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1 |  INTRODUCTION

Congestive heart failure is a pathology of global incidence that 
affects more than 20 millions of people worldwide. It is largely 
categorized and consists of a progressive clinical state when 
the heart weakens and fails  to pump blood at physiological 
rates commensurate with the requirements of tissues. Thus, 
two main alternatives for treatment are cardiac transplant and 
therapies associated with ventricular assist devices (VADs).1,2 

The implantable centrifugal blood pump (ICBP) is a VAD for 
long‐term assistance initially designed for bridge to transplant 
(BTT) in conjunction with several research institutions.3,4

Actuators are important for the performance of blood 
pumps and are intrinsically connected to the operation of the 
equipment. Several topologies have been proposed over the 
years in area of artificial organs and VADs.5‒14

This article presents a design strategy for development of 
a customized electromagnetic actuator for ICBP elaborated 
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Abstract
Congestive heart failure is a pathology of global incidence that affects millions of  
people worldwide. When the heart weakens and fails to pump blood at physiological 
rates commensurate with the requirements of tissues, two main alternatives are cardiac 
transplant and ventricular assist devices (VADs). This article presents the design strat-
egy for development of a customized VAD electromagnetic actuator. Electromagnetic 
actuator is a brushless direct current motor customized to drive the pump impeller 
by permanent magnets located in rotor–stator coupling. In this case, ceramic pivot 
bearings support the VAD impeller. Electronic circuitry controls rotation switching 
current in stator coils. The proposed methodology consisted of analytical numerical 
design, tridimensional computational modeling, numerical simulations using Maxwell  
software, actuator prototyping, and validation in  the dynamometer. The axial flow  
actuator was chosen by its size and high power density compared to the radial flow 
type. First step consisted of estimating the required torque to drive the pump. Torque 
was estimated at 2100  rpm and mean current of 0.5  A. Numerical analysis using 
finite element method mapped vectors and fields to build stator coils and actuator  
assemblage. After tests in the dynamometer, experimental results were  compared 
with numerical simulation and validated the proposed model. In conclusion, the  
proposed methodology for designing of VAD electromechanical actuator was consid-
ered satisfactory in terms of data consistency, feasibility, and reliability.
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after more than 10  years of technique enhancement.15 
Electromagnetic actuator is a brushless direct current motor 
customized to drive the pump impeller by permanent magnets 
located in rotor–stator coupling.16,17 In this case, ceramic pivot 
bearings support the VAD impeller. Electronic circuitry controls 
rotation switching current in stator coils.18‒21

2 |  MATERIALS AND METHODS

The proposed methodology for a customized design of elec-
tromechanical actuator consisted of analytical numerical 
design, tridimensional computational modeling, numerical 
simulations using Maxwell software, actuator prototyping, 
and validation in a  dynamometer.

Based on the data obtained during previous hydrody-
namic performance tests,15 torque was estimated analytically 
from estimated pump power and pump output at 2100 rpm 
and mean current of 0.5 A. Figure 1 shows coil dimensions 
based on rotor dimensions and magnetic properties such as 
remnant magnetization and coercive force.22,23

Starting from the adopted current density of 3.106 A/m2, 
with conductor diameter of 4.6 × 10−4 m, relative magnet per-
meability of 1.12, and magnetic flux density of 8.4 × 10−1 T, 
the number of turns per coil was calculated in 50 turns as 
seen in Equation 1.

In order to make the computational numerical analysis by 
finite element method, the prototype was modeled (Inventor, 
Autodesk, San Rafael, CA, USA) and exported (Maxwell 3D, 
ANSYS, Canonsburg, PA, USA).

A dynamometer designed by the research group24 measured 
torque of the assembled rotor–stator configuration to compare 
and validate the computational numerical simulation results.

3 |  RESULTS

Figure 2 shows the tridimensional model design and the 
results for density of magnetic flux in rotor represented by 
vectors obtained after numerical simulation. Permanent mag-
nets with positive poles are in red and negative poles in blue. 
Vectors followed the expected magnetic field lines.17

The interaction between magnetic poles evidenced small 
vectors with lower magnitude and different orientations.  
The values obtained in the actuator simulation and the magnetic 
flux density were compared with the theoretically calculated 
value Bavg.

16 Figure 3 shows the numerical simulations of the 
proposed actuator, with three groups of coils, A in blue, B in 
yellow, and C in purple.

The torque calculated by the software was compared with the 
experimental value of torque measured in the dynamometer.  
Figure 4 shows the torque generated by the proposed actua-
tor in the numerical simulation as a function of the angular  
position. The graph shows peaks because the variation from 
0° to 360° was determined with a pitch of 60° polar pitch, 
with a maximum value of 9.3 mNm.

After first characterization, coils were manually rolled. 
A device was created with the rolling profile as shown in 
Figure 5A, to give the desired trapezoidal shape and con-
trol the external dimensions of the coil (B). A template (C) 
was applied to control the same geometric characteristics 
in coils.

After this process, coils were identified and welded in se-
ries by groups A, B, and C. Each phase is composed of three 
coils encased in epoxy resin. Figure 6 shows the complete 
stator with encased coils and three wires soldered for phase 
feed with terminal connectors.

The assembled dynamometer measured torque and me-
chanical power to validate numerical simulations and analyt-
ical calculation.25‒29 Figure 7 shows the experimental setup.

(1)Nph=
2×�×Tn

Bmg×mfase× Irms×Np×d
2
i

F I G U R E  1  VAD schematics showing pump, impeller and actuator, magnets and dimensions
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Indicator (A) has two displays for torque generated by ac-
tuator (B) and axial force (C) with respective scale selector 
switches. Display (B) has two scale options, 25 and 100 mN.m, 

and the display (C) has two options 25 and 100 N scale options. 
Voltage and current were obtained from power supply panel (D) 
and measured in controller board input (E). Digital tachometer 

F I G U R E  2  Tridimensional model and the density of magnetic flux in rotor obtained after numerical simulations [Color figure can be viewed 
at wileyonlinelibrary.com]

F I G U R E  3  Coil design and the density of magnetic flux in stator obtained after numerical simulations [Color figure can be viewed at 
wileyonlinelibrary.com]

F I G U R E  4  Torque generated by actuator and its variation from 0° to 360° with a 60° polar pitch [Color figure can be viewed at 
wileyonlinelibrary.com]
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(F) was positioned to measure revolutions of the magnetic brake 
disk (G). Actuator (H) and adapter plate (I) were mounted on 
the dynamometer reactive subassembly, which measures reac-
tive torque (J) on the magnetic brake subassembly. It applies a 
restrictive load on the rotor allowing speed variation. Air gap is 
adjusted by screw (L) as specified in the design.24,26

4 |  DISCUSSION

As seen in Table 1, data were obtained in function of rota-
tion. In order to vary rotation, mechanical load was applied 
with the magnetic brake until rotation stabilizes and all data 
could be recorded.

F I G U R E  5  Device (A) used for manually winding actuator coils (B) and a template to control dimensions and required trapezoidal profile (C)

F I G U R E  6  Complete stator with wires and terminals [Color 
figure can be viewed at wileyonlinelibrary.com]

F I G U R E  7  Experimental setup with assembled dynamometer 
and mounted actuator

Actuator characteristics − lg = 2 [mm]

Main Voltage in power supply 12 [V]

Vf [V] If [mA] n [rpm] C [mN m] Wabs [W] Wmec [W] η [%]

11.60 1290 3505.30 4.00 14.96 1.47 9.81

12.00 1360 3134.10 5.00 16.32 1.64 10.06

12.00 1400 2005.00 6.00 16.80 1.26 7.50

12.10 1490 1520.00 8.00 18.03 1.27 7.06

12.10 1530 735.90 9.00 18.51 0.69 3.75

12.00 1620 529.60 11.00 19.44 0.61 3.14

T A B L E  1  Mounted actuator 
characteristics measured by dynamometer in 
the experimental setup

www.wileyonlinelibrary.com
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Thus, successively, the load was applied gradually with 
the magnetic brake. Variables Wabs absolute power, Wmec  
mechanical power, and “η” yield were calculated with the 
data collected.

5 |  CONCLUSIONS

Analytically estimated torque was 10×10−3 N ⋅m. Based on 
this result, torque was increased by 20% with operating range, 
already operating current and rotor dimensions already estab-
lished. Parameters adopted were torque 12×10−3 N ⋅m, rota-
tion range 2100 rpm and a mean current of 0.5 A. With these 
parameters, it was possible to calculate the number of turns 
required per phase.

Then, a numerical analysis was performed by finite ele-
ment method, which had values obtained by the analytical 
calculation as input data. Maximum torque was calculated by 
the software as 9.3×10−3 N ⋅m.

Finally, the actuator was machined, prototyped, and tested 
in the dynamometer to survey its characteristic curves. These 
experimental values were compared with numerical simula-
tions to validate them. Efficiency was considered relatively 
low as expected due to manual windings manufacturing that 
increases resistance in coils, temperature, and current con-
sumption. Finally, analyzing computational data with exper-
imental data, the conclusion is that the actuator has expected 
torque for the chosen rotation range and the proposed design 
strategy for VAD actuator was successful.

After validating the computational model, analyzing re-
sults obtained through computational simulation, and com-
paring dynamometer measurements, it is possible to state 
that the applied design strategy can be extrapolated to sev-
eral types of centrifugal pumps applied as blood pumps and 
VADs. As observed in many devices, the application of cus-
tom motors can provide improvements in performance and 
reliability, ensuring application safety and patients’ health.
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