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Resumo 
 

A Síndrome Metabólica (MetS) é um conjunto de doenças inter-relacionadas e           

associadas ao aumento de mortalidade e risco de eventos cardiovasculares. Entre           

os mecanismos moleculares elucidados da MetS, existem muitos genes regulados          

por miRNAs -  RNAs pequenos não codificadores . O grande número de estudos            

transcriptômicos em banco dados públicos integrado a novos métodos de análise           

podem gerar novas descobertas.  Deste modo, o objetivo deste estudo foi identificar            

miRNAs circulantes e genes alvos na MetS usando a abordagem de Biologia de             

Sistemas. Para isso, GEO-NCBI foi usado para obter e analisar 26 estudos de             

transcriptoma por microarray de  MetS  e obesidade.  Após o pré-processamento,          

realizamos análises de expressão diferencial (método LIMMA), co-expressão gênica         

(CEMiTool), e enriquecimento (GSEA, Reactome). Identificamos uma assinatura de         

expressão gênica do tecido adiposo subcutâneo (SAT) de indivíduos obesos,          

composta por 291 genes consistentemente diferencialmente expressos (DEG). Essa         

assinatura teve um escore de enriquecimento normalizado (NES) positivo para          

ativação de respostas do sistema imune adaptativo, e NES negativo para vias de             

metabolismo. A rede consenso de co-expressão do SAT revelou 3 comunidades           

(CM) de genes densamente interconectadas. Essas CMs continham muitos genes          

regulados positivamente e com consistência de NES positivo entre os estudos. Os            

genes co-expressos dessas 3 comunidades pertenciam a vias de a degranulação de            

neutrófilos, infiltração de células do sistema imune e processos inflamatórios. Além           

disso, uma pequena coorte brasileira (6 indivíduos com MetS e 6 controles) foi             

submetida à dosagem sérica de miRNAs por PCR array. Dos 222 miRNAs            

detectados no soro, a análise de expressão diferencial identificou 4 miRNAs           

regulados positivamente (miR-30c-5p, miR-421, miR-542-5p e miR-574) nos        

pacientes com MetS (p<0.01). A análise integrativa miRNAs-mRNAs revelou que os           

miRNAs circulantes superexpressos tinham 12 alvos no SAT, 3 alvos no fígado; e             

 



nenhum alvo no músculo e no sangue. Muitos desses alvos são moduladores de             

vias pró-inflamatórias. Em conclusão, a utilização da Biologia de Sistemas na análise            

de redes gênicas e miRNAs circulantes identificou alguns potenciais mecanismos          

moleculares e fisiopatológicos da Síndrome Metabólica. Os miRNAs circulantes         

identificados neste trabalho são potenciais biomarcadores e/ou alvos terapêuticos.         

Entretanto, mais estudos são necessários para validar esses miRNAs e seus           

mRNAs alvos. 
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HIRATA, T. D. C.  Analysis of the transcriptional regulatory mechanisms          
mediated by microRNAs in Metabolic Syndrome. 2019. 110f. Thesis (Doctoral) -           
School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 2019. 

 

Abstract 

Metabolic Syndrome (MetS) is a combination of diseases interrelated and associated           

with increased mortality and risk of cardiovascular events. Among the elucidated           

molecular mechanisms of MetS, there are several genes regulated by miRNAs -            

small non-coding RNAs. A large number of transcriptomic studies in public databases            

integrated with new analysis methods can generate new insights. Therefore, this           

study aimed to identify circulating miRNAs and their target genes in MetS using a              

Systems Biology approach. For this, we used GEO-NCBI to download and analyse            

26 microarray transcriptome studies of MetS and obesity. After preprocessing, the           

data underwent differential expression (LIMMA method), gene co-expression        

(CEMiTool), and enrichment (GSEA, Reactome) analyses. We  retrieved a  gene          

expression signature for subcutaneous adipose tissue (SAT) for obese individuals          

that included 291 consistent differentially expressed genes (DEG). This signature had           

a positive normalized enrichment score (NES) for adaptive immune system activation           

responses, and negative NES for metabolic pathways. The consensus co-expression          

network of SAT revealed 3 communities (CM) of densely interconnected genes.           

These CMs had a high number of up regulated genes and a consistent positive NES               

among the studies. The co-expressed genes of these 3 CMs were related to             

neutrophil degranulation, infiltration of immune system cells, and inflammatory         

processes. Also, a small brazillian cohort (6 individuals with MetS and 6 controls)             

underwent a seric miRNA profiling using PCR array. From the 222  miRNAs detected             

in serum, the differential expression analysis identified 4 upregulated miRNAs          

(miR-30c-5p, miR-421, miR-542-5p and miR-574) in MetS patients (p<0.01). The          

integrative miRNAs-mRNAs analysis revealed that the circulating upregulated        

miRNAs had 12 targets in the SAT, 3 targets in the liver; and no targets in the muscle                  

and blood. Many of these target genes are known modulators of proinflammatory            

pathways. In conclusion, the use of Systems Biology in the analysis of gene networks              

 



and circulating miRNAs identified some potential molecular and pathophysiological         

mechanisms of the Metabolic Syndrome. The circulating miRNAs identified in this           

study are potential biomarkers and/or therapeutic targets. However, further studies          

are needed to validate these miRNAs and their target mRNA. 

 

Keywords: Metabolic Syndrome. Obesity. MicroRNA. Gene signature.       

Co-expression. mRNA. Systems Biology. Bioinformatics. 
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1. Introduction 

1.1. Metabolic Syndrome 

Cardiovascular disease is the leading cause of death worldwide  (JOSEPH et           

al., 2017) . In Brazil, ischemic heart disease (IHD) and  stroke  represent respectively,            

13.0% and 9.1% of all deaths reported in 2017 (Figure 1). Both conditions cause a               

significant impact on public health due to the need for high complexity hospital             

procedures and associated high costs  (MOZAFFARIAN et al., 2016) . Metabolic          

Syndrome (MetS) encompasses many pathologic conditions that have shown to          

have a 50% increase in mortality and twice the risk of cardiovascular events             

(MOTTILLO et al., 2010) .  

 

Figure 1 - Main causes of death for all ages and genders in Brazil in 2017  

 
The graph shows the proportion of deaths by chronic diseases in blue, death by infectious               
diseases in red and other causes of death in green. IHD (ischemic heart disease) represents               
13.0 % of total deaths in the country and stroke 9.1 %. (Figure generated by the website:                 
https://vizhub.healthdata.org/gbd-compare/ ). 
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Since the description of MetS  (REAVEN, 1988) , different clinical definitions          

were proposed by the World Health Organi zation (WHO), National Institutes of           

Health (NIH), and the International Diabetes Federation (IDF). Divergences between          

the formulated guidelines led to the harmonized proposal for the definition of MetS in              

2009  (ALBERTI et al., 2009) . 

All the MetS diagnostic definitions take into consideration the presence of at            

least 3 of the following factors: body measurements (Body Mass Index - BMI, or              

abdominal circumference), lipids profile (low levels of HDL-c - High Density           

Lipoprotein cholesterol and high levels of triglycerides), blood pressure (Systemic          

Arterial Hypertension - SAH), and glycemic profile (Type 2 diabetes, altered fasting            

glycemia or glucose intolerance)  (MOZAFFARIAN et al., 2016) .  

In this work, we utilized the latest guideline in Brazil for MetS diagnosis. The              

guideline is from the  IV Diretriz Brasileira de Dislipidemias e Prevenção da            

Aterosclerose from the  Departamento de Aterosclerose da Sociedade Brasileira de          

Cardiologia  (SPOSITO et al., 2007) . According to it, MetS diagnosis requires the            

presence of abdominal obesity, alongside two other factors described in Table 1.            

However, the most extensive epidemiologic study in Latin America, the  Estudo           

Longitudinal de Saúde do Adulto no Brasil (ELSA-Brasil), utilized the guidelines from            

the National Cholesterol Education Program's Adult Treatment Panel III (NCEP ATP           

III). This multicenter cohort found a 15.2% MetS prevalence among 15.000           

individuals  (SCHMIDT et al., 2015) .  

The heterogeneity in diagnosis procedures makes it difficult to estimate the           

global prevalence of MetS, which varies from 10 to 30% of the adult population              

(GRUNDY, 2008) . Brazilian epidemiological studies also found different prevalence         

values   of MetS: 14.9%  (PIMENTA; GAZZINELLI; VELÁSQUEZ-MELÉNDEZ, 2011) ;        

19%  (BARBOSA et al., 2006) ; 25.4%  (MARQUEZINE et al., 2008) ; 29.8%           

(SALAROLI et al., 2007) ; 30%  (DE OLIVEIRA; DE SOUZA; DE LIMA, 2006) ; 32%             

(DUTRA et al., 2012) ; 35.7%  (DE OLIVEIRA et al., 2011) ; 35.9%  (GRONNER et al.,              
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2011) . Such discrepancy may be due to regional, methodological, and ethnic           

differences among the studies  (DE CARVALHO VIDIGAL et al., 2013) . 

Table 1 - Diagnostic criteria for Metabolic Syndrome from the  IV Diretriz            
Brasileira Sobre Dislipidemias e Prevenção da Aterosclerose  (2007)*  

Criteria Definition 

Abdominal obesity   

      Men  

European Caucasian and afro descendent ≥ 94 cm 

South-Asian, American e Chinese  ≥ 90 cm 

Japanese ≥ 85 cm 

      Women  

European Caucasian, Afro-descendent,  

         South-Asian, American and Chinese 
≥ 80 cm 

  Japanese  ≥ 90 cm 

  Triglyceridemia ≥ 150 mg/dL or treating 

  HDL-cholesterol  

      Men  < 40 mg/dL 

      Women < 50 mg/dL 

  Systemic Arterial Blood Pressure   

      Systolic or  ≥ 130 mm Hg or treating 

      Diastolic  ≥  85 mm Hg or treating 

  Fasting Glycemia ≥ 100 mg/dL or treating 

*Established by the  Departamento de Aterosclerose da Sociedade Brasileira de          
Cardiologia . Metabolic Syndrome Diagnosis: abdominal obesity + 2 criteria from          
above. Source: Sposito   et al. ,  2007. 

 

Obesity is the most predominant risk factor  (MANDVIWALA; KHALID;         

DESWAL, 2016) as well as a significant predictor of MetS  (CARNETHON et al.,             

2004)  (PALANIAPPAN et al., 2004) . It reached a global epidemic status with a             

steadily increase in prevalence regardless of age, gender, and ethnicity  (INOUE et            
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al., 2018) . Also, obesity’s association with decreased life expectancy and increased           

morbidity contributes to the overall burden of diseases  (FONTAINE et al., 2003) .  

The cause for such an increase in obesity worldwide is still unclear  (ROSS;             

FLYNN; PATE, 2016) . Among the probable reasons, the main ones are the lack of              

physical exercise and a poor diet  (VAN DER VALK et al., 2019) . Indeed, countries              

with economic growth from industrialization, newly created technologies, and         

efficient means of transportation have boosted the sedentary lifestyle of its citizens            

(HRUBY; HU, 2015) . Other factors have been suggested to contribute to obesity:            

chronic stress, medications  (VAN DER VALK et al., 2019) , increased consumption of            

highly processed foods, elevated maternal age , sleep deprivation, endocrine         

disruptors, pharmaceutical iatrogenesis, and intrauterine/intergenerational factors      

(MCALLISTER et al., 2009) . 

The imbalance of calorie intake and energy expenditure may result in excess            

of body adiposity. Although obesity can be defined subjectively, a precise diagnostic            

criterion is still missing. The Body Mass Index (BMI) is a commonly used             

anthropometric measure of obesity. It is  calculated by dividing the w eight by the             

height squared (kg/m 2 ). An adult is considered obese if the BMI is over 30 kg/m 2 ,               

though lower values are recommended for specific populations. For example, a BMI            

cut-off value of 25 kg/m 2 is suggested for Asians and South Asians due to              

associated health risks  (NAM; PARK, 2018) .  

Other anthropometric measurements have been proposed to diagnose        

obesity. These include waist circumference (WC), waist-to-hip ratio (WHR)  (DE          

KONING et al., 2007) and waist-to-height ratio (WHtR)  (ASHWELL et al., 2014) .            

Indices that use WC are more accurate when it comes to evaluating the health risks               

(CORRÊA et al., 2016) and predict chronic diseases  (ASHWELL; GUNN; GIBSON,           

2012) .  

Excess adipose tissue is associated with several diseases, including type 2           

diabetes, cardiovascular disease, and some types of cancers. The expansion of           

adipose tissue can occur through cell multiplication, called hyperplasia, or due to the             

accumulation of lipids (hypertrophic expansion). Metabolic complications secondary        
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to obesity, such as insulin resistance, hypertension, and dyslipidemia have a more            

significant association to hypertrophy than hyperplasia, primarily when the         

accumulation of lipids occurs in the visceral region  (SHERLING; PERUMAREDDI;          

HENNEKENS, 2017; TUNE et al., 2017)   (ARNER, 1998) . 

 

1.2. Investigating Metabolic Syndrome with High-throughput Technologies 

Omics technologies have been applied to better understand the genetic          

features of the MetS and related conditions. Genome-wide Association Studies          

(GWAS) have shown that complex trait diseases are highly polygenic and that each             

variant has very small contributions to the phenotype  (FALL; INGELSSON, 2014) .           

This can be partially explained by the lack of statistical power or the little influence               

that genetics alone plays in metabolic disorders  (ZHU et al., 2017) . Also, the genes              

found in GWAS studies are unable to explain metabolic changes without proper            

functional validation  (VISSCHER et al., 2017) . Still, several GWAS focused on MetS            

have been published to date  (AVERY et al., 2011; KRAJA et al., 2011; ZABANEH;              

BALDING, 2010)   (LEE; KIM; PARK, 2018; ZHU et al., 2017) .  

On the other hand, the number of MetS related diseases using transcriptome            

techniques is much larger. The literature is, however, very heterogeneous - most            

MetS studies focus on one of its components  (DAO et al., 2018) , in co-morbidities              

(HIRSCH et al., 2010) , or involves some type of intervention or treatment            

(KOLEHMAINEN et al., 2012)  (HULSMANS et al., 2012) . The main MetS component            

found in these transcriptome studies was obesity. However, many of them focused            

on interventions  (GRACE et al., 2019; TAKAHASHI et al., 2019) , on associated            

conditions  (SINNOTT et al., 2017) , or on inflammatory processes  (TAM et al., 2011) .  

Microarray transcriptome studies have been able to unravel various biological          

elements and complex pathways of MetS  (BAKKER et al., 2018; DAO et al., 2018;              

D’AMORE et al., 2018) . Most have tried to discover new molecular mechanisms            

(BADOUD et al., 2017) and different phenotypes  (WRUCK et al., 2015) . For            

example, a co-expression study identified IL-6 and IL1B as highly differentially           
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co-expressed in adipose tissue from obese individuals  (KOGELMAN et al., 2016) .           

The same group performed a transcription factor co-expression analysis and          

detected immune pathways, including the TGF-beta signaling pathway in adipose          

tissue from obese patients  (SKINKYTE-JUSKIENE; KOGELMAN; KADARMIDEEN,       

2018) . 

Another co-expression study, with discordant monozygotic twins, uncovered a         

co-expression module that had a positive correlation with BMI. This co-expression           

module was enriched with several lipid-related pathways, including regulation of          

phospholipase activity and cholesterol transporter activity. Also, the authors         

identified 32 DEGs from blood samples, and a possible association of  NAMPT ,            

TLR9 ,  PTGS2 ,  HBD , and  PCSK1N  and obesity  (WANG et al., 2017) .  

Although informative, the genes reported being associated with a         

transcriptomic study overlap very poorly with those reported by another          

transcriptomic study. Such discrepancies are frequently observed  (MIKLOS;        

MALESZKA, 2004) , raising questions about the reproducibility of scientific work.          

These inconsistencies can be related to factors such as distinct gene expression            

platforms, sample collection  (EIN-DOR; ZUK; DOMANY, 2006; RADICH et al.,          

2004) , and even small sample sizes causing reduced statistical power  (CHOI et al.,             

2003) . 

A very large number of samples is required to reach a decent level of marker               

stability  (EIN-DOR; ZUK; DOMANY, 2006) . The ideal solution to overcome this           

problem is to compare and integrate data from several studies into a meta-analysis             

(CAHAN et al., 2007) , which improves the findings' reliability. Large datasets also            

allow for co-expression network analyses, where large sets of genes are positively            

correlated, leading to gene co-expression modules that increase the comprehension          

and predictive power over mechanisms underlying genetic diseases.  
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1.3. Microarray technology and GEO-NCBI 

Microarray technology is based on hybridization between target DNA from          

samples and predefined DNA probes fixed on a platform. The technology is able to              

measure the expression levels of tens of thousands of transcripts simultaneously in            

a single sample. Despite its limitations compared with RNA-Seq technology          

(SULTAN et al., 2008) , microarrays are well established in the scientific community            

and are still a widely used technology for transcriptome analysis. 

In addition, public databases contain data from millions of microarray          

samples, allowing their use in large meta-analyses. For example, Kraja et al.            

performed a meta-analysis in which single nucleotide polymorphisms (SNPs)         

located near the genes  COBLL1 ,  GRB14 and  LYPLAL1 were associated with high            

concentrations of fasting insulin, waist circumference, and risk for type 2 diabetes            

(KRAJA et al., 2014) . 

The GEO-NCBI (Gene Expression Omnibus - National Center for         

Biotechnology Information) has been the most comprehensive and curated database          

in the literature.  The database only includes studies that follow strict content            

guidelines from the Minimum Information About a Microarray Experiment (MIAME)          

(BARRETT et al., 2007) and is accessible at (www.ncbi.nlm.nih.gov/geo/). This          

international public repository contains gene expression, DNA methylation, protein,         

SNP, and genomic variation studies  (CLOUGH; BARRETT, 2016) . The database          

also provides query tools to search and download raw and normalized data from             

arrays and sequencing-based studies. In 2018, there were over 2.8 million samples,            

and a whopping 106.000 studies (series) available in the database. 

 

1.4. Gene Co-expression Analysis  

Gene co-expression analysis aims to find  genes with similar gene expression           

patterns in different biological conditions  (ZHANG; HORVATH, 2005) . Using thi s          

approach, we can construct  a network by computing a similarity (correlation) score            

for each pair of genes. If the similarity score is higher than a threshold, then the                
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genes are connected in the graph in an undirected way (because the correlation is              

symmetric). Co-expression profiles can provide insight into cellular processes since          

they usually encode interacting proteins  (BELLOT et al., 2015) .  

The Weighted Gene Co-expression Network Analysis (WGCNA) method        

considers the relationships between the transcripts by quantifying the correlations          

between gene pairs and evaluating the extent to which the genes share the same              

interaction neighbor  (ZHANG; HORVATH, 2005) . In summary, this method groups          

genes in modules according to the gene co-expression variation calculated by the            

Pearson correlation coefficient, which makes it possible to ascertain gene          

expression profiles between the different experimental conditions  (LANGFELDER;        

HORVATH, 2008) . These modules possibly contain genes belonging to the same           

biological processes (pathways) and regulation. The WGCNA method transforms         

thousands of probes from the microarray study into dozens of modules, reducing the             

high dimensionality of data and eliminating the need for multiple tests           

(LANGFELDER; HORVATH, 2012) . 

 

1.5. Systems Biology 

Biological systems involve many types of components (e.g. genes, proteins,          

metabolites, etc.) that interact with each other in a complex manner. Analyzing this             

network can be challenging and overwhelming  (WALPOLE; PAPIN; PEIRCE, 2013) .          

Systems biology analysis strategy follows a holistic approach and seeks to           

understand, identify the patterns, and quantify the interactions of biological          

components by integrating various types of data using computational and statistical           

models  (KRIETE et al., 2011) . 

The development of context-specific gene modules and gene networks of          

signaling pathways facilitate the visualization of systems biology results, in addition           

to keeping them within a biological context  (STEVENS et al., 2014) . Using this             

approach, we can apply systems biology tools to all health science areas, such as:              

immunology  (PRADA-MEDINA et al., 2017) , infectious diseases  (KWISSA et al.,          
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2014) , neurology  (MORELLO et al., 2018; RUSSELL-BUCKLAND; BARNES;        

TACHTSIDIS, 2019) , vaccinology  (KAZMIN et al., 2017; NAKAYA; PULENDRAN,         

2012) , endocrinology  (STEVENS et al., 2014) , oncology  (ARCHER et al., 2016) ,           

odontology  (ADEOLA; PAPAGERAKIS; PAPAGERAKIS, 2019) , and pharmacology       

(MA’AYAN et al., 2014; STÉPHANOU et al., 2018) as well as to biomarker discovery              

(LIN et al., 2018) .  

1.6. miRNAs 

miRNAs (microRNAs) are small non-protein-coding RNA molecules that        

regulate the gene expression of thousands of mRNAs. They hybridize to           

complementary sequences from the 3' untranslated region (3'-UTR) of target          

messenger RNA (mRNA), leading to translation inhibition or destabilization and          

direct cleavage of the target transcript  (BARTEL, 2004) . In addition, miRNAs can            

compete for 5' CAP  (PESTOVA et al., 2001) , inhibit ribosome assembly           

(CHENDRIMADA et al., 2007) , promote target mRNA deadenylation  (WAKIYAMA;         

YOKOYAMA, 2010) , prematurely disassemble the ribosome  (PETERSEN et al.,         

2006) , cleave  target mRNA  (LLAVE et al., 2002)  (PALATNIK et al., 2003)  or even              

promote the deadenylation followed by the removal of 5` CAP  (BEHM-ANSMANT;           

REHWINKEL; IZAURRALDE, 2006) .  

Briefly,  the canonical biogenesis of miRNAs begins when RNA polymerase II           

transcribes the miRNA gene into its primary miRNA (pri-miRNA). This precursor           

molecule has secondary structures called hairpins  (SMALHEISER, 2003) that are          

cleaved by the RNase III DROSHA-DGCR8 complex  (LEE et al., 2003) . The            

resulting molecule is about 70 bases and is called a miRNA precursor (pre-miRNA).             

Subsequently, a nuclear export receptor-dependent on the Ran-GTP cofactor,         

Exportin-5, mediates the displacement of the pre-miRNA into the cytosol  (LUND et            

al., 2004) . Finally, the mature pre-miRNA is processed by cytoplasmic RNase III            

DICER to form the mature miRNA of approximately 18 to 24 nucleotides            

(BERNSTEIN et al., 2001) . 

miRNAs are non-canonical when their biogenesis bypasses the canonical         

biogenesis pathway  (ABDELFATTAH; PARK; CHOI, 2014) . Drosha or        
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Dicer-independent pathways can synthesize them. The absence of Drosha and          

Gdcr8 does not affect non-canonical miRNA production  (RUBY; JAN; BARTEL,          

2007) . Although Dicer is required for most miRNA synthesis, there are miRNAs can             

mature independently of Dicer. For example, mir-451 matures without the          

microprocessor of the Dicer pathway because of its pri-miRNA small size after            

Drosha/Dgcr8 cleavage in the nucleus  (GEBERT; MACRAE, 2019) . 

miRNAs are present in several human tissues  (LIANG et al., 2007) , as well as              

most biological fluids such as serum  (GILAD et al., 2008) , plasma  (CHIM et al.,              

2008) and urine  (MELKONYAN et al., 2008) . Its extracellular stability can increase            

when associated with lipid or protein carriers. For instance, the bound with Ago2, a              

protein of the RNA-induced silencing complex, protects against endogenous RNAse          

(TURCHINOVICH et al., 2011) degradation. Furthermore, lipid carriers such as          

extracellular vesicles (exosomes, microparticles, microvesicles)  (VICKERS;      

REMALEY, 2012) and lipoproteins  (VICKERS et al., 2011) allow miRNAs to be            

transported throughout the body and exchanged between different cells. 

The latest update of the miRBase database (version 22), has identified and            

cataloged 1982 precursors of miRNAs and 2694 mature miRNAs from humans           

(KOZOMARA; BIRGAOANU; GRIFFITHS-JONES, 2019; KOZOMARA;     

GRIFFITHS-JONES, 2014) . Most of these miRNAs can regulate hundreds of          

mRNAs, and several miRNAs can target a single mRNA  (KREK et al., 2005) .  

The immense influence and regulatory activity of miRNAs on the          

post-transcriptional mechanisms of mRNAs indicates a potential target in diseases.          

Analysis of the expression profile of miRNAs has already provided molecular           

markers for the detection of various diseases and may contribute to the discovery of              

new therapies  (MCGREGOR; CHOI, 2011) .  

Associations between MetS and miRNAs have already been established by          

Karolina et al. (2012) in the analysis of circulating miRNAs in patients with MetS,              

hypercholesterolemia, type 2 diabetes, or systemic arterial hypertension. Groups of          

differentially expressed miRNAs in MetS were uncovered for each MetS associated           

disease (dyslipidemia, diabetes, and hypertension). They also uncovered miRNAs         
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expression positively correlated with BMI, high blood pressure, and fasting blood           

glucose  (KAROLINA et al., 2012) . 

Increased expression of circulating let-7g and miR-221 was associated with          

hyperglycemia and other components of the MetS in women. Also, let-7g was            

associated with low HDL cholesterol and hypertension, while miR-221 was not           

associated with any risk  (WANG et al., 2013b) . 

 Many miRNAs identified in the adipose tissue have been shown to target             

genes involved in human adipogenesis  (PENG et al., 2014) . For example, miR-27b            

(KARBIENER et al., 2009) and miR-130  (LEE et al., 2011) target the peroxisome             

proliferator-activated receptor-gamma (PPARγ). On the other hand, the increased         

expression of miR-103 and miR-143  (ESAU et al., 2004) was associated with            

adipogenesis induction. Upregulation of miR-30c, miR-30d, and miR-30e has been          

found during adipocyte differentiation  (WANG et al., 2013a) . Other processes related           

to the cellular activity of adipocytes in which miRNAs are involved maturation,            

metabolism, and signaling (Figure 2). 
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Figure 2 - Adipocyte functions and examples of miRNA-mediated regulation 

 
Adipocyte processes influenced by miRNAs: glucose uptake (miR-93 and miR-223), lipolysis           
and β-oxidation (miR-145), triglyceride synthesis (miR-125b), insulin signaling (miR-144),         
browning (miR-150 and miR-34a), adiponectin synthesis (miR-193b) and inflammation         
(miR-146b-5p in macrophages). Source: Brandão, Guerra e Mori (2017). 

 

Although miRNAs are an essential part of transcriptomic regulation,         

epigenetic factors such as DNA methylation  (WILSON et al., 2017; XU et al., 2018) ,              

histone modifications  (NIE et al., 2017) have shown to contribute to obesity            

development. Other MetS components like as insulin resistance  (ARNER et al.,           

2016) and hypertension  (STOLL; WANG; QIU, 2018) have also shown to be            

influenced by epigenetics. It comes as no surprise that environmental factors can            

positively  (ARMENISE et al., 2017) or negatively  (MESSAOUDI et al., 2017)           
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influence metabolic diseases. Even the uterine environment can affect fetal          

epigenome in the early stages of human development  (LING; RÖNN, 2019) . 

MetS is a multifactorial disease with a significant epidemiological, economic,          

and sociological impact. Even though several GWAS and candidate genes          

association studies have found obesity and MetS related genes, there are still            

divergences of the relevant genes among the studies. The identification of the MetS             

gene expression signature can help understand the role of miRNA in MetS and even              

impact the development of diagnostic/prognostic methods. Therefore, the use of a           

data-driven holistic method of analysis was proposed to investigate consensus          

target genes of miRNAs involved in this complex disease. For this, several            

microarray studies were integrated, gene modules associated with MetS were          

developed and the interactions of the differentially expressed genes with regulatory           

miRNAs were analyzed. 
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2. Aims 

2.1. Main Aim 

To use systems biology and meta-analysis tools to identify the molecular           

signaling pathways in MetS . 

 

2.2. Specific Aims 

To identify a consistent gene expression signature for obesity through a           

comprehensive meta-analysis of transcriptomic studies. 

To identify consistent gene co-expression modules in MetS and obesity. 

To reveal genes and signaling pathways not yet described as being related to             

MetS and obesity. 

To analyze circulating miRNA profiles in patients with MetS using PCR           

miRNA array. 

To identify potential regulatory miRNAs by integrating gene co-expression         

analysis of obesity and miRNAs associated with MetS. 
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3. Material and Methods 

3.1. Study workflow  

 In order to reach the aims of this study, an analysis workflow was developed              

to integrate transcriptomic open-source data with the miRNA expression data          

obtained from a small Brazilian cohort.  The main steps used to analyze the two              

datasets obtained are summarized in Figure 3.  The first part of the bioinformatic             

analysis used publicly  available  datasets (Figure 3, blue arrows), where the           

microarray  transcriptome data was selected, obtained, processed, and analyzed. In          

the second part, the miRNA dataset from MetS patients was normalized, analyzed,            

and integrated into the transcriptomic dataset. 

 

Figure 3 - Flow chart of the summarized analysis workflow 

 
GSEA: Gene Set Enrichment Analysis. GEO: Gene Expression, Omnibus. Green: Analysis           
method, blue: data obtained publicly, light blue: results from the public data, red: new              
unpublished data, light red: results from the unpublished data, purple: results combining the             
published and unpublished data. DEGs: differentially expressed genes. PCR: polymerase          
chain reaction. miRNA: microRNA. mRNA: messenger RNA. 
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3.2. Selection of mRNA expression microarray studies from a public database 

Initially, we performed an online survey of gene expression studies in the            

GEO-NCBI on MetS, and related diseases:  obesity, hypertension (SAH),         

dyslipidemia (DL), hypertriglyceridemia (HT) and insulin resistance. In this study, the           

terms used were: metabolic syndrome, obesity, hypertension,       

hypoalphalipoproteinemia, low high-density lipoprotein, low HDL, dyslipidemia,       

hypertriglyceridemia, and insulin resistance. The search was performed in Mar 2015           

and updated in May 2018 with the following filters: “Series” (Entry Type), "Homo             

sapiens" (Organism); "Expression profiling by array" (Study Type). In this way, only            

studies performed in humans and with transcriptomic data analyzed by microarray           

technology   were compiled. 

In order to ensure correct classification of the microarray studies, the           

annotation of each study was performed manually. This annotation involved reading           

the GEO-NCBI Summary and Overall design fields and related scientific articles,           

identifying studies not consistent with the search criteria, classification according to           

disease, processed tissues, analysis platform used and the number of samples. 

The following criteria were used to exclude studies from the analysis: no            

sample identification; non-human; less than 15 samples in total; derived from cell            

culture; derived from cell lineage; other disorders not characteristic of the metabolic            

syndrome (cancer, infections, polycystic ovary, autoimmune diseases, etc); and         

combination of more than 1 study (Superseries). Also, within the selected studies,            

samples collected after intervention or experimental procedures were excluded. A          

few examples of intervention were: physical activity, food supplementation, drug          

treatments, and surgical procedures. 

 

3.3. The download of mRNA expression data 

After study selection, the raw data were obtained from GEO using scripts            

developed by our research group at the Computational Laboratory of Systems           

Biology (CSBL).  One of the scripts uses the Perl language to automatically            
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download the raw expression, sample annotation, and probe annotation files for           

each study. Also, when the raw expression file was not available, normalized            

expression files provided by the authors were downloaded.  

Next, duplicate samples between the studies were identified through a script           

that uses the "md5sum" program. The "md5sum" uses the MD5 algorithm to create             

a 128-bit code for any input file (RIVEST, 1992). This code works like a compact               

fingerprint that changes entirely by changing a single bit of the output file.  

 

3.4. Pre-processing and Reanalysis from GEO Database 

3.4.1. Normalization 

After the study selection and download, the expression files were processed,           

as shown in Figure 4 that encompasses the preprocessing item in Figure 3. 

 

Figure 4 - Flow chart of the summarized pre-processing steps  

 
Aqm: ArrayQualityMetrics. MDP: the molecular degree of perturbation. 
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3.4.1.1 Normalization: Pre-processing: Affymetrix platforms 

The samples processed by the Affymetrix gene expression platform were          

normalized by RMA (Robust Multi-array Average), using the affy version 1.6.0 data            

package present in Bioconductor (R language). This process consists of the           

following steps: raw reading files “.CEL”, background correction of the gross values            

  of the fluorescence intensity by whole array adjustment and normalization by           

quantile (BOLSTAD et al., 2003). 

3.4.1.2. Normalization: Agilent platforms 

The raw gene expression files (“.gpr” or “.txt”) from the Agilent platform            

normalized using the Linear Models for Microarray (LIMMA, version 3.38.3)          

package. This process consists of the following steps: loading the raw files            

(read.maimages), background correction (backgroundCorrect) and normalization by       

quantile (normalizeBetweenArrays) (BOLSTAD et al., 2003) (see Fig. 2).  

3.4.1.3. Normalization: Illumina platforms 

The studies obtained from Illumina gene expression platforms did not          

undergo normalization. The already normalized data by the authors was obtained           

because the upload of raw files in the GEO database is not as standard as the other                 

microarray platforms. 

3.4.2. Sample quality control 

After normalization of the gene expression and annotation of the samples,           

quality control tests were necessary to evaluate the normalization of the data and             

identify batch effects. These tests were done by signal distribution analysis (using            

boxplot and histogram representation), Principal Component Analysis (PCA), use of          

the arrayQualityMetrics package (version 3.38.0) (KAUFFMAN et al., 2009) and          

correlation matrices between the samples. The samples that did not pass 3 or more              

out of 5 and had very different signals from the others were discarded. Also, the               

potential batch effects were corrected using the ComBat program (JOHNSON; LI;           

37 



RABINOVIC, 2007), which is part of the surrogate variable analysis (LEEK;           

STOREY, 2007). 

3.4.3. Outlier Removal with Molecular Degree of Perturbation 

Our research group has developed an R package to assess the Molecular            

Degree of Perturbation (MDP), which evaluates the heterogeneity of gene          

expression samples. In general terms, MDP calculates the degree of perturbation of            

each gene relative to the same gene identified in a healthy or control group of               

samples. Only with those highly disturbed genes, a representative disturbance score           

is set for each sample. Therefore, MDP can identify so-called sound samples that             

present some alteration in the transcriptome unidentified by phenotype.  

The MDP tool identified outliers samples; in other words, samples in which            

the MDP score was outside the interval of the group scores. The outlier removal was               

performed by manually checking the ordered MDP values, and removing them with            

an R script since the package has not been automated to detect these outlier              

samples. 

3.4.4. Annotate and collapse probes 

The final step of the pre-processing was the annotation of the probe IDs into              

gene symbols and probe summarization. The probe annotation was performed using           

the most recent annotation file included in the package of each platform. The             

summarization of probes was performed using collapseRows from the WGCNA          

package (version 1.67). To represent each unique gene symbol, the probe with the             

highest average of expression was chosen (method = MaxMean). 

3.4.5. Sample annotation 

Each sample from all studies was manually classified into the studied           

phenotypic groups. 
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3.5. Differentially expressed genes related to MetS 

3.5.1. LIMMA 

Traditionally, the main focus of transcriptome data analysis is the differential           

expressed genes. Finding up or downregulated genes can shed light on driving the             

molecular processes and pathways of a specific condition. LIMMA (version 3.38.3) R            

package  (RITCHIE et al., 2015) was used to detect differentially expressed genes            

(DEGs) between obese and non-obese patients for each study and tissue type.            

Array probes without gene symbol annotation were filtered out before LIMMA           

analysis. Genes were considered up or downregulated genes when fold-change          

(FC) was higher or lower than |1.5| and had an adjusted p-value lower than 0.05.  

 

3.6. Gene co-expression analysis 

3.6.1. Gene  Co-expression Analysis  with CEMiTool 

The construction of highly correlated gene modules was generated by the           

WGCNA method adapted in the CEMiTool (version 1.7.9) R package  (RUSSO et al.,             

2018) . We developed this package to automate the WGCNA analysis by optimizing            

parameters and creating an easy to use Bioconductor package. The most important            

automatization is the selection of the beta parameter and consequently, the creation            

of the gene co-expression modules. For each study, the same standard parameters            

recommended in the package were used, including Pearson’s Correlation Coefficient          

(PCC) for the correlation method and the use of automatic gene filtering. For each              

study, all the results from the CEMiTool analysis were stored in a cem object,              

including the module of co-expressed genes.  

3.6.2. Identification of consensus communities between studies 

The consensus module detection consisted of storing the cem objects into a            

list for each tissue, and applying the cem_overlap function. The resulting network            

was then processed to prioritize the edges (correlations between genes) of high            

confidence. This consisted of selecting the edges with present in: 1) at least 2              
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studies; 2) 2 studies and a PCC average > 0,8; 3) 3 studies and with a PCC average                  

> 0,75; 4) 4 studies and with a PCC average > 0,7; 5) 5 studies and with a PCC                   

average > 0,65; 6) 6 studies and with a PCC average > 0,6; 7) 7 studies and with a                   

PCC average > 0,55; 8) 8 studies and with a PCC average > 0,5; 9) more than 9                  

studies with a PCC > 0,45. 

The consensus co-expression network was partitioned in communities, dense         

interconnected parts of the network (REICHARDT; BORNHOLDT, 2006), using a          

method based on the spin-glass algorithm from the igraph package (version 1.2.4.1).            

We defined 10 genes as the minimum number of genes in the community. The              

communities of the consensus network were represented in a graph using Gephi            

software (version 0.9.2) (BATIAN et al., 2009). Next, functional and enrichment           

analyses were performed for each co-expression community of the consensus          

network. The following items describe both of the aforementioned analyses. 

3.6.3. Protein-protein interaction between genes of modules 

Protein-protein interaction (PPI) information was obtained from experiments        

validated by Western blot, co-immunoprecipitation, two-hybrid, among others        

available. For this purpose, the public database GeneMANIA: Multiple Association          

Network Integration Algorithm (http://genemania.org/data/) was being used. The        

genes pertaining to each module were connected to each other based on the             

protein-protein interactions of the above databases.  

3.6.4. Identification of pathways related to MetS 

In order to identify biological pathways related to each group of genes            

(modules or communities), we performed a functional enrichment analysis using the           

Over-Representation Analysis (ORA) method with the  clusterProfiler package        

(version 3.10.1)  (YU et al., 2012) . Briefly, this analysis uses the hypergeometric            

statistical test to verify if a module overlaps (is enriched) with genes from a given               

biological pathway. The significance of the test is adjusted for multiple tests by the              

Benjamini-Hochberg method (BENJAMINI, HOCHBERG, 1995).  
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The genes belonging to metabolic pathways, cellular and molecular         

processes, were obtained in GMT format from the Reactome         

( http://www.reactome.org/ ) database. The adjusted p-values   were ordered, and the         

pathways with -log10 greater than two were considered statistically significant. The           

result of this analysis was stored in a table of adjusted p-values, in which each row                

represents a module and each column a possible pathway or biological function            

associated with the module. 

3.7.5. Gene Set Enrichment Analysis 

The groups of co-expressed genes (modules or communities) underwent a          

Gene Set Enrichment Analysis (GSEA) to associate with a disease or a healthy             

control phenotype. The GSEA method determines if a gene set, or group of genes,              

shows statistically significant differences between two biological conditions        

(SUBRAMANIAN et al., 2005) . The Lander and Mesirov group developed this           

algorithm to determine if the members of a set gene tend to occur in the upper (or                 

lower) part of a list of genes ordered by degree of association to one of the two                 

phenotype classes  (TIAN et al., 2005) . For this, the method applies the            

Kolmogorov-Smirnov test to find asymmetric distributions for defined gene blocks in           

the geneset distribution. It is interesting to note that the first article published with              

this method compared the gene expression profile of muscle biopsies between           

diabetic patients and healthy individuals  (MOOTHA et al., 2003) . 

The GSEA software ( http://www.broadinstitute.org/gsea ) used in this study        

was implemented in the fgsea package (version 3.10.1) from Bioconductor          

(SERGUSHICHEV, 2016). The gene sets had the “.GMT” format and the expression            

data were passed to the program through 2 files: one containing the phenotype             

information of the samples (.CLS format) and the other containing the gene            

expression profile of the samples (.GCT format). 

The GSEA results are enrichment scores (ES), which reflect how much the            

modules are represented at the top (positive value) or the bottom (negative value) of              
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a sorted list of genes. In this case, the lists were composed of genes ordered by                

increasing gene expression of each clinical condition.  

The normalized enrichment score (NES) is preferred for comparing analyzes          

because it takes into account the module size and possible correlations between            

modules and gene expression data. Still, statistical significance was estimated by           

1,000 permutations of the expression data of the members of the modules, and the              

false positive rate was controlled by the False Discovery Rate (FDR) of 0.005. 

 

3.7. Analysis of miRNAs profile form Metabolic Syndrome patients  

So far, no studies have performed miRNA profiling of Brazilian patients with            

MetS that compares to subjects without MetS. Also, scarce intervention studies are            

investigating the role of miRNAs in MetS  (MARQUES-ROCHA et al., 2016) . MiRNA            

profiling is important to identify possible biomarkers specific to this population. 

3.7.1. MiRNAs expression profile in MetS patients 

Sample collection, storage, preparation, and miRNA profiling were carried out          

by collaborators at the Laboratory of Molecular Investigation in Cardiology (LIMC) of            

the Dante Pazzanese Institute of Cardiology (IDPC). The results provided are from a             

collaborative project that was approved by the FCF-USP and IDCP Ethics           

Committee. 

3.7.2. Subjects 

Six volunteers who met the criteria of MetS according to IV Brazilian            

Guidelines on Dyslipidemias and Prevention of Atherosclerosis of the Department of           

Atherosclerosis of the Brazilian Society of Cardiology were selected for this study.            

Also, the control group was composed of six healthy volunteers (Table 2).   
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Table 2. Brazillian Cohort phenotype for miRNA profiling 

Group Gender Age Obese SAH IR Low HDL-c High TL 

Control Female 47 No No No No No 

Control Male 58 No No No No No 

Control Male 38 No No No No No 

Control Female 38 No No No No No 

Control Female 53 No No No No No 

Control Male 46 No No No No No 

MetS Male 47 Yes No Yes Yes Yes 

MetS Female 68 Yes Yes No Yes Yes 

MetS Male 37 Yes Yes Yes Yes Yes 

MetS Female 59 Yes No Yes Yes Yes 

MetS Male 61 Yes Yes Yes Yes Yes 

MetS Male 68 Yes Yes Yes Yes Yes 

MetS: Metabolic Syndrome; SAH:  Systemic Arterial Hypertension; IR: Insulin resistance; HDL-c: 
High-density lipoprotein cholesterol. TL: Triglyceride Levels. 

 

3.7.3. Biological samples 

After signing the consent forms, the research subjects underwent a clinical           

data interview and peripheral blood collection during the morning. The blood           

samples were in clinical analysis tests, while serum was pre-processed, stored at            

-80 freezer until miRNAs detection. 

3.7.4. Analysis of miRNA expression profile in serum 

“miRNeasy serum/plasma Kit™” (QIAGEN, GmbH, Hiden, Germany) was        

used as recommended by the manufacturer to extract serum miRNAs. MS2 Carrier            

(MS2 RNA, Roche) was used to increase miRNA extraction efficiency, and spike-in            

( C. elegans miR-39) was added for quality control and normalization purposes.           

MiRNA samples were quantified using Qubit 2.0 Fluorometer (Invitrogen, Carlsbad,          

CA, EUA), while purity was verified with the Nanodrop ND-1000 (NanoDrop           
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Tehnologies Inc., Wilmington, EUA). The miRNA was converted to cDNA using the            

miScript II Reverse Transcription (Qiagen) and then stored in -20 o C until the            

RT-qPCR. 

The global miRNA expression analysis was performed by PCR  array  (Qiagen)           

according to the manufacturer's protocol. First, the miRNAs underwent reverse          

transcription to complementary DNA (cDNA) with the  miScript II RT Kit (QIAGEN,            

GmbH, Hiden, Alemanha). The cDNAs were stored at -20ºC until PCR array. 

The quality control of cDNA samples was performed with the miScript miRNA            

QC PCR array (código MIHS-989ZE-1, QIAGEN GmbH, Hilden, Alemanha) plate          

quat contains 4 control miRNAs (cel-miR-39-3p, cel-miR-16-5p, cel-miR-21-5p,        

cel-miR-191-5p), 3 non-coding RNA (SNORD 61, SNORD 95, SNORD 96A), miRTC           

(reverse transcription control) e PPC (PCR reaction positive control) for each           

sample. Only the samples that passed quality control checks were used in the PCR              

array. 

The miRNA expression was analyzed using commercial miScript miRNA PCR          

Array Human miFinder 384HC (código MIHS-3001Z, QIAGEN GmbH, Hilden,         

Alemanha). This panel detects 372 miRNAs whose expression is abundant in most            

tissues and fluids, and are best characterized in the miRBase database registry            

(www.miRBase.org).  

The QuantStudio ™ 12K Flex Real-Time PCR System (Thermo Fisher          

Scientific, Waltham, MA, USA) system was used for the PCR reaction detection. The             

raw “.eds” files were initially processed in Expression Suite Software v1.0.3. This            

software allowed to remove the qPCR reactions with more than 2 peaks from the              

dissociation curves (TM) and automatically established one threshold for each          

miRNA applied to all samples and plaques. The sample Ct values were obtained             

and exported to the “.txt” format for the normalization with R written scripts. 

The PCR efficiency was accessed if the Ct values   of Positive PCR Control             

(PPC) comprised between 17 and 21. The reverse transcriptase (RT) inhibition also            

verified by subtracting the mean of the miRTC Ct values from the mean of the PPC                

Ct values  [ mean(Ct miRTC ) - mean(Ct PPC ) ]. The resulting values   above 7 may indicate            

the presence of sample impurities that inhibit the RT reaction. 
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Variations of the qPCR reaction due to RNA extraction were corrected by the             

spike-in-control (cel-miR-39-3p) normalization. This normalization step of the Ct         

values was done by calculating the correction factor for each sample, and adding             

this factor to the Ct of all the miRNAs in that sample. The correction factor of a                 

sample was equal to the mean of the Ct cel-miR-39-3p values of all samples              

subtracted by the mean of the cell-miR-39-3p of the same sample. 

Next, we chose the normalization method based on housekeeping miRNAs.          

For this, all miRNAs that had missing Ct values were removed. Then the miRNA              

expression set was submitted to the function selectHKgenes implemented in the           

SLqPCR package (version 1.50.0). This function implements the geNorm method of           

reference transcript selection, in our case, miRNAs. All the miRNAs underwent the            

M-value (mean of expression stability) calculation. We chose the 5 most stable            

miRNAs, in other words, miRNAs with the lowest M-values, and normalized the all             

miRNAs Ct values  with the average Ct   of the normalizing miRNAs           

(VANDESOMPELE et al., 2002) . 

The mRNA expression was calculated by the relative quantification method          

with the formula 2  -(ΔΔ Ct) , where ΔΔCt = ΔCt Disease - ΔCt Control), and ΔCt = Ct                  

(each miRNA) – MeanCt (normalizing miRNAs). Differential expression analysis was          

performed with a T-test to find out which miRNAs had increased or decreased             

expression in the MetS concerning the group of patients not affected by the disease.              

The differentially expressed miRNAs were compared with the results of the           

bioinformatics analysis of microarray studies. 

 

3.8. miRNA and target mRNA interactions 

In order to identify miRNAs that regulate the differentially expressed genes,           

experimentally validated miRNA-mRNA interactions from the miRTarBase database        

(version 7.0, 15/09/2017 release) were used  (CHOU et al., 2018) . The visualization            

of the interaction networks of the differentially expressed miRNAs and their target            

genes were created either in Gephi (version 0.9.2) or Cytoscape (version 1.8.0)            

software.   
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4. Results 

4.1. Selection of public microarrays mRNA expression studies 

The GEO-NCBI search for gene expression studies of MetS and related           

diseases produced a total of 632 studies. However, only 43.35% (274/632) of these             

studies were derived from microarray technology. The study annotation and manual           

curation of microarray gene expression studies were followed by study removal           

according to the established inclusion and exclusion criteria. These criteria removed           

an astounding 80.3% (220/274) of the studies. 

Most of the studies (45%, 99 studies) were excluded because patients had            

other diseases, such as cancer and infectious diseases. In addition, of the 220             

excluded studies, 45 studies (20.45%) had less than 14 samples, 29 (13.18%) were             

of cell lineage or culture, 15 (6.82%) had no disease, 10 (4.55%) had no information               

on the samples, 9 (4.09%) were from non-commercial platforms, 7 (3.18%) were            

Superseries, and 6 (2.73%) studies were not from humans. 

Of the  54 studies that passed the initial exclusion criteria, 28 studies did not              

have a control group, resulting in 26 studies that had patient information about             

obesity or MetS (Table 3). Still, some of these studies had patient samples that did               

not meet the inclusion criteria. For example, those patients who suffered some type             

of intervention (medical or nutritional), who had type 2 diabetes or other diseases             

were excluded. In the end, our study had a total of 815 samples, 339 were control                

patients, and 476 samples had diseases (Table 4). The studies were categorized            

according to the subjects’ tissue samples: subcutaneous adipose tissue (SAT), liver,           

muscle, and blood (Figure 5). 

Due to all of these issues, were only able to find two studies that had patients                

with and without Metabolic Syndrome. Among all of the components of MetS,            

obesity had the highest number of studies in the database, the reason why those              

studies were chosen. Since the aim was to investigate miRNAs in MetS, we             

combined obesity transcriptomic studies with the miRNAs profile from MetS patients. 
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Table 3 - Number of human studies of Metabolic Syndrome and related            
diseases in Gene Expression Omnibus 
Diseases All types of 

Technologies 
Microarray 
Technology 

Selected 
for 

analysis 

Analyzed 

Metabolic Syndrome 64 25 3 2 
Obesity 270 116 38 24 
Hypertension 145 89 5 0 
Insulin Resistance 102 37 8 0 
Hypobetalipoproteinemia 2 2 0 0 
Hypertriglyceridemia 6 5 0 0 
Total 632 274 54 26 

The search filters were: “Series” ( Entry Type ), “Homo sapiens” (Organism); “Expression           
profiling by array” (Study Type). The database research was done in May of 2015 and again                
in May 2018. 

 

Figure 5 - Obesity studies: number of samples and studies for each tissue and              
condition 

 
Twenty-six studies were included in our meta-analysis that included 4 tissue types: blood,             
liver, muscle, and SAT. The green bars represent the number of samples from lean              
individuals for each study and in orange the number of samples of obese patients. Source:               
Own authorship. SAT: subcutaneous adipose tissue.  
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4.2 . Download and pre-processing of mRNA expression data 

The most time-consuming part of the study was to learn, write, revise, test,             

and run all the scripts and code for the file manipulation, sample processing, and              

normalization. The majority of the code was written in R language using the Rstudio              

software (version 1.1.456) for Linux, and saved at the cloud service Github. 

The PCA and PVCA were used to visualize and access the batch effect             

influence on the dispersion and variation of microarray expression data. The PCA            

plot shows data distribution of principal component (PC) 1 and PC2. In Figure 7 A, it                

is clear how the data from the same batch cluster together, whereas after the batch               

effect correction with the ComBat package the data did not show the same             

clustering (Figure 7 B). The PVCA analysis shows how the batch component            

“batch_date” significantly explains the sample variation (Figure 7 C). In contrast to            

after the batch effect removal in which the “batch_date” accounts for a small part of               

sample variation (Figure 7 D). All studies underwent quality control with           

arrayQualitymetrics (exemplified in Figure 6), and only 4 (GSE109597, GSE29718,          

GSE44000, GSE48452) studies had batch effects problems. 
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    Table 4  -  Number of samples in each microarray transcriptome study 

Series Platform Tissue 
Number of Samples 

Reference 
Total Healthy Condition 

GSE109597 GPL570 Blood 84 43 41 (JOSEPH et al., 2018) 

GSE12050 GPL7034 SAT 36 18 18 (MUTCH et al., 2009) 

GSE18897 GPL570 Blood 40 20 20 (GHOSH et al., 2010) 

GSE24883 GPL4133 SAT 48 16 32 (KLIMCÁKOVÁ et al., 2011) 

GSE25401 GPL6244 SAT 56 26 30 (ARNER et al., 2012) 

GSE25462 GPL570 Muscle 26 14 12 (JIN et al., 2011) 

GSE27949 GPL570 SAT 21 5 16 (KELLER et al., 2011) 

GSE29718 GPL6244 SAT 20 10 10 (TAM et al., 2011) 

GSE32575 GPL6102 Blood 24 6 18 (HULSMANS et al., 2012) 

GSE44000 GPL6480 SAT 14 7 7 (DENG et al., 2013) 

GSE474 GPL96 Muscle 24 8 16 (PARK et al., 2006) 

GSE48452 GPL11532 Liver 28 12 16 (AHRENS et al., 2013) 

GSE53232 GPL11532 Blood 32 17 15 (ESSER et al., 2015) 

GSE55200 GPL17692 SAT 23 7 16 (BADOUD et al., 2014) 

GSE55205 GPL10558 Blood 13 6 7 (CHEN; LI; XU, 2015) 

GSE59034 GPL11532 SAT 32 16 16 (PETRUS et al., 2018) 

GSE61260 GPL11532 Liver 45 21 24 (HORVATH et al., 2014) 

GSE64567 GPL10558 SAT 40 5 35 (WINNIER et al., 2015) 

GSE64998 GPL11532 Liver 14 6 8 (KIRCHNER et al., 2016) 

GSE69039 GPL10558 Blood 18 4 14 (JUNG et al., 2016) 

GSE73034 GPL6480 Muscle 21 7 14 (CHAUDHURI et al., 2015) 

GSE80654 GPL17586 SAT 14 7 7 (EHRLUND et al., 2017) 

GSE83223 GPL10558 Blood 22 9 13 (PINHEL et al., 2018) 

GSE87493 GPL6244 Blood 32 20 12 (STROJNY et al., 2017) 

GSE94752 GPL11532 SAT 48 9 39 (KULYTÉ et al., 2017) 

GSE98895 GPL6947 Blood 40 20 20 (D’AMORE et al., 2018) 

There was a total of 815 samples. SAT: Subcutaneous Adipose Tissue. GSE: GEO 
Study. 
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Figure 6 - PCA and PVCA before and after batch effect correction with ComBat 

A  B  

C  D  

Principal Component Analysis (PCA) plots before (A) and after (B) ComBat batch effect             
correction. Each color represents a different batch. The Principal Variance Component           
Analysis (PVCA) plots before (C), and after (D) shows the percentage (x-axis) that the              
variables (y-axis) contribute to data variability. 
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Figure 7 - Quality control by arrayQualityMetrics from study GSE27949 after           
quantile normalization 

A     B  

C     D     E      F  

  G      H  

Legend: (A) Heatmap of the distance between arrays. (B) Principal Component Analysis            
(PCA) of the arrays. (C) Distribution of detected intensities of each array. Barplot of outlier               
detection criteria using the distance between arrays (D), boxplots (E) or by MA plots (F); the                
vertical bars represent the threshold of outlier sample. (G) Density graph of the standard              
deviation of intensities versus the median ranking of X intensities, the red dots are the               
standard deviation medians. (H) MA plots, array quality where M and I values were              
calculated by the formula M = log2(I1) - log2(I2), A = 1/2 ( log2(I1) + log2(I2) ). 
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After sample quality assessment, the MDP analysis was performed to remove           

samples with different from their phenotypic group (outliers). In most studies, there            

were no samples with MDP values different from their phenotypic group (Figure 8 A).              

The studies with discrepant samples had few samples to be removed (Figure 8 B).              

Due to the redundant microarray design, in which there is more than 1 probe for               

each transcript,  the final number of transcripts is significantly reduced  after  gene            

annotation and summarization (Table 5). 

 

Figure 8 - MDP values of each sample in histogram and boxplot  

 
The Molecular Degree of Perturbation (MDP) analysis of study GSE98895 (A), and            
GSE55205 (B). Each lean (in blue) or obese (green) individual has an MDP value. By               
sorting the samples by the MDP values, it is possible to identify samples with MDP values                
different from their phenotype group. No samples were removed from the study GSE98895             
(A), but two lean samples were removed from GSE55205 (B) and are highlighted in red.  
 

We came about a few issues during sample annotation. First, not all samples             

were classified by the authors as obese or lean. In these cases, we used the BMI                

classification when it was available. Furthermore, some studies even classified          

obese patients as metabolically healthy (MHO) or metabolically unhealthy (MUO).          

However, in this study, we made no distinction between MHO and MUO because             

there is still contradictory evidence supporting the absence of cardiovascular          

disease risk in MHO patients  (ECKEL et al., 2016; STEFAN et al., 2013) . 
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Table 5 - Number of probes and transcripts per study platform 

Company Platform Number of probes Number of transcripts 
Affymetrix GPL11532 33,297 20,057 

Affymetrix GPL17586 70,753 23,987 

Affymetrix GPL17692 53,617 27,936 

Affymetrix GPL570 54,675 20,978 

Affymetrix GPL6244 33,297 20,057 

Affymetrix GPL96 22,283 12,993 

Agilent GPL4133 45,220 18,835 

Agilent GPL6480 41,108 18,835 

Agilent GPL7034 89,510 18,835 

Illumina GPL10558 48,107 25,993 

Illumina GPL6102 48,702 35,806 

Illumina GPL6947 49,576 32,674 

GPL: GEO platform. 
 

4.3. Differentially expressed genes related to MetS 

In order to find a characteristic gene signature for obesity, the differential            

expression analysis was performed for each study with the LIMMA package (version            

3.38.3). Independently of tissue type, most studies had over 1000 differentially           

expressed genes with a variable proportion of DEGs in each study (Figure 9). The              

SAT had the highest average number (4201.27) of DEGs, and the highest DEGs             

percentage (22.33%) per study, followed by blood (3459.78, 18.53%), liver (1883.33,           

9.99 %), and muscle (1283.67, 7.78%). 
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Figure 9 - Number of up and downregulated genes between Obese and Lean             
by tissue and dataset 

 
The differential expression analysis was performed using limma and the same cut-offs for all              
studies (p-value <0.01 and FC < 1.5). The red bars represent the number of upregulated               
genes in the obese group compared to Lean, and blue bars represent downregulated genes.              
In grey are the genes that were not differentially expressed. The total size of the bars                
represents the number of total genes in the gene expression microarray platform. SAT:             
Subcutaneous adipose tissue.  

 

The vote counting method was used to find overlapping DEGs. Besides           

having the largest number of studies (Figure 9), the SAT also appeared to have              

more common DEGs between studies (Figure 10) than the other tissues (Figure 11).             

In SAT studies, there were more downregulated than upregulated genes in the top             

22 most consistent DEGs (Figure 10). Of those genes, two were upregulated in all              

SAT samples: musculin ( MSC ) and ATP Binding Cassette Subfamily C Member 3            

( ABCC3 ).  
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Figure 10 - Number of consistent DEGs between Obese and Lean SAT studies 

 

The differentially expressed genes (DEGs) between Obese and Lean was found for each             
subcutaneous adipose tissue (SAT) study. The vote counting method was used to find             
consistent DEGs. The consistently upregulated genes are represented in red for each study             
and downregulated genes in blue. C: the number of differentially expressed genes (DEGs)             
that comprised our gene expression signature for obesity.  

 

Out of the 7 genes that were consensus DEGs in muscle tissue (Figure 11 A),               

WDR7 ,  SCPEP1 ,  COPS5 ,  GGPS1 , and  PSMD10  were upregulated while  PRODH          

and  IGFBP3  were downregulated. The  ABCC3  gene was downregulated in 2 studies            

and upregulated on the third.  

In the liver tissue, 58.7% (27/46) of consensus DEGs were upregulated           

( ABHD1 ,  ACOT1 ,  ACOT2 ,  CYP2U1 ,  EXPH5 ,  AM167B ,  FNDC5 ,  FURIN ,  GRID1 ,         

HPGD ,  ILDR2 ,  LRFN3 ,  MEP1B ,  OLFM2 ,  PRRG2 ,  RDH16 ,  RFTN1 ,  SATB2 ,         

SCHIP1 ,  SGCB ,  SLC2A13 ,  SQLE ,  TMEM45B ,  TSPAN3 ,  TSPAN33 ,  TTC7B ,        

UBE2H ). While 41.3% of DEGs (19/46) were downregulated ( ACKR2 ,  BAMBI ,          
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EFCAB1 ,  EIF3E ,  GPR88 ,  GPR89B ,  IGFBP2 ,  P4HA1 ,  PCF11 ,  RP1 ,  SCARNA9L ,         

SNORD14C,  SNORD47 ,  TAF4B ,  TCTN2 ,  ZNF347 ,  ZNF507 ,  ZNF600 ,  ZNF880 ).  

Figure 11 - Number of consistent DEGs between Obese and Lean in Blood,             
Liver, and Muscle studies 

 
The differentially expressed genes (DEGs) between Obese and Lean was found for each             
study. The vote counting method was used to find common DEGs among the studies of               
Blood, Liver and Muscle tissues.  
 

Even though studies performed in blood had the second-highest number of           

studies, there were not many genes in common higher than 5 out of 9 studies               

(Figure 11 B). The only gene to be differentially expressed in most blood studies was               

TNIP1 ; it was upregulated in six out of nine studies. There were 34 consensus DEGs               

in 5 out of 9 studies with blood, where 41.2% (14/34) were upregulated ( ADNP2 ,              

ATXN7L3 ,  DLGAP4 ,  GNG5 ,  HBM ,  KLHL15 ,  MUC1 ,  RABAC1 ,  RMND5A ,  SOCS3 ,         

TNIP1, TWF1 ,  VWA5A ,  ZNF101 ) and 58.8% (20/34) were downregulated ( AASDH ,          

CPOX ,  E2F6 ,  EARS2 ,  ERI2 ,  EXOC1 ,  GLE1 ,  HEATR1 ,  INTS2 ,  IPP ,  KLHL24 ,          

LRRC40 ,  LTN1 ,  POLR3A ,  RHBDL2 ,  TDP1 ,  TMEM38A ,  TRIM38 ,  ZC3HC1 ,        

ZNF573 ). 

In order to see the consistency of the biological pathways and functions of the              

differentially expressed genes, a pathway enrichment analysis with GSEA was          

performed for each study (Figure 12). The blood tissue presented the least pathway             

enrichment consensus between the studies, with only “MHC class II antigen           
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presentation” pathway with a significant NES (Normalized Enrichment Score) in 3           

out of 9 studies. The muscle presented similar problems, as only “TCR signaling”             

and “Signaling by the B Cell Receptor (BCR)” had positive NES in 2 out of 3 studies.  

The liver and SAT had more compelling and consistent results. In the liver             

tissue, there was a positive NES for “fatty acid metabolism” and “phospholipid            

metabolism” pathways. There was also evidence of pro-inflammatory state in the           

liver and SAT: positive NES for “neutrophil degranulation”, and “Interferon Signaling”           

pathways. 

 

Figure 12 - Pathway enrichment analysis of all studies separated by tissue 

 
The differentially expressed genes (DEGs) from each tissue underwent a Pathway           
Enrichment Analysis using the Reactome database. Only the pathways with significant           
enrichment are shown (p-value < 0.01). The pathways in red had a positive NES and               
pathways in blue had negative NES. NES: normalized enrichment score. 

 

The next step was to investigate the biological pathways and functions that            

the consistent differentially expressed genes had. The functional analysis showed          

that the upregulated genes in obese SAT had enrichment for the activation of             

adaptive immunological response pathways: PD-1 signaling, interferon-gamma       

signaling, TCR signaling, antigen processing-Cross presentation and MHC class II          

presentation (Figure 13). Whereas the downregulated genes in obese subjects were           
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related to metabolic processes and pathways: vitamins and cofactors, fatty acids,           

triacylglycerol and ketone body, lipids and lipoproteins. 

 

Figure 13 - Significantly enriched Reactome pathways of the DEGs from SAT 

 
The upregulated genes (in red) and downregulated genes (in blue) from subcutaneous            
adipose tissue (SAT) underwent a pathway enrichment analysis using the Reactome           
database. For each Reactome pathway, the bars show the significance of enrichment of             
differentially expressed genes (DEGs). Only the pathways with enrichment of -log 10 P > 2 are              
shown.  

 

4.4 . Gene co-expression analysis 

4 .4.1.  Consensus communities of the co-expression network  

After the studies were grouped by tissue and phenotype groups, the cem            

object for each co-expression analysis was integrated with the “cem_overlap”          

function, which creates a consensus network and also performs a community           

analysis. In SAT studies, three large communities containing more than 300 genes            

were found, five communities between 100 and 33 genes, and five small            

communities with under 100 genes each (Figures 14 and 15). The gene            
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co-expression consensus network uncovered 16 communities for the liver, 14          

communities for blood, and four small communities for muscle.  

Figure 14 - SAT Consensus Co-expression Network 

 
The consensus co-expression network for Subcutaneous Adipose Tissue (SAT) has 14           
communities. Each color represents a different community, a densely interconnected part of            
the network  (REICHARDT; BORNHOLDT, 2006) . We defined the community with a           
minimum of 10 genes. The graph was created with Gephi software (version 0.9.2). 
 
Figure 15 - Number of genes in each CM of the SAT Consensus Co-expression              
Network   

 
Each color represents a different community (CM) from the Consensus co-expression           
network for the SAT. The same colors were used for figures 14 and 16. SAT: subcutaneous                
Adipose Tissue. CM_404: a group of genes that were not part of any community. 
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4.4.2. Functional Analysis of the Consensus Co-expression Communities 

The co-expression communities for each tissue underwent functional        

annotation analysis and GSEA. The consensus co-expression communities for         

blood, muscle, and liver did not show any consistent results for pathway enrichment             

analysis or GSEA (data not shown). On the other hand, it was able to find consistent                

pathways and genotype enrichment for SAT communities from the consensus          

co-expression network (Figure 16).  

The SAT had 11 communities with more than ten genes. Eight communities            

had enriched pathways, 2 of which had enrichment for neutrophil degranulation.           

Many of the pathways shown are related to inflammatory processes that occur in             

obesity. For example, interferon-gamma is one of the cytokines of the inflammatory            

T cell response associated with obesity-induced by diet  (ROCHA et al., 2008) . 

The GSEA showed three communities had a positive enrichment in the           

majority of the studies with SAT (Figure 16, right). Two of those communities had the               

neutrophil degranulation enriched pathways (CM 6 and CM 9). 
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Figure 16 - Functional annotation analysis by ORA and GSEA of SAT            
Consensus Co-expression Modules  

 

Pathway enrichment analysis (left) and Gene Set Enrichment Analysis (right) of the            
communities (CM) within the consensus network. The adjusted p-value was converted into            
-log10 and shown a color scale from blue to red. ORA: Over-Representation Analysis. CM:              
community. SAT: subcutaneous adipose tissue. 
 
 

Combining the information from the co-expression analysis and differential         

expression analysis, we found which communities had more upregulated and          

downregulated genes (Figure 17). Communities 13 and 4 had the most number of             
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commonly downregulated genes, whereas communities 6, 14, and 9 had the most            

genes with upregulated genes. 

Figure 17 - The number of DEGs in each CM of the SAT Consensus              
Co-expression Network  

 
Blue: downregulated genes, red: upregulated genes, grey: genes not differentially          
expressed. CM_404: a group of genes that were not part of any community. CM: community.               
SAT: subcutaneous adipose tissue. 

 

4.5. Analysis of circulating miRNAs in MetS patients  

The quality control steps of the miRNA qPCR experiments did not exclude            

any samples. In the PCR efficiency check, the PPC values of all samples varied              

between 18.02 and 18.66 with a median of 18.36, in other words, all samples had               

values within the recommended interval from the manufacturer (17 to 21). The            

values from the transcriptase inhibition check [  Average(Ct miRTC ) - Média(Ct PPC ) ]           

were between 4.53 and 6.03 (median of 5.08). According to the manufacturer,            

values below 7 indicates a profound influence of impurities in the reaction. Next, we              

performed the normalization of the Ct (cycle threshold) values with the correction            

factors calculated from the Ct values of cell-miR-39-3p. The median of the            

normalization factors was -0.0595 (minimum = -1.4683, maximum = 1.2212). 

62 



The normalization method performed in the qPCR array was by          

housekeeping miRNAs. After removal of the quality control miRNAs  (miRTC, PPC,           

cel-mir-39-3p), and miRNAs with incomplete Ct values, there were 124 unique           

miRNA left to choose the most stable normalizing miRNAs. The lower the gene             

stability mean (M) value, the more stable is the miRNA. The M values of 10 most                

stable miRNAs from the experiments are shown in Figure 18 A. The choice of the               

number of housekeeping miRNAs was made based on the graph of Pairwise            

variations (Figure 18 B).  

 

Figure 18 - Determination of normalizing circulating miRNAs 

A B  

A: The ten miRNAs with the lowest Gene Stability Mean (M). B: determination of the optimal                
number of control miRNAs for normalization. Pairwise variations are based on the V n/n+1             
calculation between 2 sequential normalizing factors. For a cut-off of v-value = 0.05, five              
miRNAs were necessary for the normalization of these samples. The five miRNAs are:             
hsa-let-7a-5p, hsa-let-7d-5p, hsa-let-7e-5p, hsa-let-7f-5p and hsa-miR-26b-5p. 

 

Out of the 378 miRNAs from the miRNA PCR array, 33 miRNAs had an              

average CT value over 35, and 17 miRNAs were undetectable in all 12 samples.              

Figure 19 shows the number of reactions with undetected miRNAs from MetS            

serum. In total, there were 151 miRNAs with detected reactions for all samples, most              

miRNAs with undetected reactions (49) had only one undetected reaction. After           

normalization, the miRNA differential expression analysis with 222 miRNAs         
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uncovered six significantly upregulated miRNAs (p-value <0.01) in MetS patients          

compared with healthy controls (Table 6). 

 

Figure 19 - MiRNAs PCR array quality control and Ct values 

 
The number of undetected miRNAs (left panel), a boxplot of CT values of all miRNAs for                
each sample before and after normalization (right panel). PCR: polymerase chain reaction.            
Ct: cycle threshold. 

 

Table 6 - Circulating miRNAs differentially expressed in MetS patients 

miRNA fold change p-value Lower CI Upper CI BH adj. p-value 

miR-574-3p 2.37 0.00040 0.7381 1.75 0.08884 

miR-542-5p 3.40 0.00103 0.9091 2.627 0.11421 

miR-421 2.22 0.00271 0.5081 1.793 0.20054 

miR-30c-5p 1.62 0.00918 0.2155 1.180 0.28786 

The miRNAs were normalized by the most stable housekeeping miRNAs using the            
geNorm method. Only the miRNAs with a p-value of 0.01 were considered differentially             
expressed. CI: confidence interval.  BH adj. P-value:  p-value adjusted by          
Benjamini-Hochberg. MetS: Metabolic Syndrome. 
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4.6. MiRNA-mRNA Integrated Analysis 

An integrative analysis was carried out to analyze the interactions between           

the consistently downregulated genes from the SAT studies and the upregulated           

circulating miRNAs from MetS patients. There were 562 genes downregulated in six            

or more studies out of 11, only 12 genes of those were targets of the 6 differently                 

expressed miRNAs (Figures 20 and 21). 

 

Figure 20 - MiRNA-target regulation network from consensus DEGs from SAT  

 
Twelve downregulated genes from SAT (blue) were also targets of the upregulated            
circulating miRNAs of MetS patients (red). The interaction between the miRNAs and target             
mRNA were experimentally validated from the mirTarBase (release 7.0). The network was            
generated with Cytoscape (version 1.8.0). DEGs: differentially expressed genes. SAT:          
subcutaneous adipose tissue. 

 

Next, the integrative analysis between the consistently downregulated genes         

from the liver studies and the upregulated circulating miRNAs from MetS patients            

was performed. From the 19 downregulated genes in all three studies, only three             

genes were targets of the six differently expressed circulating miRNAs (Figure 21). 

 

Figure 21 - MiRNA-target regulation network from consensus DEGs from liver 

 
Three downregulated genes from the liver (blue) were also targets of the upregulated             
circulating miRNAs of MetS (red). The interaction between the miRNAs and target mRNA             
were experimentally validated from the miRTarBase (release 7.0). The network was           
generated with Cytoscape (version 1.8.0). DEGs: differentially expressed genes.  
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No interactions were identified between the two consistently downregulated         

genes from the muscle ( PRODH and  IGFBP3 ) and the upregulated circulating           

miRNAs from MetS patients (from Table 6). For blood, the number of consensus             

DEGs was also to low to create a miRNA-mRNA interaction network. 
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5. Discussion 

Here we utilized system biology tools to integrate data from a comprehensive            

transcriptomic meta-analysis with circulating miRNA of MetS patients. MetS gene          

signatures from 4 different tissues were using differential expression analysis, gene           

co-expression analysis, gene set enrichment analysis, and network analysis. We          

also performed a differential expression analysis of circulating miRNAs from MetS           

patients compared to healthy controls. Finally, we integrated both results by           

comparing the MetS circulating miRNAs with their tissue-specific targets.  

The GEO-NCBI database has over 90,000 transcriptomic studies performed          

with a multitude of high-throughput technologies, experimental designs, types of          

samples, and for a broad range of biological conditions. The GEO-NCBI search for             

microarray studies of MetS and related diseases produced a total of 632 studies.             

After careful manual curating, only 4% of studies passed the study selection            

exclusion criteria. This high exclusion rate of 93.8% (257/274) is typical in many             

kinds of meta-analysis studies  (EDINGER; COHEN, 2013)  (MANSFIELD et al.,          

2016)   (ORTEGA-BERNAL et al., 2018) . 

We had to manually curate each one of these studies even after using the              

available filters of the search tool. The GEO query system only allows the use of               

broad terms for sample characterization, study summary and description. The lack of            

specific metadata fields makes the search for a specific disease very inefficient, with             

a high percentage of the output including unwanted results. The need for a specific              

field just for disease classification has recently pushed a researcher team to create a              

revamped searchable tool for the GEO database named ReGEO  (CHEN et al.,            

2019) . 

Although most authors follow the MIAME guidelines for the submission of           

transcriptome datasets, the authors provide limited clinical information  (NOOKAEW         

et al., 2013) . In some cases, authors did not even provide basic sample             
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characteristics, making it difficult or even impossible to use the studies  (NOOKAEW            

et al., 2013) .  

Our differential expression analyses between obese and lean subjects of 26            

studies in four tissue types (blood, liver, muscle, SAT), retrieved a varying number of              

DEGs. SAT analysis showed the highest number and percentage of DEGs per study,             

and this may explain the higher number of consistent DEGs. However, in a             

multi-tissue study  (HAO et al., 2018) , a higher number of DEGs was found in muscle               

(584) and liver (367) than adipose tissue (283). This difference was due to a high               

percentage of downregulated genes since the number of upregulated genes in the            

muscle (79.79%, 466/584, 118 upregulated) and in the liver (65.4%, 240/367, 127            

upregulated) and was lower than in the adipose tissue (167 upregulated)  (HAO et             

al., 2018) . Although we identified many consistent DEGs for SAT and liver, a limited              

number of consistent DEGs or no consistent DEGs at all were found in muscle and               

blood, respectively. 

Two genes  MSC and  ABCC3  were consistently upregulated in all SAT studies            

analyzed. The  MSC encodes the musculin protein, which is also known as activated             

B-cell factor-1 (ABF-1). This transcriptional repressor is highly expressed in          

activated B lymphocytes and capable of binding to an E-box element  (ROMAGNANI            

et al., 1981) . According to a few transcriptomic experiments from the Expression            

Atlas,  MSC  is highly expressed in adipose tissue  (PAPATHEODOROU et al., 2018) . 

Hishikawa et al. (2005) have shown that the expression of  MSC is inversely             

correlated with the expression of Leukemia Inhibitory Factor (LIF), a member of the             

interleukin 6 (IL-6) family whose primary function is the inhibition of cell proliferation             

(GOUGH et al., 1988) . In a more recent mice study, it was shown that the               

hypothalamus inhibition of LIF leads to decreased protection against diet-induced          

obesity  (FIORAVANTE et al., 2017) . Thus, the upregulation of  MSC observed in this             

study could lead to inhibition of the LIF and, consequently, to increased susceptibility             

to diet-induced obesity. 

The  ABCC3  encodes the protein canalicular multispecific organic anion         

transporter two, also formerly known as multidrug resistance-associated protein 3          
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(MRP3)  (ALLIKMETS et al., 1996) . It is a part of a group of efflux proteins that                

transports various molecules across cellular membranes. In the liver, ABC proteins           

have a role in the absorption, disposition, and distribution of organic anions, such as              

xenobiotics and endogenous substances to bile  (BELINSKY et al., 1998) . Although           

ABCC3 function is not entirely known, its upregulation in blood-derived NK cells may             

be associated with a protective cell response to cytotoxic drug treatments  (PESSINA            

et al., 2016) .  

According to the Expression Atlas,  ABCC3 is highly expressed in the adrenal            

gland, stomach, liver, and small intestine. In contrast, experiments showed a low            

expression of  ABCC3 in adipose tissue and immune cells  (PAPATHEODOROU et           

al., 2018) . This may be indicative of inter-tissue regulation, or infiltration of immune             

cells with altered  ABCC3  expression. Nonetheless, little attention in the literature is            

given to its involvement in immune processes and their active secretion of            

inflammatory mediators.  

We did not find a consensus gene signature in blood for obesity (i.e. no DEGs               

were found in at least 70% of the studies containing blood samples). This variability              

between studies might be due to the inherent inter-individual differences of blood            

cells. According to some authors, the variation of gene expression from blood cells             

can come from different sources and confounding signals  (EADY et al., 2005) .            

These include technical and experimental design, inter-individual  (RADICH et al.,          

2004)  and exposure factors  (DUMEAUX et al., 2010; WHITNEY et al., 2003) .  

A looser definition of consensus DEGs for blood, in which a gene is identified              

as DEG in at least 5 out of 9 studies, results in a group of 34 genes. Among those                   

genes,  TNIP1 , also known as Naf1 or ABIN-1, was the top consistently upregulated.             

TNIP1 has the capacity of dampening TNF-α induced NF-κB activity  (HEYNINCK et            

al., 1999) and acts as a corepressor of ligand-bound PPARs  (FLORES et al., 2011) .              

The increased expression of  TNIP1 rheumatoid arthritis induced by TNF-α          

(GALLAGHER et al., 2003) is suggestive of countermeasure against a          

pro-inflammatory condition. Furthermore, SNPs reported in  TNIP1 has shown to          

increase the risk of coronary artery disease in a Chinese cohort  (SONG et al., 2017) . 
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The muscle-derived studies showed the lowest percentage of DEGs among          

all tissues (7.78%). In an attempt to generate a consensus gene signature for             

muscle tissue, only 7 DEGs were detected in all three studies. In this small gene               

signature, geranylgeranyl diphosphate synthase 1 ( GGPS1 ) was found consistently         

upregulated. The overexpression of  GGPS1 has been observed in fat and skeletal            

muscle tissues, and further investigated in a knockout model which showed           

GGPS1’s mediation of lipid-induced systemic insulin resistance in obese mice  (TAO           

et al., 2015) . 

The liver gene signature had 46 consensus DEGs of which 41.3% was            

downregulated. This included genes encoding the bone morphogenetic protein         

( BMP ), and the pseudo receptor activin membrane-bound inhibitor ( BAMBI ). In LPS           

exposed hepatic stellate cells, transforming growth factor (TGF)-β signaling was          

enhanced by TLR4 activation and  BAMBI downregulation  (SEKI et al., 2007) .           

Altered gene expression levels of TGF-β and their antagonists in adipose tissues is             

described in obesity  (LEE, 2018) . 

The TATA-Box binding protein-associated factor 4b gene ( TAF4B ) was also          

found consistently downregulated in the liver studies. This gene is involved in the             

control of cell proliferation acting as an NF-kB co-activator in response to TNF-α             

(YAMIT-HEZI; DIKSTEIN, 1998) , and TGFβ signaling mediator  (MENGUS et al.,          

2005) of anti-apoptotic genes and pathways. In mice models, diet-induced obesity           

has shown to upregulate liver expression of TNF-alpha  (BORST; CONOVER, 2005)           

and  NF-kB  (CARLSEN et al., 2009) . NF-κB upregulation can increase          

serine/threonine phosphorylation of the insulin receptor substrate 1 (IRS1), which          

results in insulin resistance  (SAAD et al., 1992) , as well as elevate hepatic             

production of proinflammatory cytokines, including TNF-α, IL-6, and interleukin 1          

beta (IL-1β). 

We performed a co-expression analysis to generate a consensus network of            

genes related to MetS and obesity from transcriptome datasets of human tissues.            

We used an innovative approach that combines several studies to generate a            
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consensus co-expression network with our recently published package CEMiTool         

(RUSSO et al., 2018) . 

Some co-expression studies performed on adipose tissue from obese         

patients have used a similar meta-analysis approach. However, the authors used a            

module preservation method and candidate gene selection based on the          

connectivity of the co-expression network  (HAAS et al., 2012; HE et al., 2017) . 

The integration of co-expression analysis with GWAS findings has found that           

pituitary, pancreas, esophagus, nerve, skin, and adipose tissue were a worthy           

investigation for obesity pathogenesis. However, with the exception of skin and           

adipose tissue, most of these tissues are hard to collect due to significant health              

risks  (HAO et al., 2018) . Few studies have performed co-expression analysis in            

adipose tissue  (PRAVENEC et al., 2018) , and in obese patients  (WANG et al., 2017)              

(HAO et al., 2018) , and one has even integrated co-expression analysis with            

miRNA-gene interaction  (MIAO et al., 2019) . However, none of these studies           

combined multiple studies into a consensus signature and compared it with           

differentially expressed miRNAs in circulation.  

The co-expression analysis of SAT studies generated 13 densely         

interconnected communities. The largest communities containing over 300 genes         

were CM 13, CM 6, and CM 4. CM 6 had the highest number of genes found in                  

different immune system cells. The presence of resident immune cells in the adipose             

tissue is well known  (CILDIR; AKINCILAR; TERGAONKAR, 2013; SCHIPPER et al.,           

2012) . These cells are responsible for apoptotic cell clearance and extracellular           

matrix remodeling. Their activation can lead to inflammatory processes, insulin          

resistance, and other metabolic complications found in obesity and MetS  (FAIN,           

2006; HOTAMISLIGIL et al., 1995) . 

The pathway most enriched in the immunometabolism co-expression        

community (CM 6) of the SAT was neutrophil degranulation. Neutrophils have a            

critical effector role in innate and humoral immunity and are part of the first line of                

defense against microorganisms and foreign particles  (BURG; PILLINGER, 2001) .         

Previous studies have shown that patients with elevated adiposity had higher           
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circulating neutrophil counts, and neutrophils degranulation  (REYES et al., 2015) .          

Even proteins secreted mainly by neutrophil granules, such as plasmatic          

myeloperoxidase and calprotectin, have even been found increased in a human           

obese study  (NIJHUIS et al., 2009) . 

The enrichment of the detoxification of reactive oxygen species pathway is           

consistent with the oxidative stress and elevated superoxide production associated          

with obesity and MetS  (FURUKAWA et al., 2004) . This process can be due to the               

increase of neutrophils in the adipose tissue. In obese patients, peripheral blood            

neutrophils are prone to elevated superoxide production and chemotactic activity          

(BROTFAIN et al., 2015) . 

Cells from the adaptive immune system were also uncovered in the CM 6.             

The pathways of immunoregulatory interactions between a Lymphoid and a          

non-lymphoid cell, MHC class II antigen presentation, co-stimulation by the CD28           

family, and TCR signaling are evidence of T-lymphocytes presence in SAT. The            

CD28 co-stimulation pathway has been shown to aid T-lymphocytes nutrient uptake           

by increasing the glycolytic flux and levels of glucose transporters aiding the            

activation of T-lymphocytes  (FRAUWIRTH et al., 2002) . Also, TCR signaling is           

responsible for T-lymphocyte proliferation, differentiation, and effector function  (VAN         

LEEUWEN; SAMELSON, 1999) .  

One of the shortcomings of our analysis is that it was not possible to              

distinguish or quantify specific types of lymphocytes present in the SAT. However,            

studies have already shown the increased presence of CD8+, CD4+, Th1, Th1:Treg,            

Th17 lymphocytes in SAT from obese patients  (YANG et al., 2010; ZÚÑIGA et al.,              

2010)  and also mice  (IP; HOGAN; NIKOLAJCZYK, 2015) . 

Obesity induces low-grade chronic inflammation, also known as a          

meta-inflammatory state  (LUMENG; SALTIEL, 2011) . The positive enrichment of the          

pathway “Toll-like Receptor Cascades” in the co-expression community CM 6 brings           

forth pattern recognition receptors’ (PRRs) role in the inflammatory process. PPRs           

can sense different molecules, such as pathogen-associated molecular patterns         

(PAMPs) and initiate an  innate immune system response. It was shown that  some             
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PRRs can sense endogenous ligands, as damage-associated molecular patterns         

(DAMPs) and generate proinflammatory signals  (FESSLER; RUDEL; BROWN,        

2009) . For example, saturated fatty acids (FFAs) may potentially bind to toll-like            

receptor 4 (TLR-4), and activated its signaling pathways  (HUANG et al., 2012) .  In             

adipocytes,  the activation of TLR-4 promotes  NF-κB translocation  and leads to the            

production of proinflammatory cytokines  (SUGANAMI et al., 2007) . Furthermore, the          

elevated FFAs in obese patients also induces adipose tissue macrophage infiltration           

(NGUYEN et al., 2007) .  

The analysis of this study also showed positive enrichment of the signaling by             

proinflammatory interleukins in CM 6. Interleukins and other inflammatory mediators          

were shown to partake in the macrophage-adipocyte crosstalk  (ENGIN, 2017) ,          

leading to a pro-inflammatory state and adipose insulin resistance in obese patients            

(BING, 2015) . This crosstalk secrets IL-6 and directly interferes with insulin signaling            

(WEISBERG et al., 2003) , and it has also been correlated with obesity-induced            

insulin resistance  (PRADHAN et al., 2001) .  

Another cytokine produced by the adipose tissue macrophages is IL-1β          

(SIMS; SMITH, 2010) , which has been shown to reduce the expression of proteins             

from the insulin signaling pathway, such as IRS-1 and glucose uptake (GLUT4), and             

impair downstream insulin signaling  (GAO et al., 2014) . Interestingly, both IL-6 and            

IL-1β have also been identified as highly differentially co-expressed genes between           

MHO and MUO individuals in the liver, muscle, and adipose tissues  (KOGELMAN et             

al., 2016) . 

When combining the SAT gene expression signature with the consensus          

co-expression network, it was no surprise to have found CM 6 and CM 14 with high                

numbers of DEGs since they both had high NES throughout most studies (Figure             

16). In contrast, CM 13 had the greatest number of  DEGs among all co-expression              

communities, and yet no consistent and significant pathway enrichment was found. 

The pathway enrichment analysis and GSEA failed to find a consensus for            

liver, muscle, and blood studies. Previous reports have performed co-expression          

analysis for blood samples  (FATIMA et al., 2018; NAKAYA et al., 2015; OBEIDAT et              
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al., 2017; VOIGT et al., 2018) and even for blood from obese patients  (GHOSH et               

al., 2010)  (CROTEAU-CHONKA et al., 2018) . These studies find multiple pathways           

implicated in the gene co-expression network profiles. Although it is possible to            

combine multiple co-expression analyses  (LANGFELDER; HORVATH, 2007) , this is         

still a novel approach in the field  (REINHOLD et al., 2017)   (SUN et al., 2017) . 

The lack of significant and consistent pathways in the blood co-expression           

communities might have been due to individual-specific factors involved in gene           

expression variability  (RADICH et al., 2004) . Even in healthy volunteers, gene           

expression variation from blood can be explained by varying proportions of           

leukocyte subsets  (EADY et al., 2005) , and the time of day of sample collection              

(WHITNEY et al., 2003) . For liver and muscle studies, it is possible that having only               

three studies for each tissue may have impaired the creation of the consensus             

co-expression network and consequently the enrichment analysis. Therefore, it can          

be beneficial to have a more significant number of studies of liver and muscle              

co-expression analysis. 

 We detected 151 out of 378 miRNAs in the serum of MetS patients and               

controls. The number of undetected miRNAs may result from the loss of exosomes,             

which also carry miRNAs, during the extraction of miRNAs from serum. Some            

miRNAs have been shown to only be undetectable in the whole serum compared to              

exosome serum pellets  (GALLO et al., 2012) . Also, processing blood into plasma or             

serum may result in different quantities of miRNA in these liquid biopsies            

(THORSEN; BLONDAL; MOURITZEN, 2017; WANG et al., 2012) . 

In our MetS cohort, four members of the let-7 family were selected to             

normalize miRNA expression due to its low variability among all samples. Though            

some members of the let-7 family have known to regulate glucose metabolism            

(FROST; OLSON, 2011) , the less variable miRNAs in our study (let-7a-5p and            

let-7d-5p) have been used as housekeeping miRNAs  (RICE et al., 2015) 

The differential miRNA analysis of MetS serum resulted in the upregulation of            

miR-542-5p, miR-574-3p, miR-421, and miR-30c-5p. None of these miRNAs have          

been shown to be dysregulated in MetS. Previous studies reported dysregulation of            
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other circulating miRNAs in MetS, such as: miR-23a, miR-27a, miR-130, miR-195,           

miR-197, miR-320a, miR-509-5p  (KAROLINA et al., 2012) , miR-140-5p,        

miR-142-3p, miR-143, miR-222, miR-15a, miR-146a, miR-423-5p, miR-520c-3p,       

miR-532-5p  (AL-RAWAF, 2018) , miR-16, miR-33, miR-107, and miR-150  (MA; FU;          

GARVEY, 2018) . 

The integrative analysis showed that 12 consistently downregulated DEGs         

from SAT were also potential targets of 4 upregulated miRNAs form MetS patients             

(Figure 20).  Transcriptomic studies have shown that miRNA interactions with target           

genes can potentially be involved in the pathogenesis of obesity  (JORDAN et al.,             

2011; LI et al., 2015) .  

The consistent downregulated  EGFR encodes the epidermal growth factor         

(EGF) receptor,  also known as  ERBB1  or  HER1 , a receptor tyrosine kinase that is              

activated by binding of EGF, transforming growth factor α (TGF-α) and amphiregulin            

( AREG )  (RIESE; STERN, 1998) . The downregulation of this gene  may be           

associated with insulin resistance si nce protein  EGFR  expression in adipose tissue           

has shown to be positively correlated with insulin level and insulin sensitivity            

(ROGERS et al., 2012) .  

The miR-542-5p interaction with  EGFR  was suggested to have a role in            

oncogenesis. It was observed that miR-542-5p inhibited the proliferation of human           

lung cancer cells, and had an inverse correlation with EGFR protein levels            

(YAMAGUCHI et al., 2012) . The directionality of miR-542-5p expression in other           

types of cancers is still controversial  (CHENG et al., 2015) .  

The miR-574-3p also targets  EGFR, and it was discovered to be a tumor             

suppressor miRNA because of its downregulation in many types of cancer  (CUI et             

al., 2014)  (TATARANO et al., 2012) . However, the role of miR-574-3p in MetS is still               

controversial. In subjects from the Framingham Heart Study, the miR-574-3p          

expression in plasma was associated with diabetic nephropathy  (BIJKERK et al.,           

2015) , and insulin resistance  (SHAH et al., 2017) . In a small cohort, circulating levels              

of miR-574-3p temporarily increased in the first month after Roux-en-Y gastric           

bypass surgery  (ALKANDARI et al., 2018) which was not observed in a similar study              
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(ATKIN et al., 2018) . In contrast, serum expression of miR-574-3p was significantly            

downregulated in type 2 diabetes patients  (BALDEÓN ROJAS et al., 2016) .           

Furthermore, the expression of circulating miR-574-3p is also unlikely to be           

correlated with its levels in the adipose tissue since it has been found downregulated              

in visceral adipose tissue from obese patients with non-alcoholic steatohepatitis          

(NASH)  (ESTEP et al., 2010) . 

The upregulated miR-421 from MetS had the following four target genes that            

were consistently downregulated in obese SAT:  NRC31 ,  RHOB ,  RGMB , and          

MRLP38 .  

The miR-421 has been extensively described as a regulator of cellular           

proliferation in many types of cancer  (LIU et al., 2017; MENG et al., 2016; ZHOU et                

al., 2016) . Nevertheless, its involvement in metabolic diseases is yet to be discussed             

appropriately. The targeted genes of this miRNA appear to have essential functions            

in MetS development. For example, SNPs on the coding gene for the nuclear             

receptor subfamily 3 group C member 1 ( NR3C1 ) were associated with the            

susceptibility for MetS, though its molecular mechanism is not fully elucidated  (YAN            

et al., 2014) .  

Another gene targeted by miR-421 is the  ras homolog gene family member B             

gene ( RHOB ). This gene encodes RhoB, a small GTPase that regulates the            

cytoskeletal organization and membrane trafficking  (JAFFE; HALL, 2005) . Also,         

RhoB acts through protein-related kinase 1 ( PRK1 ) to regulate the kinetics of  EGFR             

trafficking.  (GAMPEL; PARKER; MELLOR, 1999) . In mice models, knocked out of           

RHOB  significantly decreased the levels of proinflammatory cytokines such as IL-6,           

IL-1β, and TNF-α  (HUANG et al., 2017) .  

The repulsive guidance molecule bone morphogenetic protein (BMP)        

co-receptor b ( RGMB ,  DRAGON ) gene acts as a co-receptor that potentiates BMP            

signaling  (SAMAD et al., 2005) .  RGMB  has been mostly studied in cancer and has              

shown to regulate negatively  (LI et al., 2012) or promote cancer growth  (SHI et al.,               

2015) .  Although the role in  RGMB  in adipose tissue is still undefined, it is highly               

expressed in macrophages. In mice models, the  RGMB  knockout resulted in the            
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upregulation of IL-6 in macrophages and lung and dendritic cells  (XIA et al., 2011) .              

The  RGMB  consistent downregulation in adipose tissue studies is indicative of its            

proinflammatory role due to the negative regulation of IL-6. 

MRPL38 encodes the large subunit 38 of the mitochondrial ribosomal protein           

(MRP) family. The MRPs are encoded in the nuclear genome, imported into the             

mitochondria where they are translated 13 mitochondrial protein components of the           

oxidative phosphorylation  (KENMOCHI et al., 2001) . A study investigating         

mitochondrial biogenesis in human SAT in acquired obesity found downregulation of           

MRPL transcripts, mtDNA amount and oxidative phosphorylation proteins, as well as           

downregulation and methylation of  MRPL38  (HEINONEN et al., 2015) . These          

findings are suggestive that  MRPL38  downregulation in SAT may result from the            

targeting of miR-421 found upregulated in our MetS study. 

Upregulation of miR-30c-5p, besides other members of the miR-30 family,          

was reported to promote adipogenesis and inhibit osteogenesis  (WANG et al.,           

2013a) . During adipogenesis, it repressed the expression of  SERPINE1  and          

ACVR1 , which encode plasminogen activation inhibitor 1 (PAI-1) and activin          

receptor-like kinase 2 (ALK2), respectively. Also, miR-30c-5p plasma levels were          

strongly associated with age  (AMELING et al., 2015) and inversely correlated with            

total and LDL cholesterol  (CEOLOTTO et al., 2017) . The miR-30c family (-1, -2,             

-1-3p, -2-3p or -5p) were found to be downregulated in the SAT of HIV infected               

patients  (SQUILLACE et al., 2014)  and obese patients  (ARNER et al., 2012) . 

Some of the miR-30c-5p target genes have been found dysregulated in           

obesity and mediate lipogenic responses. The gene encoding the general          

transcription factor IIIC subunit 3 ( GTF3C3 ) was found downregulated in adipose           

tissue from obese subjects  (SKINKYTE-JUSKIENE; KOGELMAN; KADARMIDEEN,       

2018) . The gene  RAB18 , member ras oncogene family, can mediate lipogenesis and            

lipolysis and when silence it has been found to impair lipogenic response to insulin              

in adipocytes  (PULIDO et al., 2011) . Ubiquinol-cytochrome c reductase core protein           

1 ( UQCRC1 ) is responsible for mitochondrial energy metabolism and has been           

found associated with the development of obesity  (KUNEJ et al., 2007) . 

77 

http://f1000.com/work/citation?ids=7023359&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=5799958&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=887832&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=7024614&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=7024614&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6042174&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=7024660&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=7024684&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=629192&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=7024696&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=7024696&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=2307558&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=7025166&pre=&suf=&sa=0


The high mobility group (HMG)-box containing 4 (HMGXB4) is a nonhistone           

chromosomal protein and also targeted by miR-30c-5p. In a GWAS meta-analysis           

study, significant variants were identified in HMGXB4 associated with waist-to-hip          

ratio adjusted for body mass index in SAT  (SHUNGIN et al., 2015) . The UBX              

Domain Protein 1 (UBXN1) is a known modulator of the innate immune response by              

blocking the canonical NF-kappa-B pathway  (HU et al., 2017) . It has been studied             

viral replication and appears to also negatively regulate IFN-β expression after viral            

infection  (YUAN et al., 2019) . By targeting these anti-inflammatory modulators          

miR-30c-5p may contribute to predisposing SAT to a pro-inflammatory state. 

Little is know about the other miR-30c-5p targets: extended synaptotagmin 1           

( ESYT1 ) and lactamase beta 2 ( LACTB2 ).  ESYT1 is responsible for lipid binding            

and transport through the endoplasmic reticulum membrane       

(FERNÁNDEZ-BUSNADIEGO; SAHEKI; DE CAMILLI, 2015; MAEDA et al., 2013) .         

The protein encoded from  ESYT1 has been shown to negatively impact Herpes            

Simplex Virus 1 membrane fusion in host cells  (EL KASMI et al., 2018) .  LACTB2 is               

required for normal mitochondrial function and cell viability. Recently, its fusion with            

gene NCOA2 was identified in colorectal cancer  (YU et al., 2016) . The            

downregulation in the SAT of these 2 genes has still to be revealed in the scope of                 

obesity and MetS. 

The miRNA-mRNA regulation network for the liver showed two interactions:          

miR-30c-5p targeting  ZNF507  and  TAF4B . The consistently downregulated genes         

TATA-Box binding protein associated factor 4b ( TAF4B ) and Zinc finger protein 507            

( ZNF507 ) in the liver were found to be potential targets of miR-30c-5p. However             

both of these genes are highly expressed in testis and ovaries  (LIZIO et al., 2019) .               

Since obesity has been shown to be detrimental to the reproductive system  (DAĞ;             

DILBAZ, 2015; KLENOV; JUNGHEIM, 2014) , it is possible that the upregulation of            

miR-30c-5p may target other tissues and contribute to infertility. Targeted inactivation           

of TAF4B leads to female and male mice sterility  (FALENDER et al., 2005) .             

Therefore, the miR-30c-5p by targeting  TAF4B and  ZNF507 may contribute to           

obesity-induced infertility. 
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In the literature, miR-30c was found to be potentially beneficial in treating            

hyperlipidemias as it was discovered to reduce lipid biosynthesis and lipoprotein           

secretion  (SOH et al., 2013) . A study with the non-alcoholic fatty liver disease found              

downregulation of circulating miR-30c  (MEHTA et al., 2016) , though no mention was            

made of the miRNA type. Furthermore, the liver upregulation of miR-30c-5p in            

leptin-deficient mice reduced triglyceride accumulation and hepatic steatosis by         

counterbalancing fatty acid biosynthesis  (FAN et al., 2017) . Since not all obese            

patients have signs of developing hepatic steatosis  (BACON et al., 1994)  (STEFAN;            

HÄRING; CUSI, 2019) , upregulation of miR-30c-5p can be a potential mediator of            

this process. 

Even though the same differentially expressed miRNAs target distinct tissues,          

for example, miR-30c-5p can regulate genes in SAT and Liver, the targeted genes             

are different in each tissue. Thus showing the complexity of miRNA’s gene            

expression regulation. 

In summary, this study provides preliminary research findings regarding the          

unique miRNA-gene regulatory network expressed in MetS. However, research is          

still needed to characterize the relationship between the miRNA and their target            

genes uncovered in our analysis as well as their mechanism of action in the immune               

and metabolic pathways.  
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6. Conclusions and Future direction 

In this study, bioinformatics analysis was used to determine a gene           

expression signature, gene co-expression modules, an integrative miRNA-mRNA        

analysis. These methods showed that combining multiple transcriptomic studies can          

uncover possible new molecular interactions even in a complex disease as MetS. 

A consistent gene expression signature for obesity was found for          

subcutaneous adipose tissue and liver. The SAT gene signature showed evidence of            

local infiltrating immune cells, including neutrophils, and meta-inflammation        

pathways. The liver gene signature uncovered fatty acid and phospholipid          

metabolism pathways and neutrophil presence in hepatic tissue.  

A consensus co-expression analysis successfully detected consistent       

co-expression communities in SAT that were passive of finding meaningful enriched           

pathways. These pathways confirm increased immune cells and a pro-inflammatory          

environment in SAT. It was not possible to uncover meaningful co-expression           

communities from the consensus co-expression networks of blood, liver, and muscle           

due to analytical limitations including the number of studies. 

The circulating levels of miR-574-3p, miR-542-5p, miR-421, and miR-30c-5p         

were found upregulated in serum from MetS patients. Since the first 3            

aforementioned miRNAs have not been described in MetS until now, additional           

validation in a larger cohort is needed for their potential use as metabolic alteration              

biomarkers in obese or MetS patients. 

The same miRNA can potentially regulate different tissues through distinct          

targets for each tissue. Obese SAT has a distinct proinflammatory signature           

compared to the lean SAT as shown through integrative analysis. Thus, proving            

possible to integrate transcriptomic data with miRNA profiling for MetS.  

The Systems Biology strategy was able to identify dysregulated mRNAs in           

four types of tissues that could be under the influence of upregulated circulating             

miRNA from MetS patients. 
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