testing. The 

specimens were heated to desired temperature in water bath to prevent the desiccation of the cement 

during heating. The cement samples for compressive strength were placed vertically underneath the 

universal testing machine (Instron Corporation, Massachusetts, United States) at the crosshead 

speed of 0.5mm/min. Whereas the sample discs were placed diametrically between the metal plates 

for testing of the diametral tensile strength. The static load was applied until the fracture of the 

cement samples, and failure load was recorded. 

The obtained data was analysed with SPSS 19 software (IBM Corp., Armonk, NY, USA). 

The one-way ANOVA and Tukey pair wise test were used for assessing the significant difference 

between the groups with p <0 .05. 

 

Results 

The temperature change had the different ranges of effect on all the luting agents tested 

during the study. The mean compressive and diametral tensile strength of different cement at the 

diverse temperatures is depicted in Table 2. 

The compressive strength for Non-eugenol temporary cement was recorded at 3.51 Mpa at 

140C, was increased up to 8.08 Mpa at 370C. The diametral tensile strength showed the similar trend 

with 2.02 Mpa, and 2.13 Mpa at 140C and 370C respectively. The diametral tensile strength was 

substantially affected at a higher temperature of 600C with 0.93 Mpa. The Zinc phosphate cement 

showed the better compressive strength at 140C with 91.01Mpa. The subsequent increase in 

temperature to 600C resulted in the significant reduction up to 59.80 Mpa. The diametral tensile 

strength was recorded highest at 370C with 5.20Mpa and at the higher temperature of 600C it was 

reduced to 3.52 Mpa. Zinc Polycarboxylate cement recorded the mean compressive strength of 61.50 

Mpa, 70.52 Mpa, 83.06 Mpa and 52.88 Mpa at 140C, 220C, 370C, and 600C respectively. The highest 

diametral strength of 7.09 Mpa documented at 370C. The mean compressive strength for Glass-

ionomer cement showed the highest value of 137.84 Mpa at 600C, while the least compressive 

strength recorded at 140C with 102.95Mpa. The highest diametral tensile strength was recorded at 
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370C with 11.78Mpa and at higher temperature of 600C it was reduced to 5.22 Mpa. The composite 

resin luting cements documented the higher mean compressive strength of 193.78 Mpa at 370C, and 

indicated the decline at 600C with 154.80 Mpa. The diametral tensile strength for composite resin 

also showed the similar tendency, the higher strength at 370C, with 47.86 Mpa and lowest value of 

32.45 Mpa at 600C. 

The one-way ANOVA analysis showed the statistically significant difference in both 

compressive and diametral tensile strength of all tested cements between varying temperatures. 

 

Table 2. Mean compressive strength and Diametral tensile strength (Mpa) at different temperature and 
ANOVA results. 

Cement Testing 140C 220C 370C 600C p-value 
Non-ZOE Temporary Compressive  3.51 5.36 8.08 6.40 0.001 

Diametral tensile  2.02 1.61 2.13 0.93 0.242 
       

Zinc-Phosphate Compressive 91.01 77.46 73.98 59.80 0.001 
Diametral tensile 4.24 4.92 5.20 3.52 0.001 

       

Zinc-Polycorboxylate Compressive 61.50 70.52 83.06 52.88 0.001 
Diametral tensile 5.14 6.99 7.09 5.22 0.001 

       

Glass-Ionomer Compressive 102.95 118.60 132.96 137.84 0.001 
Diametral tensile 4.74 6.95 7.82 5.22 0.001 

       

Composite-Resin Compressive 157.22 177.24 193.78 154.80 0.001 
Diametral tensile 35.53 44.44 47.86 32.45 0.001 

 

The Tukey HSD multiple comparison (Table 3) also showed the statistically significant 

difference between all the luting cement groups at different temperature except for the diametral 

tensile strength in Non-ZOE luting cement. The other groups with no significant difference were 

compressive strength of zinc phosphate between 230C and 370C with p=0.423, glass ionomer at 370C 

and 600C with p=0.535, composite resin between 140C and 600C (p=0.888). The non-significant 

difference in diametral strength was observed in zinc Phosphate between 220C and 370C (p=0.423), 

Zinc polycarboxylate between 140C and 600C (p=0.918), 230C and 370C (p=0.878). The Glass 

ionomer cement showed the statistically insignificant difference for diametral strength at between 

220C and 370C (p=0.019), 140C and 600C p=0.334), composite resin between 140C and 600C 

(p=0.014). 

 

Table 3. Tukey HSD multiple comparison. 
 Groups Compressive Strength Diametral Tensile 
Cement  140C 230C 370C 600C 140C 230C 370C 600C 
Non-ZOE 140C  0.001 0.001 0.001  0.920 0.998 0.333 

230C 0.001  0.001 0.001 0.920  0.847 0.706 
370C 0.001 0.001  0.001 0.998 0.847  0.250 
600C 0.001 0.001 0.001  0.333 0.706 0.250  

          
Zinc-Phosp 140C  0.001 0.001 0.001  0.003 0.001 0.002 

230C 0.001  0.150 0.001 0.003  0.423 0.001 
370C 0.001 0.150  0.001 0.001 0.423  0.001 
600C 0.001 0.001 0.001  0.002 0.001 0.001  
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Zinc-Polycor 140C  0.001 0.001 0.001  0.001 0.001 0.918 
230C 0.001  0.001 0.001 0.001  0.878 0.001 
370C 0.001 0.001  0.001 0.001 0.878  0.001 
600C 0.001 0.001 0.001  0.918 0.001 0.001  

          
Glass-Ionomer 140C  0.001 0.002 0.001  0.001 0.001 0.334 

230C 0.001  0.001 0.001 0.001  0.019 0.001 
370C 0.001 0.002  0.535 0.001 0.019  0.001 
600C 0.001 0.001 0.535  0.334 0.001 0.001  

          
Compo-Resin 140C  0.001 0.001 0.888  0.001 0.001 0.014 

230C 0.001  0.001 0.001 0.001  0.005 0.001 
370C 0.001 0.001  0.001 0.001 0.005  0.001 
600C 0.888 0.001 0.001  0.014 0.001 0.001  

 

Discussion 

The primary function of the luting cements is to retain the indirect restoration by filling up 

the gap between the prepared teeth and the restoration. The optimum physical and mechanical 

properties of luting cement is important for the long-term clinical service of restoration. Hence, the 

dental researchers are in constant pursuit of improving these properties of luting agents. 

The dental restorations are exposed to the various stresses like compressive, shear and 

tensile stress from the masticatory process. Compressive strength of the luting cement is considered 

as the main criteria of success. Few clinical failures of the indirect restoration are also attributed to 

inadequate tensile strength of luting cements [13]. The diametral tensile test was measured in this 

study instead of direct tensile strength considering the technical difficulties involved in testing 

brittle materials like cements. The luting cements with adequate mechanical properties will transfer 

the forces from the crown to tooth structures without structural deformation, crack propagation, and 

with fewer possibilities of compressive or tensile failures [14]. The micro cracks in the luting cement 

layer will also lead to the interfacial microleakage and other consequences like periodontal diseases, 

dental caries, compromised aesthetics [15]. 

The dental restorations function under the complex situation like different temperature, 

liquids with varying pH and cyclic loading. As the temperature in oral cavity is influenced by the 

temperature of ingested food, it is prudent to understand the performance of luting cement at 

functional clinical temperatures. Previous authors reported the maximum temperature at 48.40C and 

minimum value at 18.90C [16] while others reported the highest temperature at 68.00C and lowest 

temperature of 15.40C [17]. The maximum temperature recorded by consumption hot fluid is around 

700C and consumption of cold drinks reduced the temperature approximately to 00C [18].  Hence 

the temperature range of 14-600C were selected for testing luting cements. 

The mechanism of retention varies greatly between cements. The non-adhesive cements 

derive the retention by mechanical interlocking within the irregularities in restoration and tooth 

structures. Thermoplastic deformation of these cements at a higher temperature significantly affects 

the physical properties of non-adhesive cements. The compressive strength of the non-eugenol 

cement was improved unlike the eugenol containing zinc oxide luting cements up to 370C, and 
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substantially reduced at 600C. The similar trend was observed diametral tensile strength also. The 

zinc phosphate unlike non-eugenol cement showed the highest compressive strength of 91.01 Mpa at 

140C, and gradual reduction in strength was recorded with the subsequent increase in temperature. 

The lowest strength was recorded at 600C with 59.80Mpa. The setting reaction of Non-

eugenol zinc oxide cement begins with hydrolysis of zinc oxide. Then it reacts with polymerized 

fatty acids leading to formation of a matrix of zinc polymerized fatty acids chelate with embedded 

un-reacted zinc oxide particles. The zinc oxide-eugenol cements possess the plastic strain above 15 % 

at 370C and increased creep properties at the higher temperatures. Hence the non-eugenol zinc oxide 

cements performs better at higher temperatures in comparison to eugenol containing cements.  The 

non-eugenol cements are having other advantages like less dissolution and no inhibitory effect on 

polymerization of methacrylate resins [19]. 

Zinc phosphate and zinc polycarboxylate cements are considered as acid-base reaction 

cements. The powder is predominantly consisting of zinc oxide and magnesium oxide, whereas liquid 

composed of phosphoric acid and polyacrylic acid respectively. Both cement showed the marginal 

reduction in the compressive and diametral tensile strength at higher temperatures. The zinc 

phosphate had the higher strength at 140C with 91.01 Mpa; however, zinc polycorboxylate recorded 

maximum compressive s strength at 370C with 83.06 Mpa. The results from the study corroborated 

with previous finds that showed significant loss of strength at a higher temperature of 550C [9]. 

The glass ionomer luting cements are comprising of the polymer matrix with various 

embedded inorganic fillers. The polymer matrix are viscoelastic materials, and mechanical properties 

are significantly affected by temperature.  The embedded inorganic fillers besides improving the 

mechanical properties like modulus of elasticity, they are reported to increase the glass transition 

temperature [20,21]. The researchers reported the increased temperature lead to relaxation of 

polymer matrix. This leads to decline in elastic modulus at a higher temperature. 

Decline in the compressive strength to 154.80 Mpa and diametral tensile strength to 32.45 

was observed in the composite resin cement at 600C. The composite resins are having glass 

transition temperature instead to melting point like metals and ceramics. The polymers behave like 

glass below the transition temperature and as super cooled liquid above transition temperature. The 

thermal energy results in polymer segmental motion and freedom lead to behaving like viscoelastic 

materials. Hence the dental polymers should possess the glass transition temperature above the 

clinical functional temperature. The presence of inorganic fillers, cross linking, residual monomer 

and degree of conversion affect viscoelastic behaviours of polymers. The large elastic deformation is 

due to polymer chain uncoiling, and it is facilitated by thermal activated process [22]. A previous 

study showed significant reduction of strength between 37-500C [23]. The result of the present 

study indicated the similar outcome as observed previously [23]. 

Limitation of the study includes the study is in vitro in nature, hence difficult to replicate the 

clinical situation. Intra-orally the restorations are exposed to various temperature along with liquids 

with fluctuating pH. The presence of liquids is known to influence the crack propagation and these 
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parameters were not included in the study. Since the combined effect of these conditions will provide 

the true data on clinical performance. The luting cement thickness differs due to clinical situations 

and mechanical properties of cements. The effect of temperature on parameters like retention at 

different luting cement thickness needs further evaluation. 

 

Conclusion 

The temperature variations affected the compressive and diametral tensile strength of all the 

luting cements evaluated in the study. The non-eugenol-zinc oxide, zinc phosphate and zinc 

polycarboxylate luting cements showed the marginal reduction in the compressive and diametral 

tensile strength at the higher temperature of 600C. The diametral tensile strength values of non-

eugenol -zinc oxide cement at a different temperatures was statistically insignificant. 

The glass ionomer cements showed no deterioration in its compressive strength at the 

higher temperatures, while it affected the diametral tensile strength to minor extent. The 

compressive strength values of glass ionomer cement at 370C and 550C was statistically insignificant. 

The composite resin luting cements showed the highest compressive and diametral tensile strength. 

It was not affected at 370C, but showed the decline in mechanical properties at 600C. 
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