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Abstract: Aedes aegypti mosquito, main transmitter of dengue disease in the 

Americas, has been responsable for more than 50,000 dengue cases in Guatemala 

between 2010 and 2017. Two generalized linear models were developed in order 

to establish the potential distribution area of A. aegypti in Guatemala based on 

climate data, to define the spatial relationship of dengue cases with probability of 

vector presence and to focus on potential transmission locations of dengue in the 

country. Vector distribution model was fed with data from the Global GBIF 

network. The relationship model between the vector and the case incidence was 

also fed with data from the Health Management System (SIGSA, by its acronym 

in Spanish). Climate variables from WorldClim- Global Climate Data (1050-

2000) were used for both models. Logarithms were calculated and evaluated in 

the statistical platform R and plotted in the Quantum Geographic Information 

System. The results show a high probability (.75-1.00) of vector occurrences in 

any region in 21 departments out of 22, excluding Totonicapán. Precipitation and 

humidity are the main variables related to vector presence. Moreover, It is shown 

that in the northern region of the country, the case incidence is not related to the 

potential distribution of A. aegypti, which indicates possible evidence of 

presence of Aedes albopictus as possible responsible for the transmission of this 

arbovirosis. Finally, five high-risk central regions of dangue transmission was 
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obtained, which can be used as backup for the selection of sentinel sites used for 

vector surveillance.  

Keywords: Dengue, Aedes aegypti, distribution, incidence, Guatemala.  

Resumen: El mosquito Aedes aegypti, principal transmisor de la enfermedad de 

dengue en América, ha sido el responsable de más de 50 000 casos en Guatemala 

entre los años 2010-2017. Con el fin de establecer el área de distribución 

potencial de A. aegypti en Guatemala con base en datos climáticos, definir la 

relación espacial de casos de dengue con la probabilidad de presencia del vector 

y enfocar los puntos de transmisión potencial de dengue en Guatemala se 

llevaron a cabo dos modelos lineales generalizados. El modelo de distribución 

del vector fue alimentado con datos de la red Global Biodiversity Information 

Facility (GBIF), y el modelo de la relación entre el vector y la incidencia de 

casos, fue alimentado además, con datos del Sistema de Información Gerencial 

de Salud (SIGSA). Para ambos modelos se utilizó variables climáticas de 

WorldClim-Global Climate (1950-2000). Los logaritmos fueron calculados y 

evaluados en la plataforma estadística R y graficados en Quantum Geographic 

Information System. Los resultados muestran una alta probabilidad (.75-1.00) de 

presentar ocurrencias del vector en alguna región en 21 de los 22 departamentos 

con excepción de Totonicapán. Las principales variables que se encuentran 

relacionadas con la presencia del vector son la precipitación y la humedad. Se 

muestra además que en la región norte del país la incidencia de casos no se 

encuentra relacionada con la distribución potencial de A. aegypti lo que indica 

posible evidencia de la presencia de Aedes albopictus, como responsable de la 

transmisión de esta arbovirosis. Por último, se obtuvieron cinco regiones focales 

de mayor riesgo de transmisión de dengue las cuales pueden ser utilizadas como 

respaldo para la elección de sitios centinela para el control de este vector. 

Palabras clave: Dengue, Aedes aegypti, distribución, incidencia, Guatemala.  

Introduction 

Aedes aegypti has been the main vector of arbovirus in the Americas, such as 

yellow fever (Jentes et al., 2011), chikungunya (Leparc-Goffart, Nougairede, 

Cassadou, Prat, & Lamballerie, 2014) and dengue (Simons, Farrar, Chau, & 

Wills, 2012). Despite mosquito eradication programs around the most part of the 

Americas in 1970, (Gubler, 2014; Organización Panamericana de la Salud & 

Organización Mundial de la Salud, 1959), vector presence is reported nowadays 

in 21 regions, out out of 22 departments in Guatemala (Lepe et al., 2016). 

However, the awareness of such distribution is limited, approached by means of 

entomological surveys carried out by the Ministry of Public Health and Social 



Assistance (MSPAS, by its acronym in Spanish). Also, the factors that rule such 

distribution in the region of Guatemala is scarce (Lepe et al., 2016). 

These mosquitos, probably originated in Africa and transported into the 

Americas by the ships during the first European explorations and colonizations 

back in the 15th century, are found in sites with isotherms between 10° C [50° F] 

and 45° C [113° F] (Nelson, 1986). Temperatures, below the aforementioned, 

produce difficulties in mosquito development, in population density and in 

female fertilization (Patz, Martens, Focks, & Jetten, 1998). Reason why they are 

generally found in regions under 1 000 masl (Nelson, 1986). This variable 

restricts the geographical limits of A. aegypti current distribution in Guatemala.  

The main vector of dengue virus is the mosquito, the most extended arbovirus on 

the planet presenting cases worldwide (Simons, et al., 1012). It is estimated that 

around 390 million of dengue cases happen in a year, out of which only 96 

million are identified through surveillance in health care centers in every country 

(Bhatt et al., 2013). This disease is found throughout the tropics, and the 

variation regarding the risk of infection, is greatly due to precipitation, 

temperature and urbanization (Simons, et al., 2012). In 2016, dengue virus was 

transmitted to over 2 million people in the American continent. Around 50 000 

cases were reported from 2010 to April 2017 in Guatemala (Sistema de 

Información Gerencial de Salud [SIGSA] 2017).  

There are different required conditions for virus transmission, it is necessary to 

gather a series of vector conditions, such as temperature, relative humidity, solar 

radiation or insect survival. Also, a combination of essential factors from the 

virus like virus genetic characteristics, and essential factors to the virus such as 

the intrinsic incubation period, which depends on the mosquito external 

temperature (Hardy, Houk, Kramer, & Reeves, 1983; Samuel, Adelman, & 

Myles, 2016). There are contradictions in regard to the ideal temperature for the 

virus to replicate, as well as for its dissemination inside the imago digestive tract. 

Fairly wide fluctuations in temperature decrease virus transmission in the case of 

A. aegypti, whereas the ideal temperature for the transmission is 30°C 

(Lambrechts et al., 2011; Watts, Burke, Harrison, Whitmire, & Nisalak, 1987). 

The mosquito Aedes albopictus Skkuse 1895 (Díptera: Culicidae) was found in 

the caribbean region of the country in 1995 (Ogata & Samayoa, 1996: Tabaru et 

al., 1998). Currently, its presence is known to be in some locations of at least 11 

departments all over northern Guatemala (Lepe et al., 2016). Thus, this mosquito 

could be playing an important role in arbovirosis transmission dynamic in 



regions of the country where A. aegypti is not present. It has been reported as a 

competent vector of multiple viral diseases such as dengue (Simmons et al., 

2012; Villatoro, 2006), chikungunya (Thiberville eet al., 2013), y zika (Grard et 

al., 2014). It is believed that it has some Asian origin (southeat Asian). Today, it 

is found all over around the world, surrounding human communities and serving 

as the main transmitter of diseases like dengue in rural areas, where A. aegypti is 

not present (Gratz, 2004). The vector presents advantages over other vectors due 

to the capacity that it demonstrates to survive within environments with limited 

resources and high combined densities (Juliano, 1998). 

Two generalized linear models were created from the methodology proposed by 

Barbosa (2015), in order to 1) establish the potential area of distribution of A. 

aegypti in Guatemala based on the climate data by WorldClim- Global Climate 

Data (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005), 2) to define the potential 

area of dengue cases based on the existence of A. aegypti, data by Global 

Biodiversity Information Facility (GBIF) between 1990 and 2016. Finally, 3) to 

determine high risk locations of potential dengue transmission in Guatemala. The 

amplitude of this study is limited in the following points: resolution scale of the 

database obtained from WorldClim- Global Climate Data (Hijmans et al., 2005) 

2.5 km, mosquito occurrence data extending to a greater geographical area to the 

reported in the database from GBIF (GBIF, 2017), lack of data in the country of 

study, as well as scarce anthropogenic information like population density, 

urbanization, access to water or drainage systems. This study will provide an 

approach on the vector current distribution around the region, define its potential 

distribution so that prioritized regions can then be indicated for vector 

surveillance in Guatemala, and define regions that should be prioritized due to 

the emergence risk of dengue outbreaks.  

 

Materials and methods 

Study area 

On account of the lack of data in Guatemala, the first model was carried out with 

occurrence data of A. aegypti in Mexico, Belize, Honduras, Nicaragua, Costa 

Rica, El Salvador and Panama, geo-referenced on the database from Global 

Biodiversity Information Facility (GBIF, 2017). Intergovernmental initiative 

formed by 97 participants, including countries and international organizations, 

which cooperate to promote free and open access to biodiversity data. 

Occurrence geographical coordinates were downloaded with rgbif package by 



using filters as “Aedes aegypti” for Scientific Name, search countries “Mexico, 

Guatemala, Belize, El Salvador, Honduras, Nicaragua, Costa Rica and Panama” 

(Real, Barbosa, &Vargas, 2006), off the statistical software R console (R Core 

team, 2017). 

The data on the sampled area map was subsequently superimposed with maps 

package (Becker & Wilks 2018) in order to exclude the wrong data, regarding the 

lack of information in the geographic coordinates. The data that wasn’t within the 

interest area was considered as erroneous. Such values were directly eliminated 

from the R console. Search helped to obtain 13,840 points of geo-referenced 

occurrence.  

The study area was chosen based on the report of constant culicoides infestation, 

besides the access to this data. The climate data correspond to 19 variables (Table 

1) extracted from WorldClim- Globl Climate Data (Hijmans et al., 2005). 

Table 1. 

Evaluated climate variables for model development 

Evaluated variables Model 1 Model 2 

Mean annual temperature Mean diurnal range Seasonal temperature 

Mean diurnal range Mean temperature of 

the coldest quartile 

Mean temperature of 

the wettest quartile 

Isothermal Precipitation of the 

wettest month 

Precipitation of 

seasonality 

Maximum temperature  of the 

warmest month 

  

Minimum temperature of the 

coldest month 

  

Annual temperature range   

Mean temperature of the 

wettest quartile 

  

Mean temperature of the 

warmest quartile 

  

Mean temperature of the driest 

quartile 

  

Mean temperature of the 

coldest quartile 

  

Annual precipitation   

Precipitation of the wettest 

month 

  



Precipitation of the coldest 

month 

  

Precipitation of seasonality   

Precipitation of the coldest 

quartile 

  

Precipitation of the warmest 

quartile 

  

Precipitation of the wettest 

quartile 

  

Precipitation of the driest 

quartile 

  

WorldClim- Global Climate Data (Hijmans et al., 2005). 

Selection of logarithmic modeling 

Potential vector distribution can be addressed based on ecological niche models 

(Escobar et al., 2016; Peterson et al., 2011). They allow the characterization of 

favorable climate conditions for a species presence in one territory without any 

immigration required (Peterson et al., 2011). Models of potential distribution 

have been done, showing that the area, to which they are restricted to A. aegypti 

in the Americas, goes from the north of the United States (Hahn et al., 2016) 

down to the north of Argentina. General maps are available, leaving the interest 

of making maps with the autochthonous distribution of A. aegypti in every 

country (Kraemer et al., 2015). 

In Guatemala, it has been addressed only by Lepe y colaboradores (2016). In the 

case of dengue, there are maps at a global level to delimit the areas with dengue 

incidence. Its results reveal evidence of cases showing connection with climate 

variables and vector presence. (Brady et al., 2012; Van, Bambrick, & Hales, 

2017; Lover et al., 2014).  

In order to predict the occurrence/absence of a species based on multiple 

variables in a particular site, the model generation can be carried out by means of 

multiple algorithms (Van et al., 2017). For instance, the flexible model to plot the 

potential distribution of species (DOMAIN) (Elith et al., 2006), Maximum 

entropy (Carpenter, Gillison, & Winter, 1993), Modeling System of genetic 

algorithm for rule-set production (GARP) (Stockwell & Peters, 1999) or 

machine-learning models (BRT) (Van et al., 2017).  

The comparison between regions, through the presence and absence of species 

individuals, generally shows several intrinsic errors to the methodology used. 

Among them, it can be mentioned that climate or spatial proximity is not taken 



into account between occurrence sites, which increases false absences resulting 

in two similar and nearby sites to be totally different, the same as two sites in 

opposite geographic areas (Barbosa & Real, 1012).  

Databases present unavoidable errors, false absences, errors when introducing 

data or false positives (Rocchini et al., 2011). Because of this, Rocchini y 

colaboradores (2011) and Barbosa (2015) recommend the use of species 

distribution as “fuzzy”, areas with a degree of uncertainty of presence or absence 

rather than purative presences or absences. Owing to this, the method proposed 

by Barbosa (2015) was used, included in the package fuzzySim within R 

statistical method (Barbosa 2014). This allows the conversion of 

presences/absences of species data into continuous and fuzzy surfaces based on a 

generalized linear model, in addition to converting probability to favorable 

values (favorability), prevalence-independent, which have proven to be of 

appropriate use within a fuzzy logic framework. (Barbosa 2015; Stockwell & 

Peters, 1999).  

However, there are model limitations in regards of the information obtained from 

databases. Among some of them: heterogeneous reports all around the origin 

country, information gaps, geographic coordinate incongruences, lack of 

information on strict absences, duplicate records, errors in nomenclature, 

different coordinate systems, and others. Despite that, these limitations are 

resolved through extrapolation of the conditions where there is record, by means 

of models.  

Data analysis:  

The data in this study consists of two variable of binomial response: 

presence/absence of A. aegypti, presence/absence of dengue cases (GBIF, 2017) 

and a series of continuous climate variables accessible to the public WorldClim- 

Global Climate Data (Hijmans et al., 2005). (Table 1). Dengue cases were 

requested to Health Management Information System (SIGSA) in Guatemala, 

information corresponding from January 2010 to April 2017. These cases were 

geo-referenced with Quantum Gis version 2.18, in the Geographic Information 

System (QGIS Development Team, 2017). A binomial generalized linear model 

(Barbosa 2014; Barbosa, 2017) was used in order to determine the vector 

distribution based on temperature and precipitation variables. 

The results by the grid probabilities, obtained from the R model, were imported 

to Quantum Gis. They were then converted into a raster format and plotted with 

the design complement, particular of the geographic information system. Model 



1, which included México, Guatemala, Belize, Honduras, Nicaragua, El 

Salvador, Costa Rica and Panama (Figure 1), was reduced within Guatemala 

limits and replotted (Figure 2). The values of grid probabilities of this country 

were imported to R for Model 2 development.  

Subsequently, a generalized linear model was made to determine the current 

distribution of dengue cases in relation to potential vector distribution and 

climate variables. In order to create the following models, 19 variables were 

used, a priori, evaluated and filtered afterwards (Table 1), which represent the 

database by WorldClim- Global Climate Data (Hijmans et al., 2005): 

Model 1: A. aegypti ~ Intercept + climate variables  

Model 2: Dengue ~ Intercept + Probability of A. aegypti presence/absence + 3 

climate variables 

The generalized linear models matched by using MultGLM function off 

fuzzySim package (Barbosa, 2014) in R, through the script developed by Barbosa 

(2017). Both models were evaluated by modEvA package (Barbosa, Brown, 

Jiménez-Valverde, & Real, 2016). The discrimination and classification capacity 

was determined (Table 2) threshold-independent, meaning that a cut-off 

threshold is not used to classify presence/absence values. Instead, directly upon 

map continuous values (Legendre & Legendre, 2012) through the area under the 

Receptive Operative Characteristic (ROC) curve, with “AUC” option off 

modEVA package, true skill statistic (TTS) (Allouche, Tsoar, & Kadmon, 2006) 

and the correct classification rate (CCR) with optiTresh function off modEVA 

package in R. The goodness-of-fit, or the calibration of both models, was carried 

out through the Miller calibration straight line (Pliscoff & Fuentes-Castillo, 

2011), with MillerCalib function off modEVA package.  

Both models (model 1 &2) used 15% of data as validation data. The variables 

that represented false negatives were deleted by using False Discovery Rate 

(Benjamini & Hochberg, 1995), with FDR function, collinearity with multicol 

function, and correlation between variables over .75 (Marquardt, 1970), with cor 

function off fuzzySim package. The variables selection process was step-by-step, 

choosing them from a saturated model in both directions.  

Results 

Predictive models 

Aedes aegypti 



In figure 1, you can see that Mexico, Guatemala, Belize, Honduras, Nicaragua 

and Costa Rica, represent high probability of A. aegypti presence in some region, 

excluding Panama. This high probability (between .75 to 1.00) is represented 

along the Pacific Ocean coasts, starting from the west area of Sierra Madre 

Occidental in Mexico, passing through Balsas Depression, moving forward the 

area located between the volcanic chain of Guatemala and the Pacific Coast, El 

Salvador, the lowlands of Nicaragua (depression of Nicaraguan lakes) and 

lowlands of Costa Rica. On the other hand, there is a high probability in the 

Sierra Madre Oriental in Mexico and Yucatán, northeast-wise (.5 - .75), followed 

by the Atlantic Ocean coasts (.25 - .75). The areas with low probability (0 - .25) 

are located in highlands, such as Sierra Madre Oriental and Occidental in 

México, the volcanic chain, altiplano, Cuchumatanes mountain range, Sierra de 

las Minas in Guatemala, and the highlands of Belize (Sierra Maya): the Atlantic 

coast of Central America and the territory of Panama.  

Figure 1. 

Probability map of A. aegypti presence in Mexico and Central America: map 

generated in Quantum GIS. Date: June 2017. The map depicts the favorable 

conditions for mosquito occurrence, from 0 (blue) to 1 (red), in a 10 km x 10 km 

resolution.  

Map generated in Quantum GIS. Date: June 2017.  

In Guatemala (Figure 2), a high probability of presence can be observed (.75 – 1) 

in all southern lowlands of the country up to the volcanic range. In the east of the 

country, a probability of vector presence can be observed between .5 and .7 

including the department territories of Guatemala, El Progreso, Jalapa, Jutiapa, 

Zacapa y Chiquimula. Meanwhile, a .75 probability is observed in the northeast 

region of the department of Huehuetenango, western Guatemala. In the 

department of Petén, northern Guatemala, there are probabilities of finding a 

vector from .75, in the north area, up until zero probability in the southeast area. 

Escuintla, Santa Rosa, Suchitepéquez, Retalhuleu, San Marcos, Quetzaltenango 

and Jutiapa are high-probability department territories of A. aegypti presence (> 

.75). 

Figure 2 

Probability map of A. aegypti presence in Guatemala: map generated in Quantum 

GIS. Date: June 2017. The map depicts favorable conditions for mosquito 

occurrence from 0 (blue) to 1 (red), in a 10 km x 10 km resolution.  



Map generated in Quantum GIS. Date: June 2017.  

Dengue  

As shown in figure 3, the coastal area, bordering the Pacific Ocean, presents a 

high probability (.75 – 1) as opposed to the coasts in contact with the Atlantic 

Ocean, which present a low probability (0 - .25). The locations with the highest 

probability of incidence presence of dengue cases are in the northwest area of 

Huehuetenango, the area including Ciudad Tecún Umán and the Pacific coast of 

San Marcos, the communities surrounding Atitlán Lake in Sololá, the northeast 

area of Escuintla and the mountain area between Pueblo Nuevo Viñas, 

Tecuamburro volcano, Cruz Quemada volcano and Moyuta volcano in Santa 

Rosa. The highest probability for dengue cases incidence in Guatemala is found 

in 19 departments out of 22. 

In mountain systems, the areas with the highest probability of case presence is 

located between the Mountain System of Sierra Madre. San Juan mountains, 

Sierra de Chuacus and Sierra de las Minas have the highest probability (.75 – 1). 

Another high-probability area is found in western Huehuetenango, in the low 

area of Cuchumatanes mountain range (.75 – 1).  It should be noticed that the 

lowlands southern Guatemala have areas with the highest probability of case 

incidence, whereas the lowlands of Petén do not present probability of case 

incidence.  

Figure 3 

Probability map of dengue incidence in Guatemala: map generated in Quantum 

GIS. Date: June 2017. The map depicts favorable conditions for dengue case 

occurrence from 0 (blue) to 1 (red), in a 10 km x 10 km resolution.  

Map generated in Quantum GIS. Date: June 2017.  

According to figure 4, dengue case incidence corresponds, for the most part, to 

the data obtained through the model and the prediction performed. In figures 4 

and 5, it can be observed that the departments coincidently with low probability 

of case dangue have a low percentage of cases. Petén present only 3.7 % of 

reported cases, Izabal reports only 1.42 % of cases and Alta Verapaz with 6.41 

%, resulting into 11.53 % of total cases. Case incidence conditions are 

concentrated in departments like Guatemala (27.45 % of cases), Quetzaltenango 

(8.76 % of cases), Santa Rosa (8.61 % of cases) and Escuintla (7.4 % of cases), 

all departments resulting into the 52.2 % of cases. Chimaltenango (0.32 %), 



Totonicapán (0.02 %) and Jalapa (1.11 %) are departments with high probability, 

but a low percentage of reported cases.  

It should be mentioned that the number of cases that arise in dry season 

(November-April) is higher than the number of sites that present cases in rainy 

season (May-October). When observing cases by season (Figure 4), departments 

like Petén, Izabal, Huehuetenango, Retalhuleu, Totonicapán and Zacapa, are 

appeared to present dengue cases only in dry season, as opposed to the other 16 

departments presenting dengue cases in both seasons.  

Figure 4 

Sites presenting dengue cases in both rainy and dry season, shown on the 

probability map of dengue incidence in Guatemala. Dry season: May, June, July, 

August, September, and October. Rainy season: November, December, January, 

February, March and April. Map generated in Quantum GIS. Date: June 2017. 

The map depicts favorable conditions for dengue case occurrence, from 0 (blue) 

to 1 (red), in a 10 km x 10 km resolution.  

Map generated in Quantum GIS. Date: June 2017.  

Figure 5 

Dengue case percentage by departments, from 2010-2017 to the epistemological 

week 16 (April 22, 2017). Source: Dissemination of Health Statistics Unit, 

Health Management Information System (SIGSA), Public Health Ministry and 

Social Assistance. Date: June 2017 

Dissemination of Health Statistics Unit, Health Management Information System 

(SIGSA), Public Health Ministry and Social Assistance. Date: June 2017 

Miller calibration straight line revealed that the generated models met the data 

with intercept values close to 0 and slopes close to 1. Based on the area below the 

curve, the discriminative and classification capacity present values above 0.7 

(Table 2). In order to transform the results obtained into a presence/absence map, 

values of the correct classification rate of model 1 and 2, plus the true skill 

statistics of both are shown on the same table.  

Table 2. 

A. aegypti and dengue models calibration 

 A. aegypti model Dengue incidence model 



Validation 
Model 

1 
validation Model 2 

Model calibration     

Miller calibration straight line     

Intercept 0.42 0 0.19 0 

Slopes 1.15 1 1.09 1 

Predictive statistics      

ROC/AUC 0.743 0.709 0.799 0.791 

Maximized Correct 

Classification Rate (CCR)  
0.962 0.960 0.788 0.775 

Maximized True Skill 

Statistics (TTS) 
0.697 0.663 0.74 0.761 

 

Discussion  

The results show a high probability of conditions for A. aegypti presence in 21 of  

22 departments in Guatemala, in one region minimum (probability between .5 

and 1). The results reported by Lepe y colaboradores (2016), which obtain the 

same distribution in regards of departments, find support in the results in this 

article. Very cold climates are limitations for ectotherms organism development 

that require an external heat source as opposed to their own heat production. 

Thus, the department of Totonicapán hasn’t reported neither dengue presence nor 

Chagas (Tabaru et al., 1998), in comparison to departments with warmer climates 

like Escuintla and Santa Rosa.  

Map presentation and production, which could provide alarm information of 

febrile case outbreaks, are greatly complexified by geo-referenced data absence, 

obtained from the Vector-borne Diseases Programme.  

According to model 2 (Figure 2 and 3), the vector potential distribution does not 

correspond to the disease potential distribution in the north region of the country, 

which brings up the suspicion of a second agent in virus transmission. 

Distribution of A. albopictus (Lepe et al., 2016), competing vector for the two 

same resources used by the first A. aegypti, could be the reason of incidence high 

probabilities in these regions. In fact, an A. aegypti displacement has been 



discovered in rural ambiences by A. albopictus, due to the high survivorship 

capacity that the second one has under unfavorable conditions to other vectors. 

Conditions such as overcrowding, temperatures under 20° C [68° F] or breeding 

grounds with more jungle-like characteristics present in anthropogenic 

communities located in rural areas (Black, Rai, Turco, & Arroyo, 1989).  

Another factor that could explain the most extensive incidence distribution of 

cases in relation with vector distribution, observed all over the country, is the 

existence of underreporting. This is caused by patients failing to attend health 

care centers or staff of public institutions not having the appropriate tools to 

distinguish between dengue cases from other arboviruses with similar 

symptomatology to chikungunya fever or zika.  

In order to properly address this disease, it is necessary to rely on professional 

staff, besides the staff willing to perform essential vector surveillance 

interventions to avoid virus dissemination. In Guatemala, the most common used 

measure to determine the risk of dengue outbreaks is monitoring mosquito 

breeding grounds through larval and pupal house index in every community 

(MSPAS, OPS, & Organización Mundial de la Salud [OMS], 2015). The 

methodology demands can´t be met due to the shortage of staff in the Health 

Ministry, which is in charge of surveillance. Therefore, the same sites are 

sampled (MSPAS, OPS & OMS, 2015). Because of this, vector surveillance 

should be addressed through different methods, such as sentinel sites or ovitrap 

use, in locations like: a) La Unión, Nentón, Huehuetenango, b) Ciudad Tecún 

Umán San Marcos and c) Palín, Escuintla. Sentinel sites, defined as high-

recurrent sites of dengue cases and vector populations, should be selected based 

on different information sources.  

In Guatemala, sentinel sites can be selected by using the information presented in 

this study, concerning high-risk areas of possible dengue transmission, which are: 

1) the northwest region of Huehuetenango, 2) the region located between Ciudad 

Tecún Umán and the Pacific coast of San Marcos, 3) the communities 

surrounding Atitlán Lake in Sololá, 4) the northeast region of Escuintla and 5) 

the mountain area between Pueblo Nuevo Viñas, Tecuamburro volcano, Cruz 

Quemada volcano and Moyuta volcano in Santa Rosa (Figure 3). It is advisable 

to perform necessary field researches to establish the effectiveness in studied 

regions, since the current study shows highly wide-scale ecological data. 

Therefore, it is necessary to do research regarding the implicated elements at a 

microclimate scale (Jansen & Beebe, 2010) to understand the cultural aspects of 



human population in regions related to the disease (Bastos & Camus, 2004) and 

entomological indices.  

As a conclusion, dengue case incidence in the territory of Guatemala seems to be 

highly influenced by A. aegypti vector presence. However, dengue cases do not 

present any causal relation with spatial vector distribution. Thus, it is 

recommended 1. To deeply research the relationship between A. albopictus 

vector and its role in dengue transmission in northern Guatemala, 2. To establish 

sentinel sites for vector surveillance, which could possibly be a) the northwest 

region of Huehuetenango, b) the region located between Ciudad Tecún Umán 

and the Pacific coast of San Marcos and c) the northeast region of Escuintla. 

Finally, 3. To evaluate the vector surveillance process used by authorities and the 

impact on the population health.  
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