UNIVERSIDADE DE SÃO PAULO

Faculdade de Ciências Farmacêuticas Programa de Pós-Graduação em Farmácia (Fisiopatologia e Toxicologia) Área: Toxicologia

Análise proteômica de células BEAS-2B expostas a benzo[α]pireno e nicotinamida ribosídeo

Matheus Relvas dos Santos

Dissertação para obtenção do Título de Mestre

Orientador: Prof. Dra. Ana Paula de Melo Loureiro

Co-orientador: Prof. Dra. Graziella Eliza Ronsein

São Paulo

UNIVERSIDADE DE SÃO PAULO

Faculdade de Ciências Farmacêuticas Programa de Pós-Graduação em Farmácia (Fisiopatologia e Toxicologia) Área: Toxicologia

Análise proteômica de células BEAS-2B expostas a benzo[α]pireno e nicotinamida ribosídeo

Matheus Relvas dos Santos

Versão Corrigida

Dissertação para obtenção do Título de Mestre

Orientador: Prof. Dra. Ana Paula de Melo Loureiro

Co-orientador: Prof. Dra. Graziella Eliza Ronsein

São Paulo

Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio convencional ou eletronico, para fins de estudo e pesquisa, desde que citada a fonte.

Ficha Catalográfica elaborada eletronicamente pelo autor, utilizando o programa desenvolvido pela Seção Técnica de Informática do ICMC/USP e adaptado para a Divisão de Biblioteca e Documentação do Conjunto das Químicas da USP

Bibliotecária responsável pela orientação de catalogação da publicação:
Marlene Aparecida Vieira - CRB - 8/5562

```
dos Santos, Matheus Relvas
d237a
           Análise proteômica de células BEAS-2B expostas a
        benzo[a]pireno e nicotinamida ribosídeo / Matheus
        Relvas dos Santos. - São Paulo, 2021.
           83 p.
        Dissertação (mestrado) - Faculdade de Ciências
        Farmacêuticas da Universidade de São Paulo.
        Departamento de Análises Clínicas e Toxicológicas -
        Programa de Pós-Graduação em Farmácia (Fisiopatologia
        e Toxicologia).
           Orientador: Loureiro, Ana Paula de Melo
           Coorientador: Ronsein, Graziella Eliza

    Carcinogênese. 2. Benzo[a]pireno. 3.

        Nicotinamida Ribosídeo. 4. Proteômica. I. T. II.
        Loureiro, Ana Paula de Melo, orientador. III.
        Ronsein, Graziella Eliza, coorientador.
```

Matheus Relvas dos Santos

Análise proteômica de células BEAS-2B expostas a benzo[α]pireno e nicotinamida ribosídeo

Comissão Julgadora da Dissertação para obtenção do Título de Mestre

Prof. Dra. Ana Paula de Melo Loureiro

orientador/presidente			
1° examinador			
2° examinador			
3° examinador			
4° examinador			

São Paulo,____de____de 2022.

APOIO FINANCEIRO

FAPESP – Fundação de Amparo à Pesquisa do Estado de São Paulo

- Processo 2016/20925-7 Auxílio Regular à Pesquisa
- Processo 2016/00696-3 Auxílio Regular à Pesquisa

CNPq – Conselho Nacional de Desenvolvimento Científico e Tecnológico

• Processo 429184/2016-6 – Projeto Universal

CAPES – Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

PRPq – Pró-Reitoria de Pesquisa da Universidade de São Paulo

AGRADECIMENTOS

Agradeço à Prof.ª Dra. Ana Paula de Melo Loureiro pela orientação e os ensinamentos desde a época de iniciação científica até esse momento de finalização da dissertação. Agradeço também pelos conselhos e compreensão que teve comigo pelos problemas gerados nesse período tão difícil de pandemia.

À Prof.^a Dra. Graziella Eliza Ronsein por ter aceitado ser minha coorientadora do mestrado, ter ajudado a esclarecer muitas dúvidas sobre proteômica e me instigado a explorar melhor os meus dados.

Aos alunos da Prof.ª Graziella, em especial, à Hellen Valerio, que me ensinou desde o protocolo dos experimentos até o tratamento inicial dos dados, e ao Douglas Souza, que me ajudou na interpretação e tratamento dos dados do massas.

À técnica de laboratório Izaura Nobuko Toma, por todo o cuidado e atenção.

À Elaine Midori, pela atenção e ajuda em todas dúvidas que eu tive em relação a parte burocrática do mestrado e também por ter me acalmado e aconselhado em momentos que estive muito preocupado.

Aos colegas de laboratório, Everson Cordeiro, Joseana de Oliveira, João Moreno, Giovanna Silva, Thainá Cury e Lucas Gade, por todo o apoio e convivência.

Aos meus familiares, principalmente a minha irmã Heloisa Relvas, por todo o apoio emocional.

Aos meus amigos Camila Lopes, Beatriz Gomes, Janaina Luanda, Giovanna Xavier, Victor Assumpção, Carlos Rothmans, Luis Montagner, Caio de Andreia, Raphael Azenari e Maria Luisa, que, mesmo distantes, me deram apoio e muitos momentos felizes, me trazendo uma felicidade tão necessário durante este período de isolamento.

Ao meu coelho Romeo, que me fez companhia enquanto eu analisava os últimos dados e escrevia a dissertação.

E por último, mas não menos importante, ao Nathan de Castro, que meu deu muito apoio e incentivo para seguir em frente, desde a escrita do projeto até a finalização da dissertação. Me deu forças para continuar em todas as minhas crises, e esteve comigo em todos os momentos, bons ou ruim, e sem o apoio dele, eu provavelmente não teria chegado até aqui.

RESUMO

DOS SANTOS, M. R. Análise proteômica de células BEAS-2B expostas a benzo[α]pireno e nicotinamida ribosídeo. 2021 83f. Dissertação (Mestrado) – Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 2021.

Responsável por milhões de óbitos anuais e um grande custo para a saúde pública, o câncer é a segunda maior causa de mortes no mundo. Dentre seus diversos tipos, o câncer de pulmão, além da alta incidência, é um dos mais letais. A exposição a substâncias tóxicas provenientes da combustão de matéria orgânica, assim como o consumo de cigarro, são os principais responsáveis pela alta incidência de câncer de pulmão. Dentre estas substâncias, está o benzo[α]pireno (B[α]P), um carcinógeno completo, ou seja, capaz de iniciar e promover o processo de carcinogênese. Resultados anteriores obtidos pelo grupo demonstraram que células BEAS-2B expostas a 1 μM de B[α]P apresentaram alterações das concentrações de metabólitos intracelulares, indução de estresse redox e hipermetilação do DNA. A exposição a 1 µM de nicotinamida ribosídeo (NR), um dos precursores de NAD+, foi capaz de proteger as células BEAS-2B contra a transformação induzida por B[α]P, além de impedir totalmente que células não expostas a B[α]P formassem colônias em soft-agar. A utilização da proteômica neste trabalho permitiu verificar a abundância das proteínas nos quatro diferentes grupos de exposição: Controle, $B[\alpha]P$, $B[\alpha]P$ + NR e NR. Após 120 h de exposição as células foram coletadas, as proteínas extraídas e preparadas para análise. Foram descobertas 3024 proteínas posteriormente analisadas com o objetivo de elucidar vias possivelmente envolvidas na proteção contra o processo de transfomação maligna. Os grupos NR e Controle demonstram ser mais parecidos em relação ao seu conteúdo, enquanto os grupos $B[\alpha]P + B[\alpha]P + NR$ foram mais semelhantes entre si. A análise de proteínas exclusivas revelou menos processos relacionados ao reparo de DNA no grupo tratado apenas com B[α]P quando comparado com $B[\alpha]P + NR$. A análise estatística do total de proteínas utilizando o teste ANOVA (p < 0,05, N = 5) revelou 564 proteínas diferencialmente expressas entre os grupos. A clusterização nos permitiu observar a diferença na abundância de proteínas entre os quatro tratamentos. As proteínas estão envolvidas em funções como a regulação do metabolismo, resposta a estresse, transdução de sinal, regulação de expressão gênica e morte celular. Um dos clusters (cluster 1), contendo 59 proteínas, revelou poucos processos na análise de enriquecimento, mas as proteínas contidas nele apresentam funções como controle da divisão celular, apoptose e proteção ao estresse redox. Nele podemos observar que, no geral, o tratamento com B[α]P aumentou a abundância de algumas proteínas, o que foi revertido no grupo $B[\alpha]P + NR$. O tratamento apenas com NR diminuiu a abundância das proteínas contidas nesse cluster. Outro cluster (cluster 4) apresentou 51 proteínas de abundância diminuída durante a exposição ao B[α]P, o que se reverteu no grupo $B[\alpha]P + NR$. As proteínas desse cluster estão envolvidas em etapas importantes da via glicolítica, de crescimento, adesão, migração e invasão celular. Apesar de ser descrito que a exposição a NR pode aumentar a eficiência do reparo de DNA, os resultados apresentados nesse trabalho indicam que o efeito protetor pode estar relacionado com a modulação do ciclo celular ou alterações na adesão celular.

Palavras-chave: Carcinogênese, Benzo[α]pireno, Nicotinamida Ribosídeo, Proteômica

ABSTRACT

DOS SANTOS, M. R. **Proteomic Analysis of BEAS-2B cells exposed to benzo**[α]pyrene **and nicotinamide riboside.** 2021 83f. Dissertação (Mestrado) – Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 2021.

Responsible for millions of annual deaths and a great health expense, cancer is the second leading cause of death in the world. Among its many types, lung cancer, besides its high incidence, is also one of the most lethal. Exposure to toxic substances resulting from the combustion of organic matter, as well as cigarette consumption, are the mainly responsible for the high incidence of lung cancer. One of these substances is benzo[α]pyrene (B[α]P), a complete carcinogen, able to initiate and promote the carcinogenesis process. Results obtained previously demonstrated that BEAS-2B cells exposed to 1 µM BaP presented alterations in the levels of intracellular metabolites, induction of oxidative stress, and hypermethylation of DNA. The exposure to 1 µM nicotinamide riboside (NR), one of the precursors of NAD⁺, was able to protect BEAS-2B cells against the transformation induced by B[α]P, moreover, it also totally prevented the colonies formation on soft agar in cells not exposed to $B[\alpha]P$. The use of proteomics allowed us to verify the abundance of proteins in the four different exposure groups: Control, $B[\alpha]P$, $B[\alpha]P$ + NR e NR. After 120h of exposure, the cells were collected followed by the extraction of the proteins. A total of 3024 proteins were identified and analyzed aiming to elucidate possible pathways involved in the protective effect against the malignant transformation induced by $B[\alpha]P$. The NR and Control groups showed to be more similar, while $B[\alpha]P$ and $B[\alpha]P + NR$ were more similar. The analysis of exclusive proteins revealed fewer processes related to DNA repair in B[α]P when compared with B[α]P + NR. The statistical analysis of the total proteins using the ANOVA test (p < 0.05, N = 5) revealed 564 proteins differentially expressed between the groups. The heatmap showed the difference in protein abundance between the four treatments. Proteins are involved in functions such as the regulation of metabolism, stress response, signal transduction, regulation of gene expression, and cell death. One of the clusters (cluster 1), containing 59 proteins, revealed a few processes in the enrichment analysis, but the proteins contained in it have functions such as control of cell division, apoptosis, and protection from redox stress. It is possible to observe, in general, treatment with B[α]P increased the abundance of some proteins, which was partially reversed in group $B[\alpha]P + NR$. On the other hand, the NR treatment decreased the abundance of proteins contained in this cluster. Another cluster (cluster 4) showed 51 proteins of decreased abundance during exposure to B [α] P, which was partially reversed in group B[α]P + NR. The proteins in this cluster are involved in important stages of the glycolytic pathway, also in growth, adhesion, migration, and cell invasion. Although it has been described that exposure to NR can increase the efficiency of DNA repair, the results presented in this work indicate that the protective effect may be related to the modulation of the cell cycle or cell adehsion modifications.

Keywords: Carcinogenesis, Benzo[α]pyrene, Nicotinamide Riboside, Proteomics

LISTA DE FIGURAS

Figura 1. Workflow do software Perseus
Figura 2. Significância dos nodos presentes nos mapas de enriquecimentos obtidos pela
ferramenta Clue Go (pV $\leq 0{,}05).$ Na análise de redes o menor nodo das figuras será o de pV =
0,05
Figura 3 . Adaptado do Guia de Referência Rápido fornecido pela $Clarivate^{TM}$ para
interpretação das interações geradas pelo software Metacore
Figura 4. Análise de componentes principais: O grupo NR se assemelhou mais com o grupo
controle, mas o grupo $B[\alpha]P+NR$ ficou mais semelhante com o grupo $B[\alpha]P.$
Figura 5. Diagrama de Venn das proteínas dos quatro grupos (Controle, $B[\alpha]P$, $B[\alpha]P$ +NR e
NR) utilizando a ferramenta Venny (Oliveros, J.C., 2015)
Figura 6. Cluster de proteínas exclusivas do grupo $B[\alpha]P+NR$ relacionadas a processo de
reparo de DNA (PNPK) e biossíntese de nicotinamida nucleotídeo a partir de aspartato
(NMNAT1), que podem estar relacionados com a suplementação com NR31
Figura 7. Interações entre as proteínas exclusivas do grupo $B[\alpha]P+NR$. Componente
intracelular inibitório de CDK4 possui interações negativas com CDK4 e CAMKII32
Figura 8. Cluster de proteínas exclusivas do grupo $B[\alpha]P$, relacionadas a processos de coesão
centríolo-centríolo, regulação da xenofagia e manutenção da metilação do DNA37
Figura 9. Interações entre proteínas exclusivas do grupo $B[\alpha]P$. NF-kB possui interação
positiva com ISG15, enquanto DNMT1 possui interação negativa com RGS1038
Figura 10. Cluster de proteínas comuns apenas entre os grupos $B[\alpha]P+NR$ e $B[\alpha]P$,
relacionadas a processos de reparo de DNA, processo de biossíntese de lipídeos e ao estágio de
oogênese dos mamíferos
Figura 11. GSTM1 aparece como proteína exclusiva em intersecção entre os grupos $B[\alpha]P$ e
$B[\alpha]P+NR$, e interage negativamente com MEKK1, proteína com papel na sobrevivência
celular. Também possui interações positivas no processo de biotransformação do $B[\alpha]P$. 40
Figura 12. Cluster de proteínas exclusivas do grupo NR relacionadas a processos de resposta
celular a nicotina e à via de sinalização Wnt
Figura 13. Interações entre as proteínas exclusivas do grupo NR: Caveolin-1 está como ponto
central e possui interação positiva com RAB-5A e negativa com PKA-cat que por sua vez possui
interação positiva com RAP1. NF-kB, não presente no grupo, interage de forma negativa com
BRE e positiva com SLC7A11
Figura 14. Heatman com as 564 proteínas diferencialmente expressas (ANOVA n < 0.05).

separadas em 4 clusters
Figura 15. Cluster 1 e suas funções com base no banco de dados Gene Ontology. Nele estão
presentes proteínas envolvidas na regulação do splicing do mRNA, regulação positiva da
resposta ao estímulo de dano ao DNA, regulação negativa da modificação de proteínas e
regulação do processo metabólico de aminoácidos
Figura 16. Interações das proteínas presentes no cluster 1 em vias que possuem como ponto
central o fator de transcrição NANOG. Os círculos marcam a abundância das proteínas, em
vermelho estão os grupos em que as proteínas estão mais abundantes e em azul, menos
abundantes
Figura 17. Proteínas do Cluster 1 envolvidas em processos de reparo de DNA e proliferação
celular. Os círculos marcam a abundância das proteínas, em vermelho estão os grupos em que
as proteínas estão mais abundantes e em azul, menos abundantes
Figura 18. Heatmap do Cluster 1 expandido. As proteínas em vermelho estão com maior
abundância, e as proteínas em verde estão com menor abundância
Figura 19. Interações entre as proteínas do cluster 1. Beta-catenina está como ponto central,
interagindo positivamente com diversas proteínas presentes no cluster
Figura 20. Cluster 2 apresenta funções relacionadas a detoxificação, resposta celular a
substâncias tóxicas, remoção de radical superóxido e atividade de oxidorredutases57
Figura 21. Cluster 2 também apresenta funções relacionadas ao processo biossintético e
metabólico de nucleotídeos, além de outros processos metabólicos
Figura 22. Cluster 3 apresenta funções de regulação positiva da via de sinalização apoptótica,
e processo metabólico da frutose-6-fosfato
Figura 23. Heatmap expandido do Cluster 4.
Figura 24. Cluster 4 e suas funções com base no banco de dados Gene Ontology. Nele estão
presentes as proteínas com participação na via glicolítica, regeneração de NADH, processo
metabólico de aminoácidos sulfurados e membrane raft assembly
Figura 25. Interações entre as proteínas do Cluster 4. Catepsina D interage negativamente com
as proteínas frutose-bifosfato aldolase A e C, que possuem papel importante na via glicolítica.
Os círculos marcam a abundância das proteínas, em vermelho estão os grupos em que as
proteínas estão mais abundantes e em azul, menos abundantes
Figura 26. Interações entre proteínas presentes no Cluster 4: VIL2, Vinculina e Alpha-actinin
1. Os círculos marcam a abundância das proteínas, em vermelho estão os grupos em que as
proteínas estão mais abundantes e em azul, menos abundantes

LISTA DE TABELAS

Tabela 1. Lista de proteínas exclusivas do grupo B[α]P+NR	33
Tabela 2. Lista de proteínas exclusivas do grupo B[α]P	35
Tabela 3. Lista de proteínas presentes na intersecção dos grupos $B[\alpha]P+NR$ e $B[\alpha]P$	41
Tabela 4. Lista de proteínas exclusivas do grupo NR	44
Tabela 5. Lista de proteínas presentes no cluster 1	49
Tabela 6. Lista de proteínas presente no cluster 4	62

LISTA DE ABREVIAÇÕES E SIGLAS

5-mC – 5-metilcitosina

A549 – Células epiteliais de adenocarcinoma alveolar de células basais de pulmão humano

ADP – Adenosina difosfato

AhR – Receptor de hidrocarbonetos aromáticos

A-T - Ataxia-telangiectasia

ATP – Adenosina trifosfato

 $B[\alpha]P$ - Benzo $[\alpha]$ pireno

BPDE - B[α]P-7,8-diol-9,10-epóxido

BEAS-2B – Células bronquiais epiteliais humanas imortalizadas

DNA - Ácido Desoxirribonocleico

FL – células epiteliais amnióticas humanas

HPA - Hidrocarbonetos Policíclicos Aromáticos

HPLC/DAD - Cromatógrafo Líquido de Alta Eficiência com Detector de arranjos de diodos

I3C - Indol-3-carbinol

NAD⁺ - Nicotinamida adenina dinucleotídeo oxidado

NADH - Nicotinamida adenina dinucleotídeo reduzido

NADPH - Nicotinamida adenina dinucleótideo fosfato

NER – Reparo por excisão de nucleotídeo

NHEJ – Reparo por junção de pontas não homólogas

NMN - Nicotinamida mononucleotídeo

NNK - 4-metilnitrosamino-1-3-piridil-1-butanona

NR – Nicotinamida Ribosideo

PARPs - poli(adenosina difosfato-ribose)polimerases

ROS - Espécies reativas de oxigênio

XPA – Xeroderma Pigmentosum

SUMÁRIO

1. IN	TRODUÇÃO	12
1.1	Câncer e Benzo[α]pireno	12
1.2	Biotransformação do $B[\alpha]P$ e seus efeitos	12
1.3	Proteômica como uma ferramenta no estudo do câncer	14
1.4	Reparo de DNA e Nicotinamida Ribosídeo	17
1.5	Modelo de transformação e resultados anteriores	18
2. OI	BJETIVO	20
3. M.	ATERIAL E MÉTODOS	21
3.1	Nicotinamida ribosídeo (NR)	21
3.2	Cultura de células BEAS-2B:	21
3.3	Exposição das células BEAS-2B ao B[α]P e nicotinamida ribosídeo	21
3.4	Preparo das amostras	22
3.5	Análise por espectrometria de massas	23
3.6	Busca das proteínas e análise dos dados da proteômica de shotgun	24
4. RF	ESULTADOS E DISCUSSÃO	29
4.1	Análise de componentes principais	29
4.2	Análise de enriquecimento das proteínas exclusivas	29
4.3	Heatmap	47
5. CO	ONCLUSÃO	66
6. RF	EFERÊNCIAS BIBLIOGRÁFICAS	67
ANEX	O A	74
ANEX	O B	80

1. INTRODUÇÃO

1.1 Câncer e Benzo[α]pireno

O câncer é a segunda maior causa de mortes no mundo, responsável por 9,6 milhões de óbitos em 2018, segundo estimativa feita pela Organização Mundial da Saúde. Dentre seus diversos tipos, o câncer de pulmão, além de estar entre os mais frequentes, é o mais letal, apresentando uma taxa de mortalidade de 84% (WHO, 2018). A principal causa da alta incidência de câncer de pulmão é o tabagismo. A exposição direta a substâncias presentes na fumaça do cigarro está relacionada a mais de 20 tipos de tumores malignos que representam milhares de óbitos anuais e gastos em saúde pública (WÜNSCH et al., 2010).

Além do tabagismo, a exposição ambiental a agentes carcinogênicos torna-se outro fator de atenção. Substâncias como os hidrocarbonetos policíclicos aromáticos (HPAs) são encontradas em altas concentrações nas áreas urbanizadas devido à combustão de combustíveis fósseis (PRATT et. al., 2011). Dentro desse grupo, o benzo[α]pireno (B[α]P) é uma das substâncias mais estudadas, constatando-se que sua presença no ar de áreas urbanizadas dá-se principalmente por conta da elevada concentração de automóveis. Além disso, o B[α]P também está presente na fumaça do cigarro e juntamente com outras substâncias nocivas à saúde encontradas na fumaça, contribui para o desenvolvimento de câncer de pulmão em seres humanos (CARUSO, ALABURDA, 2011).

 $B[\alpha]P$ é um carcinógeno completo, ou seja, é capaz de iniciar e promover o processo de carcinogênese (CHAPPELL et al., 2016). Por esse motivo, o $B[\alpha]P$ é utilizado nos trabalhos do grupo como indutor do processo de carcinogênese em células epiteliais bronquiais humanas imortalizadas (BEAS-2B). Buscamos entender como o $B[\alpha]P$ altera o metabolismo celular, se a alteração metabólica contribui para a carcinogênese e se intervenções no metabolismo têm papel preventivo contra o processo carcinogênico.

1.2 Biotransformação do B[α]P e seus efeitos

Sabe-se que o B[α]P não interage diretamente com o DNA, sendo necessário que seja biotransformado para metabólitos eletrofílicos denominados carcinógenos efetivos, como o B[α]P-7,8-diol-9,10-epóxido (BPDE), que podem se ligar às bases de DNA, formando adutos que aumentam as taxas de mutações. Entretanto, os adutos formados podem ser removidos pelo

reparo por excisão de nucleotídeos (NER), que ocorre normalmente nas células (BERNARDO et al., 2016).

O B[α]P também pode ser biotransformado para quinonas, criando um ciclo redox capaz de induzir estresse redox. A geração de espécies reativas de oxigênio (ROS) juntamente com a ligação direta do B[α]P ao receptor de hidrocarbonetos aromáticos (AhR), este responsável pela regulação da expressão de diversos genes importantes para a manutenção do ciclo celular, promovem o processo de carcinogênese (FERECATU et al., 2010).

A formação de adutos de DNA e o ataque de ROS podem levar a quebras da fita de DNA, que podem ser removidas pelos mecanismos de reparo de DNA. Os produtos formados durante o metabolismo do B[α]P induzem quebras de dupla fita do DNA, ao mesmo tempo em que induzem o seu reparo. Entretanto, o reparo não é livre de erros, e se realizado de forma errônea pode contribuir para o processo de carcinogênese induzido pelo B[α]P. O reparo de quebras é realizado primariamente pela união de extremidades não homólogas (NHEJ), mas também há indícios de que o reparo ocorra em menor quantidade por recombinação homóloga (TUNG et al., 2014).

Lesões em DNA (adutos, quebras, oxidações, etc) podem levar a mutações. Estas, quando ocorrem em genes supressores de tumor ou em proto-oncogenes, podem dar início ao processo de carcinogênese. Isto ocorre quando o ciclo celular é desregulado e causa uma proliferação exacerbada (principal característica de uma célula tumoral). Portanto, faz-se necessário compreender como tais alterações podem contribuir para a modulação da atividade de vias de sinalização, de fatores de transcrição e para alterações epigenéticas que favoreçam a proliferação celular (TUNG et al., 2014).

A perturbação do controle epigenético tornou-se uma das marcas do processo de transformação maligna das células e está correlacionada ao surgimento e desenvolvimento de diversos tipos de tumores malignos. Fatores ambientais e comportamentais como dieta, exercícios, ritmo circadiano e o uso de drogas de abuso estão relacionados com as modificações epigenéticas que ocorrem em um indivíduo (CHEN; XU, 2010).

A alteração dos padrões de metilação do DNA, uma das marcas epigenéticas, é relatada em diversos tipos de câncer na literatura. O aumento das taxas globais de metilação é um indicativo de que alguns genes importantes podem estar sendo silenciados. Tais alterações podem ocorrer devido ao acúmulo de lesões no DNA, como, por exemplo, as lesões ocasionadas pelos ataques de ROS geradas no processo de biotransformação do $B[\alpha]P$. Além disso, o acúmulo dessas lesões é utilizado como marcador de estresse redox, que em altas concentrações

podem levar às mutações, tornando-se também um dos marcadores do processo de carcinogênese (JIN e LIU, 2018).

Dentre os genes que podem sofrer alterações em decorrência destes processos, um dos mais importantes para a manutenção da normalidade das células é o supressor de tumor TP53, responsável por regular o crescimento celular e proteger a integridade do genoma. É bem descrito na literatura que sua inativação está comumente relacionada com o aumento do risco de desenvolvimento de câncer (ZHAO et al., 2012).

Um outro fator importante para a manutenção do fenótipo celular normal é o metabolismo, sendo assim, se faz necessário entender como ocorrem as alterações metabólicas durante o processo de carcinogênese induzido pelo $B[\alpha]P$.

Uma das características de uma célula tumoral é ter seu metabolismo alterado. O aumento da atividade da via glicolítica sob normoxia é uma característica muito observada em tumores. Este processo é conhecido como efeito Warburg, e a mudança no metabolismo da glicose é um dos principais responsáveis pela progressão tumoral, pois fornece a energia e intermediários biossintéticos necessários para a sobrevivência e crescimento exacerbado das células tumorais (CHEN et al., 2016). A exposição ao B[α]P contribui para a disfunção mitocondrial e induz as células ao efeito Warburg, além de promover o crescimento e a sobrevivência das células transformadas (HARDONNIÈRE et al., 2017).

Associadas com a formação de tumores estão as mutações em genes codificantes de enzimas do ciclo de Krebs, como succinato desidrogenase, fumarato hidratase, malato desidrogenase e isocitrato desidrogenase. Além de importantes para o metabolismo energético das células, as atividades dessas enzimas afetam os padrões de metilação do DNA e modificações de histonas, alterando a expressão gênica (MORIN et al., 2014).

A disfunção mitocondrial possui um papel importante no processo de carcinogênese. Alguns metabólitos cujas concentrações aumentam durante esse processo são comumente referidos como oncometabólitos (fumarato, succinato), e alterações em suas concentrações são indicativas do processo de transformação em diversos estudos (YANG et al., 2012).

1.3 Proteômica como uma ferramenta no estudo do câncer

A indução de danos ao DNA pelo $B[\alpha]P$ é bem descrita na literatura. Entretanto, pouco se conhece sobre os efeitos em nível proteico. Mutações podem afetar processos que modulam a função e a atividade de proteínas em níveis variados, direta ou indiretamente, como as

modificações pós traducionais e interações proteína-proteína. As proteínas estão em nível mais próximo da função final do que os genes, portanto, os estudos proteômicos permitem análises de interações e modificações de proteínas que fornecem informações não acessíveis por outros métodos e que frequentemente levam a descobertas ou hipóteses biológicas (PANDEY, A.; MANN, M, 2000; VERMA et al., 2012).

O método baseado em espectrometria de massas denominado Proteômica Shotgun é o mais utilizado para identificação de proteínas provendo informações quantitativas e qualitativas. Estudos utilizando esse tipo de análise identificaram de 50% a 80% das proteínas codificadas pelos genomas estudados (GSTAIGER & AEBERSOLD, 2009; NAGARAJ et al., 2011).

As análises proteômicas também podem ser utilizadas para identificar modificações que possam afetar a função de uma proteína. Um estudo realizado por Jenkins et al (2008) utilizou proteômica global para analisar o papel da acetilação da lisina 317 na modulação da resposta mediada por p53 ao dano ao DNA induzido por radiação ionizante. Proteínas com funções associadas a apoptose, transcrição e tradução tiveram suas concentrações alteradas pela radiação ionizante, muitas delas com expressão diretamente regulada pelo p53. Os resultados dos estudos das vias alteradas sugeriram que a acetilação da lisina 317 modula as funções do p53.

O gene supressor de tumor TP53 é encontrado mutado em mais de 50% dos tipos de câncer em seres humanos. A proteína p53 atua regulando diversas vias metabólicas, como a glicólise, fosforilação oxidativa, oxidação de ácidos graxos e resposta antioxidante, que são importantes também para outras doenças como diabetes e obesidade, sendo considerada uma proteína de grande importância nos estudos de doenças metabólicas (MADDOCKS; VOUSDEN, 2011).

Outra proteína com papel no metabolismo é a quinase serina/treonina (Ser473) codificada pelo proto-oncogene Akt. Atua no crescimento, proliferação e sobrevivência celular. A ativação excessiva de Akt pode influenciar diversas vias que favorecem a tumorigênese. O aumento das concentrações desta proteína pode estar relacionado com o processo de carcinogênese induzido pelo $B[\alpha]P$ (ZHAO et al., 2012).

Estudos utilizando $B[\alpha]P$ como indutor do processo de carcinogênese demonstraram que a expressão de p53 e outras proteínas, como E-caderina, DNA metil-transferase (DNMT), fator de estimulação de importação mitocondrial (MSF), poli(ADP-ribose)polimerases (PARPs) e homólogo do oncogene viral do sarcoma de rato Kirsten (KRAS) estão alteradas (KRAIS et al.,

2015; YOSHINO et al., 2007).

Min, L. et al (2011) utilizaram análise proteômica para investigar o mecanismo de indução de estresse redox pelo B[α]P. Foram identificadas 23 proteínas alteradas em células epiteliais das vias aéreas humanas (A549) expostas a 1 μ M de B[α]P. As proteínas alteradas são envolvidas na comunicação celular, transdução de sinal, vias energéticas e metabólicas, apoptose, defesa antioxidante e outras funções celulares. Os resultados indicaram que houve decréscimo da expressão de enzimas relacionadas ao metabolismo proteico, apontando que a perturbação do metabolismo proteico tem papel importante na toxicidade induzida pelo B[α]P em células A549.

Análises proteômicas também podem ser utilizadas para avaliar potenciais biomarcadores do processo de carcinogênese. Proteínas como neuropilina-2 (NRP2), *clusterin* (CLU), *A-kinase anchor protein 12* (AKAP12), glutationa-S-transferase P1 (GSTP1), proteína induzida por choque térmico beta-1 (HSPB1) e creatina quinase B (CKB) também são encontradas alteradas, podendo ser potenciais biomarcadores do processo de tumorigênese induzido pelo B[α]P (ZENG et al., 2012; ZHAO et al., 2016; WANG et al., 2017).

As proteínas são alvos de interesse para estudos de quimioprevenção. Trabalhos demonstram que algumas proteínas encontradas alteradas estão envolvidas em importantes processos celulares, incluindo ciclo celular e oncogênese. Um estudo realizado em camundongos A/J testou a atividade quimiopreventiva do indol-3-carbinol (I3C) contra a formação de tumores no pulmão induzida pela combinação de 4-metilnitrosamino-1-3-piridil-1-butanona (NNK) e B[α]P. O estudo apontou que o efeito quimiopreventivo está relacionado com a modulação da expressão de proteínas envolvidas na detoxificação de carcinógenos, proliferação e apoptose de células tumorais, e no metabolismo de estrógeno (KASSIE et al., 2007). Foram também sugeridas as proteínas SP-C, L-plastina, anexina A1, e haptoglobina como alvos da atividade quimiopreventiva do I3C (KASSIE et al., 2007).

BPDE também foi alvo de estudos proteômicos. Shen et al (2000) identificaram 84 proteínas alteradas em células FL, epiteliais amnióticas humanas. As células foram expostas a BPDE 0,05 mM durante 2 horas e incubadas por 3, 12 e 24 horas para obtenção das proteínas. As proteínas identificadas possuíam funções relacionadas a apoptose, ciclo celular e metabolismo, fatores decisivos durante a progressão tumoral. O estudo também incluiu modificações pós-traducionais dessas proteínas, sugerindo que tais modificações podem ser mais influentes em respostas ao dano ao DNA que as alterações nos níveis de proteínas, pois regulam a atividade enzimática, degradação de proteínas e as interações proteína-proteína.

1.4 Reparo de DNA e Nicotinamida Ribosídeo

Em resposta ao dano ao DNA, mecanismos de reparo são ativados. O reparo é mediado e realizado por diversas proteínas. A exposição ao B[α]P pode reduzir a expressão de proteínas como as quinases dependentes de DNA (DNA PKcs), a proteína central do NHEJ, principal mecanismo de reparo de quebras de dupla fita de DNA ocasionado pelo metabolismo do B[α]P, como descrito anteriormente. Além disso, quebras de fita simples de DNA também podem ser ocasionadas e ativar outra cascata de proteínas, as poli(ADP-ribose)polimerases (PARPs) (TUNG et al., 2014; CROTEAU et al., 2017). A proteína PARP-1, principal membro das PARPs, também possui papel importante na diferenciação celular, expressão de genes e morte celular. A ativação constante de PARPs pode depletar NAD⁺ e levar à morte celular (TAO et al., 2009).

NAD⁺ também tem um papel importante em vias de sinalização. Proteínas como PARPs e sirtuínas (SIRTs), dependentes de NAD⁺, desempenham funções relacionadas ao reparo de DNA, resposta antioxidante, progressão do ciclo celular, apoptose, expressão gênica e metabolismo energético (CHIARUGI et al., 2012). É conhecido que alterações das concentrações de NAD⁺ podem levar a doenças neurodegenerativas e doenças metabólicas, como diabetes e câncer (KULIKOVA et al., 2015). Sua participação em processos relacionados com a carcinogênese indica que a suplementação com NAD⁺ poderia ser utilizada como nova via terapêutica no tratamento do câncer (KENNEDY et al., 2016).

Estudos demonstraram que as concentrações intracelulares de NAD⁺ aumentavam com a suplementação de seus precursores, principalmente nicotinamida ribosídeo (NR) e nicotinamida mononucleotídeo (NMN) (MARTENS et al., 2018). Foi demonstrado que a suplementação retardou o envelhecimento, aumentou a longevidade e a qualidade de vida de camundongos (ZHANG et al., 2016). A suplementação com NAD⁺ pode aumentar a eficiência do reparo de DNA e promover a saúde mitocondrial (JANG; KANG; HWANG, 2012). A diminuição das concentrações intracelulares de NAD⁺ pode levar a inativação dos mecanismos de apoptose, inibição do reparo de DNA e aumento da taxa de mutações, levando a instabilidade genômica e favorecendo o processo de carcinogênese. A restauração de suas concentrações levaria a ativação da apoptose e a estimulação dos mecanismos de reparo (FANG et al., 2017).

Patologias que apresentam depleção de NAD⁺ como Xeroderma Pigmentosum (XPA) e Ataxia-telangiectasia (A-T) apresentam fenótipo neurodegenerativo que pode ser causado pela

disfunção mitocondrial induzida pelo dano ao DNA, o qual pode ser causado devido à deficiência no reparo. XPA é causada pela mutação no gene XPA que participa do reparo por excisão de nucleotídeos e A-T é causada pela mutação na proteína ATM, reguladora da resposta ao dano no DNA e chave para o reparo de quebra de dupla fita. A suplementação utilizando NR ou NMN melhorou a qualidade de vida e a longevidade de modelos experimentais destas síndromes (FANG et al., 2016).

1.5 Modelo de transformação e resultados anteriores

Em nosso grupo de pesquisa utilizamos um modelo de indução de tumorigênese em células BEAS-2B expostas a baixas concentrações de B[α]P (0,1, 0,5 e 1 μM). Nesse modelo, alterações do metabolismo intermediário e de marcas epigenéticas do DNA foram detectadas. Resumidamente, B[α]P foi rapidamente absorvido (78,78 ± 2,98%, 1 h de exposição) e inibiu o crescimento celular. As concentrações de 0,5 e 1 µM induziram parada no crescimento celular no intervalo de 72 – 168 h. Perda de integridade de membrana, fragmentação do DNA e parada no ciclo celular em G2/M foram observadas após 168 h de exposição a 0,5 e 1 µM. Todas as concentrações testadas induziram aumento da atividade de desidrogenases celulares no período de 48 – 168 h de exposição. Além disso, as células incubadas 168 h com 0,5 e 1 μM de B[α]P apresentaram um significativo aumento da taxa de consumo de glicose quando comparadas ao grupo controle. Acúmulo intracelular de piruvato, lactato, succinato, fumarato, malato, glutamina, glutamato, NAD⁺, NADPH e ADP foi observado nas células expostas a 0,5 e 1 μM de B[α]P após 168 h. Entretanto, após a primeira hora de incubação foi observada queda de 40% das concentrações de NAD⁺, NADH, NADPH e piruvato, queda de 30% das concentrações de ATP, queda de 60 - 70% das concentrações de ADP e succinato, e queda de 50% das concentrações de malato, lactato, glutamato e glutamina nas células incubadas com 1 µM de B[α]P. Houve indução da geração de ROS nas primeiras 24 h de exposição a 0,5 e 1 μM de B[α]P, seguida de queda em relação ao controle no intervalo de 120 h a 168 h. Concomitantemente, aumento das concentrações de malonaldeído foi observado após 144 h e 168 h de exposição a 1 μM de B[α]P. A exposição das células BEAS-2B a B[α]P por 168 h levou ao aumento das concentrações de 5-mC no DNA. A proliferação das células em meio semissólido soft-agar indicou transformação para o fenótipo tumoral. Apesar dessa transformação, não foi observado aumento do número de células com mutação no gene da hipoxantina-guanina fosforribosiltransferase (HPRT). Esse dado reforça a hipótese de que

mecanismos não genotóxicos contribuam significativamente para a transformação celular nas condições utilizadas (de Oliveira, Tiago Franco, manuscrito em fase de redação).

Uma vez que NAD⁺ e NADH regulam a atividade de enzimas do metabolismo intermediário, de fatores de transcrição e a expressão de genes que codificam para proteínas envolvidas no controle do metabolismo e crescimento celular, resolvemos avaliar a modulação do metabolismo, de marcas epigenéticas, da expressão de alguns genes controlados pelo balanço redox NAD⁺/NADH, da expressão de proteínas envolvidas na alteração do metabolismo em células tumorais, e da transformação de células BEAS-2B suplementadas com NAD⁺, na presença e ausência de B[α]P.

Na tese de Everson Willian Fialho Cordeiro, intitulada "Modulação da concentração intracelular de NAD+ e seu efeito na tumorigênese induzida por benzo[α]pireno em células epiteliais bronquiais humanas", concluída em março/2021, foi avaliado se a modulação das concentrações de NAD+ (por meio da suplementação com NR) nas células BEAS-2B expostas a 1 μM de B[α]P afeta a formação de colônias em meio semissólido soft-agar e contrabalança as alterações metabólicas, epigenéticas e de expressão de alguns genes sensíveis ao balanço redox NAD+/NADH. A proteção parece estar relacionada a uma sensibilização das células à apoptose, que tem como base a indução de estresse energético persistente e exacerbado nas células incubadas com B[α]P+NR em comparação aos outros grupos. Paralelamente também foi observada proteção contra a hipermetilação do DNA induzida por B[α]P, concomitante à indução de hidroximetilação do DNA (CORDEIRO, 2021)

Uma vez observado o efeito protetor da NR no modelo utilizado, mediado por alterações metabólicas e epigenéticas, torna-se importante identificar vias moleculares alteradas que estejam envolvidas no efeito quimiopreventivo da NR. A análise proteômica permite verificar se a abundância das proteínas relacionadas ao processo de carcinogênese induzido pelo B[α]P está sendo modulada pela suplementação com NR, e assim pode-se destacar vias importantes para a tumorigênese e quimioprevenção.

2. OBJETIVO

Destacar vias pelas quais a NR protege contra o efeito tumorigênico do $B[\alpha]P$, utilizando ferramentas de proteômica, bioinformática e estatística. O conhecimento dessas vias poderá auxiliar na escolha de alvos para a quimioprevenção do câncer.

- Analisar e comparar a diferença na abundância das proteínas nos quatro grupos estudados
- Destacar proteínas que estejam relacionadas com os efeitos já observados em trabalhos anteriores do grupo
- Propor vias que sejam moduladas pela exposição a NR

3. MATERIAL E MÉTODOS

3.1 Nicotinamida ribosídeo (NR)

Para obter a nicotinamida ribosídeo foi realizada uma hidrólise da nicotinamida mononucleotídeo (NMN) da Sigma, como descrito por Bieganowski e Brenner (2004). NMN (15 mg) foi incubada com 90 unidades de fosfatase alcalina por 3 h a 37 °C em 3 mL de tampão (100 mM NaCl, 20 mM Tris, 5 mM MgCl₂, pH 8,0). A eficiência da hidrólise foi verificada por HPLC/DAD, bem como o isolamento da NR, e a esterilização realizada utilizando kit de filtração (Ultracel, 3k). Por fim, a concentração da NR foi determinada pela leitura da absorbância em 266 nm (ϵ = 5700 M⁻¹ cm⁻¹).

A condição cromatográfica utilizada na obtenção da NR consiste de uma coluna Shimpack VP-ODS (250 x 4.6 mm i.d., 5.0 μm, 100A Shimadzu) eluída em gradiente por uma solução constituída de água ultrapura (Solução A) e metanol (Solução B), a 30 °C, com fluxo de 1 mL/min (5 – 20 min, 0 – 50 % de B). A válvula foi configurada para coletar o pico correspondente a NR durante o intervalo de 4,0 a 6,0 min.

3.2 Cultura de células BEAS-2B:

A linhagem BEAS-2B, células de epitélio brônquico humano, com baixo número de passagens (menor que 10), foi gentilmente fornecida pelo Prof. Dr. Fekadu Kassie (Masonic Cancer Center, Universidade de Minnesota, Minneapolis, Estados Unidos). A cultura é mantida em meio BEGM (Bronchial Epithelial Grow Medium®), suplementado com o conjunto de cofatores do kit (extrato de pituitária bovina, insulina, hidrocortisona, hEGF, epinefrina, transferrina, ácido retinóico, triiodotironina, gentamicina e anfotericina). As células são mantidas em garrafas e incubadas a 37°C, em atmosfera contendo 5% de CO₂.

3.3 Exposição das células BEAS-2B ao B[\alpha|P e nicotinamida ribosídeo

Após o período de adesão celular (24 h), foi realizada a exposição a nicotinamida ribosídeo 1 μ M e B[α]P 1 μ M (DMSO 0,25%, v/v). Incubações controle (só meio de cultura, só B[α]P, e só nicotinamida ribosídeo) também foram realizadas com 0,25% de DMSO no meio de cultura. As células BEAS-2B foram expostas por 120 horas a 37°C, em atmosfera contendo 5% CO₂, com renovação do meio de cultura contendo B[α]P e nicotinamida ribosídeo a cada

24 h. Para a análise da abundância das proteínas por proteômica de shotgun, as células BEAS-2B foram plaqueadas na densidade de $4x10^5$ células por poço em placas de cultura celular de 6 poços (N = 5 por grupo).

3.4 Preparo das amostras

As amostras foram preparadas a partir de um protocolo de uso rotineiro no laboratório da Profa. Dra. Graziella Eliza Ronsein, específico para a utilização em análises proteômicas.

Lise das células: Após o período de 120 horas de exposição, as placas foram retiradas da estufa e colocadas em gelo para o início do procedimento. O meio de cultura foi retirado e os poços foram lavados 5 vezes com PBS, e então, foram adicionados 500 μL do tampão de lise (Ambic 100 mM, Ureia 8 M e 1 tablet de cOmpleteTM) em cada poço. A solução foi então transferida para um tubo de 2 mL e deixada no gelo por 1 hora. Foram adicionadas 12 U de benzonase com subsequente incubação por 10 minutos a 25 °C a 300 rpm. Uma nova alíquota de 13 U de benzonase foi adicionada e incubada. Os tubos foram centrifugados por 15 minutos a 15.000 g a 4 °C e o sobrenadante foi transferido para um novo tubo. Foram adicionados 1500 μL de acetona gelada (-20°C) e as amostras foram mantidas no freezer a -20°C *overnight* para precipitação das proteínas. As amostras foram centrifugadas por 30 minutos a 15.000 g, 4 °C. O sobrenadante foi retirado, os tubos foram mantidos abertos por cerca de 5 minutos para a secagem da acetona e então foram adicionados 200 μL de tampão de ressuspensão (Ambic 100 mM, Ureia 8 M e desoxicolato de sódio 0,1%). As proteínas foram quantificadas seguindo o protocolo do kit PierceTM BCA Protein Assay da Thermo ScientificTM.

Redução e Alquilação: Em um novo tubo foram adicionados 10 μg de proteínas, o volume foi ajustado para 50 μL utilizando o tampão Ambic 100 mM com ureia 8 M. Foram adicionados 5 μL de DTT 0,1 M em cada amostra, com subsequente incubação por 1 hora a 30°C. Adicionaram-se 4 μL de iodoacetamida 0,5 M recentemente preparada, as amostras foram incubadas ao abrigo de luz e à temperatura ambiente por 30 minutos. Uma nova adição de 2,5 μL de DTT 0,1 M foi realizada, seguida de incubação em temperatura ambiente por 15 minutos.

Digestão por Tripsina: Foram adicionados 450 μL de Ambic para diluir a concentração de ureia. Foram adicionados 2,5 μL de tripsina (1: 40, massa/massa, enzima: proteínas, Sequencing Grade Modified, Promega) e o pH foi verificado para certificar que estava acima de 7,0. As amostras foram incubadas por 4 horas a 30 °C. Uma nova alíquota de 2 μL de tripsina (1:50, massa/massa, enzima: proteínas) foi adicionada em cada amostra, o pH foi certificado e

então foi realizada a incubação *overnight*. A digestão foi interrompida com a adição de 200 μL de TFA 4%. O pH foi verificado, estando menor que 2. As amostras foram vortexadas e incubadas por 30 minutos a 37°C. Os tubos foram centrifugados por 30 minutos a 14.000 rpm e 4 °C. O sobrenadante foi transferido para um novo tubo, e as amostras foram concentradas para um volume de aproximadamente 200 μL.

Dessalinização e limpeza "Stage Tip": As *stages tip*s, montadas com o EmporeTM Disk C18 (RAPPSILBER; MANN; ISHIHAMA, 2007), foram condicionadas com 100 μL de metanol e centrifugadas por 3 minutos a 4.000 rpm. TFA 0,1% no volume de 100 μL foi utilizado para equilibrar as *tips*, e então novamente foram centrifugadas. As amostras passaram pelo filtro duas vezes. As amostras foram lavadas dez vezes com 100 μL de TFA 0,1%, dispensando o ácido no final de cada centrifugação. Os peptídeos foram eluídos a partir da centrifugação das *stage tips* por 5 minutos utilizando 60% de acetonitrila contendo TFA 0,1%. As amostras passaram pelo processo de secagem e foram armazenadas a -80°C.

Ressuspensão das amostras: As amostras foram ressuspensas em 100 µL de ácido fórmico 0,1%, vortexadas por 10 minutos à temperatura ambiente e mantidas a -20 °C *overnight*. Os tubos foram centrifugados a 14.000 rpm por 30 minutos a 4 °C e o sobrenadante transferido para o *vial* de autoinjeção.

3.5 Análise por espectrometria de massas

As análises foram realizadas em um sistema Easy-nanoLC 1200 (Thermo Fisher Scientific Corp., Waltham, MA, USA) acoplado a um instrumento Orbitrap Fusion Lumos contendo uma fonte nanospray (Thermo Fisher Scientific Corp., Waltham, MA, USA). Os solventes do Nano-LC foram água com 0,1% de ácido fórmico (A) e H₂O:ACN (20:80, v/v) com 0,1% de ácido fórmico (B). Cada amostra (200 ng) foi carregada em uma pré-coluna do tipo *trap* (Acclaim PepMap 75 μM, 2 cm, C18, 3μm, 100 A, Thermo) e lavada com 20 μL de solvente (A) numa pressão constante (500 bar). Depois disso, a amostra foi eluída para a coluna do Nano-LC (Acclaim PepMap RSLC (50 μm, 15 cm, C18, 2 μm, 100 A, Thermo)) usando um fluxo de 300 nL/min. Um gradiente linear de 5% a 22% de (B) em 55 minutos foi seguido de um gradiente linear de 22 a 32% em cinco minutos. Então, a porcentagem de solvente B foi aumentada de 32% para 99% em 2 minutos, e mantida constante por mais seis minutos.

Os dados foram adquiridos no detector orbitrap usando um scan MS1 seguido de scans MS2 dependentes de dados num ciclo de 3 segundos. Íons percursores uma vez selecionados

para MS2 foram excluídos por 60 segundos. A resolução do modo MS1 foi 120.000 (a m/z 200), alvo AGC ajustado para 400.000, com a faixa de massa/carga monitorada entre 400 e 1600. O scan MS1 foi seguido por MS2 dependentes de dados com resolução de 30.000 (a m/z 200), tempo máximo de enchimento do orbitrap de 54 ms, janela de isolamento de 0,7 Th e energia de colisão normalizada de 30.

3.6 Busca das proteínas e análise dos dados da proteômica de shotgun

Os arquivos gerados pelo espectrômetro de massas (*raw files*) foram processados no software MaxQuant (TYANOVA; TEMU; COX, 2016). A busca dos espectros de MS/MS foi realizada pelo algoritmo Andromeda contra o banco de dados de proteínas humanas do Uniprot, *Homo sapiens* – 20.352 entradas (Revisado UniProt/Swiss-Prot) em 12 de setembro de 2019. As tolerâncias de erro de massa para o peptídeo precursor e para os fragmentos foram de 4,5 ppm e 0,5 Da, respectivamente. A carbamidometilação de cisteínas foi selecionada como modificação fixa e oxidação de metionina e acetilação N-terminal foram selecionadas como modificações variáveis. A tripsina foi selecionada como enzima específica utilizada na digestão, com um máximo de 2 clivagens perdidas. A taxa de falsos positivos (FDR) máxima foi, tanto em nível de identificação de peptídeos como de proteínas, de 1%, e calculada a partir da construção de um banco *decoy*, que tem por base a ordenação reversa das sequências traduzidas no banco de dados do Uniprot. A identificação de 1 *razor* + 1 *unique* foi utilizada como parâmetro para considerar a identificação de uma proteína. A ferramenta *match between runs* foi ativada, pois a análise era de amostras correlatas e com reprodutividade do perfil cromatográfico.

Para normalização dos dados, comparação dos perfis de abundância das proteínas de células tratadas em relação ao controle, e para uma quantificação *label-free* das proteínas identificadas, foi utilizado o algoritmo LFQ, disponível no MaxQuant.

As análises das proteínas foram realizadas nos softwares Perseus (TYANOVA et al., 2016) e Cytoscape (SHANNON, 2003). Inicialmente, os arquivos das proteínas foram carregados no Perseus e então os dados foram filtrados a partir de possíveis contaminantes, proteínas identificadas apenas com base em peptídeos modificados e de sequencias identificadas no banco reverso. A partir destes dados, dois tipos de análises foram realizadas com o auxílio do software Perseus; 1) anáise das proteínas exclusivas de um determinado grupo e 2) análise estatítica das proteínas presente na maioria dos grupos (veja critérios abaixo). Para a análise das proteínas exclusivas, as proteínas que foram detectadas no mínimo em 3 amostras

de um grupo, ou seja, caso a proteína tenha sido detectada em 3 amostras de um grupo e, em 2 ou menos amostras dos outros grupos, ela foi considerada como sendo uma proteína exclusiva daquele determinado grupo. Para essas proteínas exclusivas, foram feitas análises de redes conforme decrito abaixo.

Para a análise das proteínas diferencialmente abundantes, os grupos foram nomeados e os valores foram transformados em log2. A planilha foi novamente filtrada, para manter proteínas com valores válidos em 75% das réplicas em pelo menos um grupo. Foi então realizada a análise estatística ANOVA. Para corrigir os valores de P devido a testagem de múltiplas hipóteses (múltiplas proteínas testadas concomitantemente), foi utilizado o *cutoff* FDR 0,05. Uma nova planilha foi gerada contendo apenas as proteínas que apresentaram diferenças estatísticas entre os grupos pelo teste ANOVA após correção por múltiplas comparações (FDR = 0,005). Esta planilha foi submetida a uma normalização utilizando-se o Z-Score e então foi feita a clusterização para a criação do Heatmap (Figura 1).

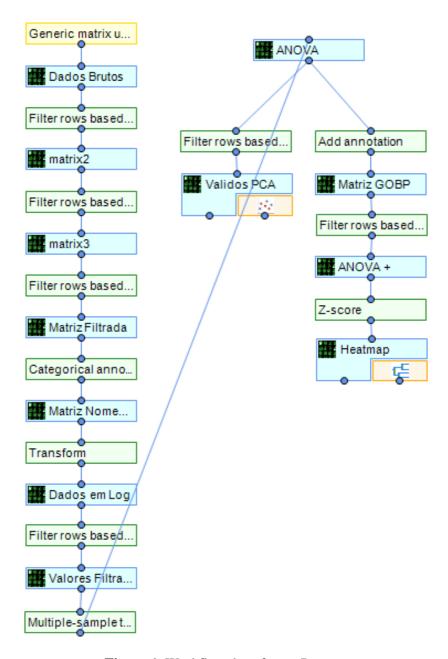
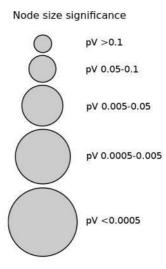
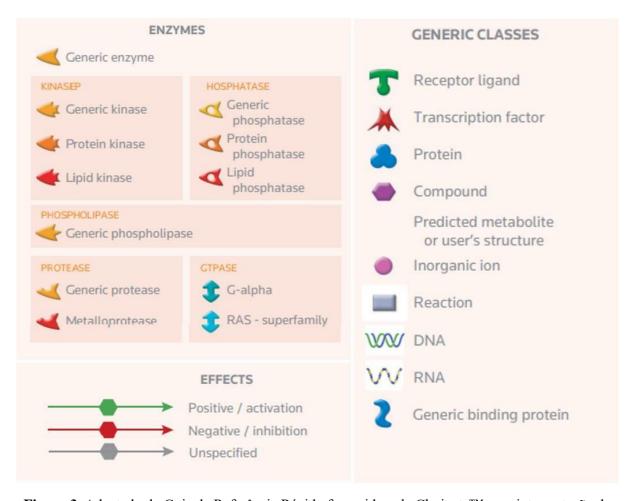



Figura 1. Workflow do software Perseus.


A análise de redes das proteínas com abundância relativa estatisticamente alterada entre os grupos foi realizada no software MetaCore. Proteínas diferencialmente expressas ($pV \le 0.05$) foram enriquecidas com base nos termos de processo biológico, compartimento celular e função molecular do GeneOntology, ou com base nos termos do *Kegg's pathway*, no plug-in ClueGo disponível para o software Cytoscape, ou pela importação das anotações para o Perseus. Para a análise de proteínas exclusivas foi utilizado o mesmo método, porém o paramêtro utilizado foi diferente devido ao número das proteínas ser menor. Então, foi definido como 1 o número de genes necessários para a formação de um cluster. Para a significância dos nodos foi utilizada a

escala da Figura 2, fornecida pelo software, sendo que o menor nodo de cada rede representa pV=0.05.

Figura 2. Significância dos nodos presentes nos mapas de enriquecimentos obtidos pela ferramenta ClueGo (pV \leq 0,05). Na análise de redes o menor nodo das figuras será o de pV = 0,05.

A ferramenta Metacore da ClarivateTM foi utilizada para verificar a interação entre as proteínas. A Figura 3 representa o guia de referência para interpretação das interações entre as proteínas geradas pelo software Metacore.

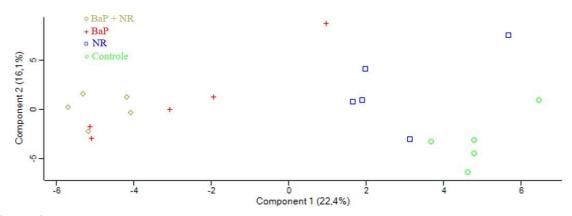


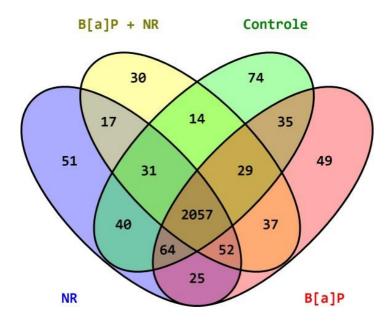
Figura 3. Adaptado do Guia de Referência Rápido fornecido pela Clarivate™ para interpretação das interações geradas pelo software Metacore.

4. RESULTADOS E DISCUSSÃO

4.1 Análise de componentes principais

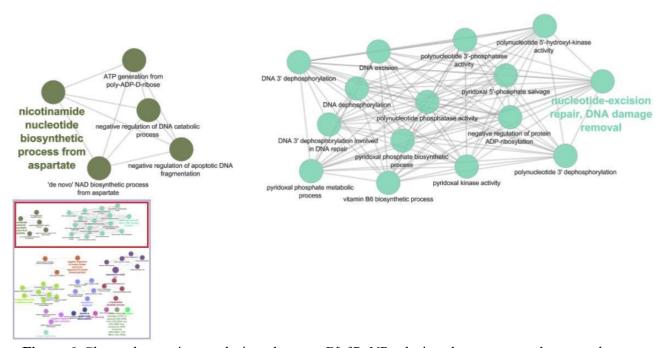
Os arquivos gerados pelo espectrômetro de massas foram processados no software MaxQuant utilizando o algoritmo Andromeda no banco de dados Uniprot com as definições descritas em Material e Métodos. Foram encontradas 3024 proteínas entre os quatro grupos de exposição. A similaridade entre as amostras foi avaliada pela análise dos componentes principais (PCA). Pode-se observar que em geral, amostras de um mesmo grupo tendem a se agrupar (Figura 4). Os componentes do grupo NR foram mais semelhantes ao Controle, já o grupo $B[\alpha]P+NR$ ficou mais próximo do grupo $B[\alpha]P$. O número de proteínas identificadas em cada grupo não alterou significantemente, $B[\alpha]P$ apresentou 2350 proteínas, Controle 2347, NR 2339 e grupo $B[\alpha]P+NR$ 2270 proteínas.

Figura 4. Análise de componentes principais: O grupo NR se assemelhou mais com o grupo controle, mas o grupo $B[\alpha]P+NR$ ficou mais semelhante com o grupo $B[\alpha]P$.


4.2 Análise de enriquecimento das proteínas exclusivas

A fim de se entender os efeitos dos diferentes tratamentos, foram estudadas as proteínas que aparecem exclusivamente em cada grupo. Foram definidas como exclusivas, as proteínas que apareceram no mínimo em três amostras do grupo, então, algumas proteínas que apareceram como exclusivas de um grupo, podem ter aparecido em algumas amostras de outro grupo, porém, cumpriram os critérios para serem consideradas exclusivas de acordo com o método definido.

A análise utilizando a ferramenta Venny (https://bioinfogp.cnb.csic.es/tools/venny/)


revelou 2057 proteínas em comum entre os quatro grupos (Figura 5). As funções das proteínas exclusivas foram analisadas a partir do banco de dados Gene Ontology utilizando o *software* Cytoscape com a *tool* ClueGo utilizando o filtro que define como 1 o número mínimo de genes para a formação de um cluster, tendo como objetivo a identificação de todos os processos em que as proteínas estavam envolvidas.

O grupo NR apresentou 51 proteínas exclusivas relacionadas a processos de transporte de aminoácidos. O grupo Controle apresentou 74 proteínas exclusivas, dentre as quais proteínas que participam do controle de metilação de mRNA, empacotamento de vesículas e transporte do endossomo para o lisossomo. O grupo B[α]P+NR apresentou 30 proteínas exclusivas (Tabela 1) relacionadas a processos variados, dentre eles, o transporte e regulação de proteínas. O grupo B[α]P apresentou 49 proteínas exclusivas com funções relacionadas a regulação da progressão do ciclo celular, reparo de DNA e atividade de helicases.

Figura 5. Diagrama de Venn das proteínas dos quatro grupos (Controle, B[α]P, B[α]P+NR e NR) utilizando a ferramenta Venny (Oliveros, J.C., 2015).

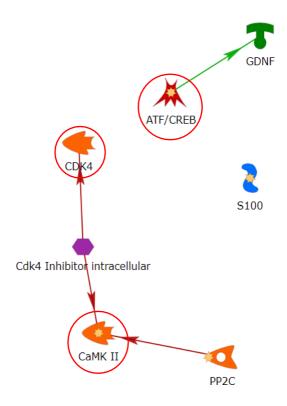

Torna-se interessante estudar o grupo $B[\alpha]P+NR$ pois a clusterização no ClueGo mostrou dois grupos de proteínas exclusivas relacionadas a processo de reparo de DNA, que não é tão observado no grupo $B[\alpha]P$ e pode ser um indicativo do que está acontecendo nas células expostas ao $B[\alpha]P$ e NR (Figura 6).

Figura 6. Cluster de proteínas exclusivas do grupo B[α]P+NR relacionadas a processo de reparo de DNA (PNPK) e biossíntese de nicotinamida nucleotídeo a partir de aspartato (NMNAT1), que podem estar relacionados com a suplementação com NR.

O grupo B[α]P+NR apresentou interações entre suas proteínas exclusivas: quinase 4 dependente de ciclina (CDK4), cadeia gama do tipo II da calmodulina (CAMK2), o fator de transcrição dependente de AMP cíclico (ATF1) e proteína S100 (Figura 7).

O composto intracelular inibitório de CDK4 possui interação inibitória para ambas as quinases, tanto para CDK4, como esperado, quanto para CAMK2. A CDK4 é uma das quinases que possui papel importante na regulação do ciclo celular. A perda do controle do ciclo é um dos *hallmarks* do câncer, e por isso diversas terapias possuem as quinases dependentes de ciclina como alvo, principalmente a CDK4 e CDK6, alvos de estudo em diversos tipos de câncer, dentre eles o câncer de pulmão (OLEARY; FINN; TURNER, 2016; HAMILTON; INFANTE, 2016).

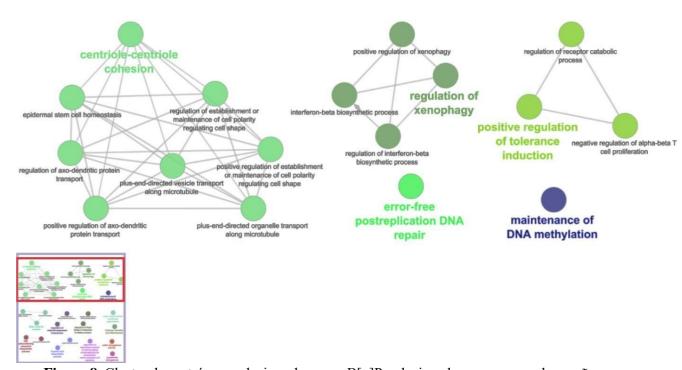
Figura 7. Interações entre as proteínas exclusivas do grupo B[α]P+NR. Componente intracelular inibitório de CDK4 possui interações negativas com CDK4 e CAMKII.

Inibidores de CDK4 são utilizados no intuito de desacelerar o ciclo celular e consequentemente diminuir a proliferação celular e a agressividade do câncer, sendo já utilizados em tratamentos para aumentar a sobrevida e chances de recuperação dos pacientes (PATNAIK *et al.*, 2016;).

A proteína CAMK2 já foi descrita como um regulador do complexo Ciclina D1/CDK4, aumentando as concentrações dessas proteínas e causando a progressão do ciclo celular (KAHL; MEANS, 2004). Atualmente sabe-se que essa proteína tem um papel mais abrangente, e que suas concentrações são aumentadas em diversos tipos de câncer, possuindo papel na regulação da proliferação, diferenciação e sobrevivência celular (WANG; ZHAO; ZHE, 2015).

Tabela 1. Lista de proteínas exclusivas do grupo B[α]P+NR

Tabela 1. Lista de proteínas exclusivas do grupo B[α]P+NR					
ID	Proteína	Gene	Processos Biológicos (GO Term)		
O43251	RNA binding protein fox-1 homolog 2;	RBFOX2	Definitive hemopoiesis		
O75391	Sperm-associated antigen 7	SPAG7	-		
O75884	Putative hydrolase RBBP9	RBBP9	-		
P11802	Cyclin-dependent kinase 4	CDK4	Positive regulation of cell size; Cellular response to interleukin-4		
P13716	Delta-aminolevulinic acid dehydratase	ALAD	Response to cobalt ion		
P18846	Cyclic AMP-dependent transcription factor ATF-1	ATF1	Response to cobalt ion		
P21741	Midkine	MDK	Positive regulation of granulocyte chemotaxis		
P31151	Protein S100-A7; Protein S100-A7A	S100A7	Positive regulation of granulocyte chemotaxis		
P49593	Protein phosphatase 1F	PPM1F	Peptidyl-serine dephosphorylation		
Q10713	Mitochondrial-processing peptidase subunit alpha	PMPCA	Phosphatidylinositol biphosphate phosphatase activity		
Q13555	Calcium/calmodulin-dependent protein kinase type II subunit gamma	CAMK2G	Relaxation of cardiac muscle		
Q13952	Nuclear transcription factor Y subunit gamma	NFYC	-		
Q16773	Kynurenineoxoglutarate transaminase 1	CCBL1	-		
Q6IN85	Serine/threonine-protein phosphatase 4 regulatory subunit 3A	SMEK1	-		
Q7Z6K5	Arpin	ARPIN	Negative regulation of lamellipodium		
Q8IU81	Interferon regulatory factor 2-binding protein 1	IRF2BP1	-		
Q8IYA2	Putative coiled-coil domain-containing protein 144C;	CCDC144CP	-		
Q8N9T8	Protein KRI1 homolog	KRI1	Maturation of 5.8S RNA from tricistronic rRNA transcript		
Q92620	Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16	DHX38	-		
Q96FV2	Secernin-2	SCRN2	Dipeptidase activity		
Q96S59	Ran-binding protein 9	RANBP9	-		
Q96T60	Bifunctional polynucleotide phosphatase/kinase	PNKP	Nucleotide-excision repair, DNA removal		
Q9BZH6	WD repeat-containing protein 11	WDR11	Vesicle tethering to Golgi		
Q9H6T3	RNA polymerase II-associated protein 3	RPAP3	-		
Q9HAN9	Nicotinamide/nicotinic acid mononucleotide adenylyltransferase 1	NMNAT1	Nicotinamide nucleotide biosynthetic process;		
Q9HDC9	Adipocyte plasma membrane-associated protein	APMAP	-		
Q9NWU2	Glucose-induced degradation protein 8 homolog	GID8	-		
Q9UMR2	ATP-dependent RNA helicase DDX19B	DDX19B	-		
Q9Y4P1	Cysteine protease ATG4B	ATG4B	Protein delipidation		
Q9Y547	Intraflagellar transport protein 25 homolog	HSPB11	-		

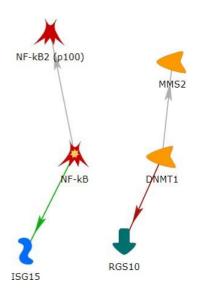

É bem descrito na literatura que a suplementação com NR melhora a eficiência do reparo de DNA (JANG; KANG; HWANG, 2012). Ambos os grupos apresentam indícios de dano e reparo ao DNA, mas o grupo $B[\alpha]P$ não apresentou tantos processos relacionados a reparo de DNA, o que pode mostrar uma concordância com o que está descrito na literatura (Figura 8).

Como esperado, algumas das 49 proteínas exclusivas do grupo $B[\alpha]P$ (Tabela 2) estão relacionadas também a resposta ao dano ao DNA (Figura 8). Processos como a coesão centríolocentríolo, manutenção da metilação do DNA são importantes para a progressão do ciclo celular e aparecem neste cluster.

Tabela 2. Lista de proteínas exclusivas do grupo $B[\alpha]P$

ID	Tabela 2. Lista de proteínas exclus: Proteína	Gene	Processos Biológicos (GO Term)
O00165	HCLS1-associated protein X-1	HAX1	Positive regulation of actin cytoskeleton reorganization
O43665	Regulator of G-protein signaling 10	RGS10	
O60925	Prefoldin subunit 1	PFDN1	Co-translational protein modification
O75330	Hyaluronan mediated motility receptor	HMMR	
O95302	Peptidyl-prolyl cis-trans isomerase FKBP9	FKBP9	
O95571	Persulfide dioxygenase ETHE1, mitochondrial	ETHE1	Oxidoreductase activity, acting on single donors with incorporation of molecular oxygen, incorporation of two atoms of oxygen
O95926	Pre-mRNA-splicing factor SYF2	SYF2	Mitotic G2 DNA damage checkpoint
P00374	Dihydrofolate reductase; Dihydrofolate reductase, mitochondrial	DHFR	Positive regulation of nitric-oxide synthase activity
P05161	Ubiquitin-like protein ISG15	ISG15	Negative regulation of type I interferon production
P25815	Protein S100-P	S100P	•
P26358	DNA (cytosine-5)-methyltransferase 1	DNMT1	Maintenance of DNA methylation; Positive regulation of histone H3-H4 methylation
P53609	Geranylgeranyl transferase type-1 subunit beta	PGGT1B	Negative regulation of nitric-oxide synthase biosynthetic process
Q00653	Nuclear factor NF-kappa-B p100 subunit;Nuclear factor NF-kappa-B p52 subunit	NFKB2	Follicular dendritic cell differentiation
Q03154	Aminoacylase-1	ACY1	
Q14181	DNA polymerase alpha subunit B	POLA2	
Q15007	Pre-mRNA-splicing regulator WTAP	WTAP	mRNA methylation
Q15773	Myeloid leukemia factor 2	MLF2	
Q15819	Ubiquitin-conjugating enzyme E2 variant 2	UBE2V2	Error-free postreplication DNA repair
Q53S08	Ras-related protein Rab-6C	RAB6C	
Q5TZA2	Rootletin	CROCC	Centriole-centriole cohesion
Q5VUA4	Zinc finger protein 318	ZNF318	
Q69YQ0	Cytospin-A	SPECC1L	
Q7Z3T8	Zinc finger FYVE domain-containing protein 16	ZFYVE16	
Q7Z478	ATP-dependent RNA helicase DHX29	DHX29	Formation of translation preinitiation complex
Q86TB9	Protein PAT1 homolog 1	PATL1	Exonucleolytic catabolism of deadenylated mRNA
Q8WVK2	U4/U6.U5 small nuclear ribonucleoprotein 27 kDa protein	SNRNP27	
Q969U7	Proteasome assembly chaperone 2	PSMG2	
Q96IJ6	Mannose-1-phosphate guanyltransferase alpha	GMPPA	
Q96J02	E3 ubiquitin-protein ligase Itchy homolog	ITCH	Negative regulation of type I interferon production
Q96RN5	Mediator of RNA polymerase II transcription subunit 15	MED15	

ID	Proteína	Gene	Processos Biológicos (GO Term)
Q96SZ5	2-aminoethanethiol dioxygenase	ADO	Oxidoreductase activity, acting on single donors with incorporation of molecular oxygen, incorporation of two atoms of oxygen
Q99816	Tumor susceptibility gene 101 protein	TSG101	Regulation of ubiquitin-dependent endocytosis
Q9BQ70	Transcription factor 25	TCF25	
Q9BW19	Kinesin-like protein KIFC1	KIFC1	
Q9GZT4	Serine racemase	SRR	D-amino acid byosynthetic process
Q9H2W6	39S ribosomal protein L46, mitochondrial	MRPL46	
Q9H3P2	Negative elongation factor A	NELFA	Positive regulation of histone H3-H4 methylation
Q9HCS7	Pre-mRNA-splicing factor SYF1	XAB2	
Q9HD26	Golgi-associated PDZ and coiled-coil motif-containing protein	GOPC	Negative regulation of protein localization to cell periphery
Q9NQT5	Exosome complex component RRP40	EXOSC3	Exonucleolytic catabolism of deadenylated mRNA
Q9NWB6	Arginine and glutamate-rich protein 1	ARGLU1	
Q9NX40	OCIA domain-containing protein 1	OCIAD1	
Q9NZW5	MAGUK p55 subfamily member 6	MPP6	
Q9P2B4	CTTNBP2 N-terminal-like protein	CTTNBP2NL	
Q9UBW7	Zinc finger MYM-type protein 2	ZMYM2	
Q9UHD2	Serine/threonine-protein kinase TBK1	TBK1	Negative regulation of type I interferon production
Q9Y3D9	28S ribosomal protein S23, mitochondrial	MRPS23	
Q9Y496	Kinesin-like protein KIF3A	KIF3A	Centriole-centriole cohesion
Q9Y512	Sorting and assembly machinery component 50 homolog	SAMM50	


Figura 8. Cluster de proteínas exclusivas do grupo $B[\alpha]P$, relacionadas a processos de coesão centríolo-centríolo, regulação da xenofagia e manutenção da metilação do DNA.

Analisando as proteínas exclusivas isoladamente podemos ver diversos processos relacionados com a progressão do ciclo celular.

A proteína *persulfide dioxygenase* codificada pelo gene ETHE1 é descrita na literatura como uma indutora do efeito Warburg, além de suprimir a apoptose induzida por p53. Também estimulou a oncogênese de células de câncer colorretal *in vivo* e *in vitro*. (HIGASHITSUJI, 2002; WITHERSPOON et al., 2019).

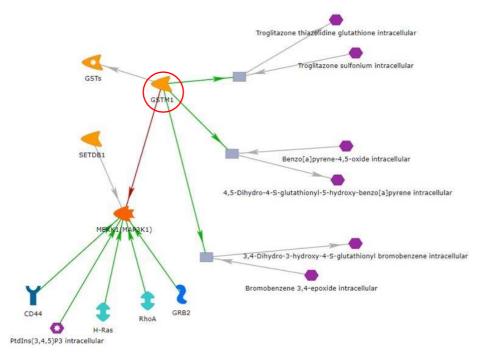
Proteínas atuantes no ciclo celular como o fator nuclear NF-kappaB (NFKB2) e DNA metiltransferase-1 (DNMT1), também são exclusivas do grupo B[α]P. A DNMT1 é responsável pela manutenção dos padrões de metilação do DNA. Quando desregulada ou atuando em regiões promotoras de genes supressores de tumor pode levar ao silenciamento de genes e contribuir para a tumorigênese (CHAPPELL, 2016)

Observando o grupo B[α]P (Figura 9), NF-kB possui interação com ambas as proteínas exclusivas do grupo, positiva com a proteína ISG15 e inespecífica com a NF-Kb2, subunidade de NF-kB. Tendo como base o que já foi publicado, sabe-se que o gene ISG15 é relacionado com o processo de *ISGylation*, modificação similar a ubiquitinação, e possui várias proteínas como alvos, e que tal mecanismo pode regular negativamente a via de NF-kB (MINAKAWA *et al.*, 2008).


Figura 9. Interações entre proteínas exclusivas do grupo B[α]P. NF-kB possui interação positiva com ISG15, enquanto DNMT1 possui interação negativa com RGS10

O processo de ubiquitinação causado pela ISG15 é capaz de suprimir a atividade da enzima Ubc13, que forma um heterodímero com a enzima conjugante de ubiquitina MMS2, envolvendo-se na formação de uma cadeia de poli-ubiquitinação que ativa fatores que controlam negativamente a via de NF-kB. MMS2 possui interação inespecífica com DNMT1, que por sua vez, possui interação negativa com a RGS10, ambas presentes exclusivamentes no grupo B[α]P. Não foram encontrados dados sobre RGS10 em células de câncer, além disso, sua expressão no tecido pulmonar é baixa, quando comparada com tecido uterino e ovariano onde sua expressão é maior. Foi descrito que a baixa expressão de RGS10 está relacionada com o processo de quimiorresistência em câncer de ovário, além disso a DNMT1 pode inibir a expressão de RGS10 por meio do controle da metilação do gene. Foi demonstrado que a inibição de DNMT1 foi capaz de aumentar a expressão de RGS10 e diminuir a resistência nesse tipo de câncer. Como foi abordado anteriormente, DNMT1 é responsável por manutenção da metilação, mas em casos como esse, ela pode ter ocasionado o silenciamento genético de RGS10 (CACAN *et al.*, 2014).

Tais proteínas terem sido exclusivas do grupo $B[\alpha]P$ pode indicar que nesse grupo ocorra maior tentativa das células de recuperar a homeostase. DNMT1 pode ter aparecido nesse grupo também independentemente do seu papel na manutenção da metilação, pois ela possui papel direto na etapa de reconhecimento do dano ao DNA, interagindo com p53 e outros mecanismos que respondem aos danos que a exposição ao $B[\alpha]P$ possa estar ocasionando (HOOKS, MURPH, 2015).


É interessante notar que a exposição das células BEAS-2B a B[α]P por 168 h levou à hipermetilação do DNA, o que foi prevenido pela exposição a B[α]P+NR (CORDEIRO, 2021).

Os grupos (B[α]P+NR e B[α]P) possuem 37 proteínas presentes apenas nestes dois grupos (Tabela 3). Podemos ver que algumas proteínas relacionadas com o reparo de DNA estão presentes apenas nestes dois grupos (Figura 10), já que estão sob efeito dos danos ocasionados pela exposição ao B[α]P. Entretanto, há uma maior quantidade de processos relacionados a reparo de DNA no grupo B[α]P+NR.

Figura 10. Cluster de proteínas comuns apenas entre os grupos $B[\alpha]P+NR$ e $B[\alpha]P$, relacionadas a processos de reparo de DNA, processo de biossíntese de lipídeos e ao estágio de oogênese dos mamíferos.

As proteínas exclusivas em intersecção entre os grupos $B[\alpha]P$ e $B[\alpha]P+NR$ não possuíram interações entre si pelo banco de dados do software, porém é importante destacar que a GSTM1, presente em ambos os grupos, é importante para a etapa de biotransformação do $B[\alpha]P$. Na Figura 11 podemos ver que a GSTM1 possui uma interação positiva, reagindo com o benzo $[\alpha]$ pireno-4,5-oxido intracelular, produto que é formado durante a etapa de detoxificação do $B[\alpha]P$, sendo posteriormente transformado e eliminado (BERNARDO *et al.*, 2016).

Figura 11. GSTM1 aparece como proteína exclusiva em intersecção entre os grupos $B[\alpha]P$ e $B[\alpha]P+NR$, e interage negativamente com MEKK1, proteína com papel na sobrevivência celular. Também possui interações positivas no processo de biotransformação do $B[\alpha]P$.

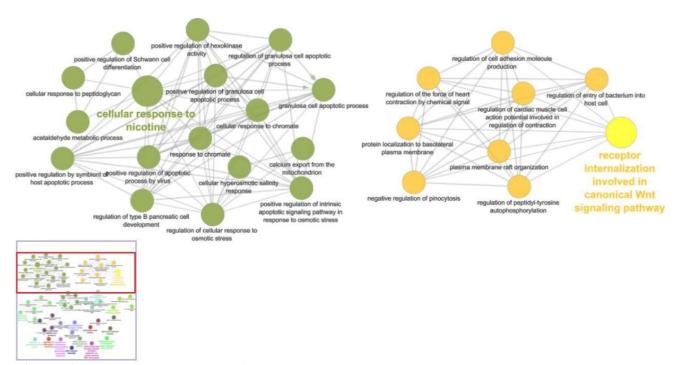

Proteínas relacionadas com detoxificação e processos de reparo de DNA eram esperadas aparecer nos grupos expostos a $B[\alpha]P$, pois as células estariam sofrendo dano devido à exposição, então as proteínas em comum desses dois grupos provavelmente estão respondendo ao tratamento com o carcinógeno.

Tabela 3. Lista de proteínas presentes na intersecção dos grupos $B[\alpha]P+NR$ e $B[\alpha]P$

ID	Proteína	Gene	Processos Biológicos (GO Term)
O14618	Copper chaperone for superoxide dismutase	CCS	Disulfide oxireductase activity
O43663	Protein regulator of cytokinesis 1	PRC1	-
O43708	Maleylacetoacetate isomerase	GSTZ1	Glutathione derivative metabolic process
O75521	Enoyl-CoA delta isomerase 2, mitochondrial	ECI2	-
O95810	Serum deprivation-response protein	SDPR	-
P06702	Protein S100-A9	S100A9	Negative regulation of leukocyte chemotaxis; Mammalian oogenesis stage
P07919	Cytochrome b-c1 complex subunit 6, mitochondrial	UQCRH	-
P09488; Q03013	Glutathione S-transferase Mu 1;Glutathione S-transferase Mu 4	GSTM1	Glutathione derivative metabolic process
P13611	Versican core protein	VCAN	-
P18031	Tyrosine-protein phosphatase non-receptor type 1	PTPN1	Growth hormone receptor signaling pathway
P25325	3-mercaptopyruvate sulfurtransferase	MPST	Cyanate metabolic process
P30740	Leukocyte elastase inhibitor	SERPINB1	-
P37268	Squalene synthase	FDFT1	-
P48307	Tissue factor pathway inhibitor 2	TFPI2	-
P50452	Serpin B8	SERPINB8	-
Q14651	Plastin-1	PLS1	Intestinal D-glucose absorption
Q53FA7	Quinone oxidoreductase PIG3	TP53I3	NADPH:quinone reductase activity
Q5JSH3	WD repeat-containing protein 44	WDR44	-
Q5JTV8	Torsin-1A-interacting protein 1	TOR1AIP1	ATPase activator activity
Q6DKJ4	Nucleoredoxin	NXN	Disulfide oxireductase activity
Q6QNY1	Biogenesis of lysosome-related organelles complex 1 subunit 2	BLOC1S2	-
Q7Z7K0	COX assembly mitochondrial protein homolog	CMC1	-
Q8IV08	Phospholipase D3	PLD3	Double-stranded DNA exodeoxyribonuclease activity
Q8NBT2	Kinetochore protein Spc24	SPC24	-
Q8NG31	Protein CASC5	CASC5	-
Q8WZA9	Immunity-related GTPase family Q protein	IRGQ	-
Q92541	RNA polymerase-associated protein RTF1 homolog	RTF1	Blastocyst growth
Q96J01	THO complex subunit 3	THOC3	-
Q96LD4	Tripartite motif-containing protein 47	TRIM47	-
Q96S55	ATPase WRNIP1	WRNIP1	Regulation of DNA-dependent DNA replication initiation
Q9BRG1	Vacuolar protein-sorting-associated protein 25	VPS25	-
Q9BRX5	DNA replication complex GINS protein PSF3	GINS3	DNA strand elongation involved in DNA replication

Q9BZX2	Uridine-cytidine kinase 2	UCK2	-
Q9NPA8	Transcription and mRNA export factor ENY2	ENY2	poly(A)+ mRNA export from nucleos
Q9NZ32	Actin-related protein 10	ACTR10	-
Q9NZ63	Uncharacterized protein C9orf78	C9orf78	-
Q9Y5J9	Mitochondrial import inner membrane translocase subunit Tim8 B	TIMM8B	Chaperone-mediated protein transport

As 51 proteínas exclusivas do grupo NR (Tabela 4) possuem como um dos principais processos, a resposta celular a nicotina, que compreende diversos processos que resultam na mudança da atividade da célula, geralmente como resultado do estímulo por nicotina (Figura 12). Esse processo pode estar aparecendo como principal porque a nicotinamida e a nicotina possuem estruturas parecidas e também competem pelo mesmo sítio de ligação (BOGAN; BRENNER, 2008). Dentre as proteínas relacionadas a esses processos estão agonista Bcl2 associado a morte celular (BAD) e o fator de transcrição p65 (RELA), ambas moduladas por nicotinamida e relacionadas ao processo de apoptose (MAIESE et al., 2009; WEISS et al., 2015).

Figura 12. Cluster de proteínas exclusivas do grupo NR relacionadas a processos de resposta celular a nicotina e à via de sinalização Wnt.

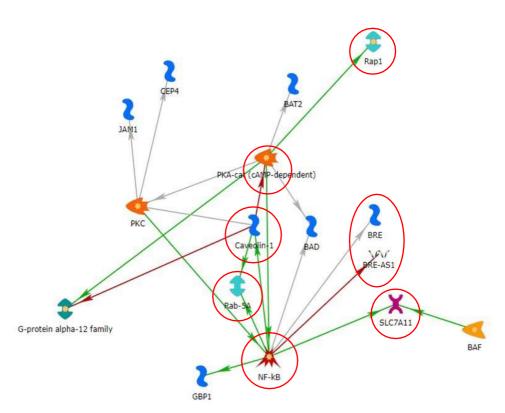

Tabela 4. Lista de proteínas exclusivas do grupo NR

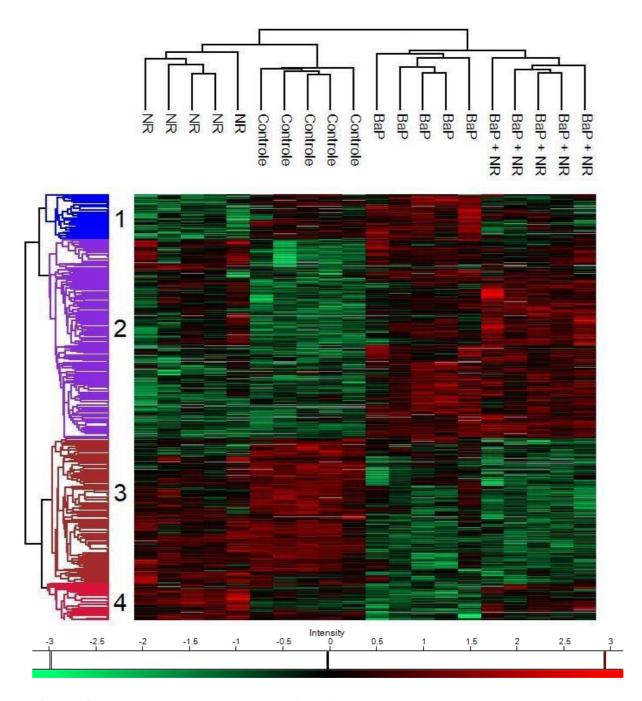
	Tabela 4. Lista de proteínas exclusivas do grupo NR					
ID	Proteína	Gene	Processos Biológicos (GO Term)			
O14497	AT-rich interactive domain-containing protein 1A	ARID1A	Nucleosome mobilitazion			
O15126	Secretory carrier-associated membrane protein 1	SCAMP1				
O15173	Membrane-associated progesterone receptor component 2	PGRMC2				
O75506	Heat shock factor-binding protein 1	HSBP1				
O95202	LETM1 and EF-hand domain-containing protein 1, mitochondrial	LETM1	Regulation of cellular response to osmotic stress			
O95208	Epsin-2	EPN2				
P11388	DNA topoisomerase 2-alpha	TOP2A	Apoptotic chromosome condensation			
P15104	Glutamine synthetase	GLUL	Glutamine biosynthetic process			
P17612	cAMP-dependent protein kinase catalytic subunit alpha	PRKACA				
P20339	Ras-related protein Rab-5A	RAB5A	Receptor internalization involved in canonical Wnt signaling pathway			
P27144	Adenylate kinase 4, mitochondrial	AK4	Purine nucleoside diphosphate biosynthetic process			
P29992	Guanine nucleotide-binding protein subunit alpha-11;	GNA11	Regulation of melanocyte differentiation			
P30414	NK-tumor recognition protein;	NKTR				
P30825	High affinity cationic amino acid transporter 1	SLC7A1				
P32455	Interferon-induced guanylate-binding protein 1	GBP1				
P48634	Protein PRRC2A	PRRC2A				
P60604	Ubiquitin-conjugating enzyme E2 G2	UBE2G2				
P62834	Ras-related protein Rap-1A	RAP1A				
Q03135	Caveolin-1	CAV1	Receptor internalization involved in canonical Wnt signaling pathway			
Q04206	Transcription factor p65	RELA	Cellular response to nicotine			
Q13616	Cullin-1	CUL1	-			
Q14108	Lysosome membrane protein 2	SCARB2	Aminiphospholipid transport			
Q14318	Peptidyl-prolyl cis-trans isomerase FKBP8	FKBP8				
Q14344	Guanine nucleotide-binding protein subunit alpha-13	GNA13				
Q15555	Microtubule-associated protein RP/EB family member 2	MAPRE2	Cell-substrate junction disassembly			
Q15738	Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating	NSDHL				
Q6DD88	Atlastin-3	ATL3				
Q6NYC1	Bifunctional arginine demethylase and lysyl-hydroxylase JMJD6	JMJD6	Peptidyl-lysine hydroxylation to 5-hydroxy-L-lysine			
Q6P1Q9	Methyltransferase-like protein 2B	METTL2B				
Q6PJ69	Tripartite motif-containing protein 65	TRIM65				
Q86TG7	Retrotransposon-derived protein PEG10	PEG10				
Q86UP2	Kinectin	KTN1				
Q8N1G0	Zinc finger protein 687	ZNF687				
Q8NI36	WD repeat-containing protein 36	WDR36				

ID	Proteína	Gene	Processos Biológicos (GO Term)
Q8TBA6	Golgin subfamily A member 5	GOLGA5	
Q92934	Bcl2-associated agonist of cell death	BAD	Cellular response to nicotine
Q969X5	Endoplasmic reticulum-Golgi intermediate compartment protein 1	ERGIC1	
Q96HA7	Tonsoku-like protein	TONSL	
Q9BUP3	Oxidoreductase HTATIP2	HTATIP2	
Q9H3Q1	Cdc42 effector protein 4	CDC42EP4	
Q9H6R4	Nucleolar protein 6	NOL6	
Q9H7B2	Ribosome production factor 2 homolog	RPF2	Protein localization to nucleolus
Q9H9A6	Leucine-rich repeat-containing protein 40	LRRC40	
Q9HCM2	Plexin-A4	PLXNA4	Trigeminal nerve morphogenesis
Q9NXR7	BRCA1-A complex subunit BRE	BRE	
Q9UBG0	C-type mannose receptor 2	MRC2	
Q9UBM7	7-dehydrocholesterol reductase	DHCR7	Cholesterol biosynthetic process via desmosterol
Q9Y305	Acyl-coenzyme A thioesterase 9, mitochondrial	ACOT9	
Q9Y334	von Willebrand factor A domain-containing protein 7	VWA7	
Q9Y3C4	EKC/KEOPS complex subunit TPRKB	TPRKB	
Q9Y624	Junctional adhesion molecule A	F11R	Positive regulation of endothelial cell development

A desregulação da via de sinalização Wnt é observada em diversos tipos de câncer, principalmente o colorretal. Foi observado que a via metabólica de NAD⁺ pode ser alterada pela cascata de sinalização Wnt em células-tronco transformadas diante de estresse metabólico (LEE et al., 2016). As proteínas exclusivas envolvidas nesses processos são a Caveolina-1 (CAV1) e RAB5A. Ambas atuam na etapa de adesão e migração celular, passo importante para a tumorigênese. É descrito que a proteína CAV1 pode aumentar a ativação de RAB5A, levando a uma maior migração celular em células metastáticas de câncer (DIAZ *et al.*, 2014). As análises das proteínas exclusivas em intersecção entre os outros grupos não apresentaram processos significantes no enriquecimento dentro dos parâmetros estipulados.

O grupo NR apresentou proteínas exclusivas relacionadas a diversos processos. Como abordado anteriormente, a análise da interação entre as proteínas exclusivas mostrou que o tratamento com NR pode ter modulado a via de sinalização WNT, que de acordo com a literatura é desregulada em diversos tipos de câncer. Podemos observar que as proteínas CAV1 e RAB5A, além de interagirem entre si, também estão interagindo com outras proteínas exclusivas do grupo NR (Figura 13).

Figura 13. Interações entre as proteínas exclusivas do grupo NR: Caveolin-1 está como ponto central e possui interação positiva com RAB-5A e negativa com PKA-cat que por sua vez possui interação positiva com RAP1. NF-kB, não presente no grupo, interage de forma negativa com BRE e positiva com SLC7A11.

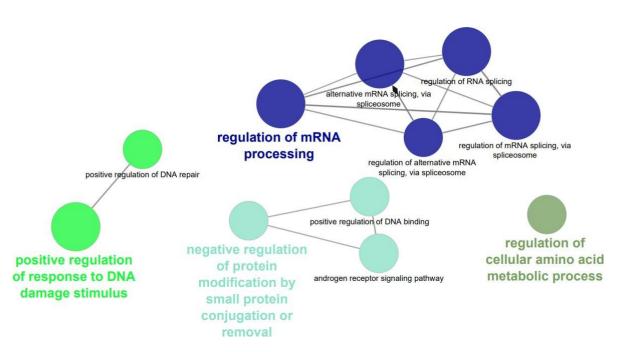

A figura mostra que, como dito anteriormente na análise de enriquecimento, a Caveolin-1 ativa RAB-5A, que como descrito na literatura, pode resultar em uma maior migração celular em células metastáticas de câncer (DIAZ *et al.*, 2014). Além disso, ambas possuem interação positiva com NF-kB, que por sua vez possui interação com a subunidade BRE do complexo BRCA1-A e interação positiva com o transportador de aminoácidos SLC7A11. CAV1 também interage negativamente com PKA-cat, que por sua vez, interage positivamente com Rap1, proteína relacionada com a iniciação e desenvolvimento do câncer, através do estímulo da proliferação, migração e invasão (LI *et al.*, 2019). Mostrando que a Caveolin-1 pode estar modulando mecanismos de proliferação celular por mais de uma via. Essas proteínas podem ter aparecido como exclusivas pois já foi descrito que as concentrações de NAD⁺ podem modular a via Wnt, relacionada com proliferação e migração celular (LEE et al., 2016; YE et al., 2020).

Além das análises das proteínas exclusivas, foi realizada a análise das proteínas diferencialmente expressas presentes nos quatro grupos. Após a filtragem dessas proteínas foi realizado o teste ANOVA com FDR 0,05 e apenas os valores significantes foram selecionados na construção do Heatmap.

4.3 Heatmap

Além da análise das proteínas exclusivas de cada grupo, foi realizada a análise estatística utilizando o teste ANOVA (p < 0,05, N=5) das 3024 proteínas iniciais. Foram encontradas 564 proteínas diferencialmente expressas entre os grupos. O *heatmap* (Figura 14) foi construído utilizando o software Perseus (TYANOVA, *et al*, 2016.) e as proteínas foram divididas em 4 clusters. Após a análise não-supervisionada, as amostras de um mesmo tratamento foram agrupadas no mesmo cluster, de acordo com a análise de componentes principais. Podemos observar o efeito dos diferentes tratamentos sobre as células.

Foi dedicada maior atenção aos clusters em que, de um modo geral, o tratamento com NR durante a exposição ao $B[\alpha]P$ tornou a abundância das proteínas do grupo mais distante do grupo exposto apenas ao $B[\alpha]P$ e mais próxima do controle, como é o caso dos clusters 1 e 4.


Figura 14. Heatmap com as 564 proteínas diferencialmente expressas (ANOVA p < 0,05) separadas em 4 clusters.

Com o enriquecimento no ClueGo, utilizando o filtro *default*, o cluster 1 contendo 59 proteínas que em geral possuem níveis aumentados no tratamento com BP, mas normalizados pelo tratamento das células simultaneatmente com NR, revelou processos como a regulação do splicing do mRNA, processo metabólico da glutationa e processos catabólicos de compostos sulfurados (Figura 15). As proteínas possuem funções como controle da divisão celular, apoptose e proteção ao estresse redox.

Tabela 5. Lista de proteínas presentes no cluster 1

TD	Tabela 5. Lista de proteínas pres		D D'I' (COT
ID	Proteína	Gene	Processos Biológicos (GO Term)
O00232	26S proteasome non-ATPase regulatory subunit 12	PSMD12	Regulation of cellular amino acid metabolic process
O14929	Histone acetyltransferase type B catalytic subunit	HAT1	-
O15371	Eukaryotic translation initiation factor 3 subunit D	EIF3D	-
O43237	Cytoplasmic dynein 1 light intermediate chain 2	DYNC1LI2	-
O60502	Protein O-GlcNAcase	MGEA5	-
O94776	Metastasis-associated protein MTA2	MTA2	-
O94906	Pre-mRNA-processing factor 6	PRPF6	-
O95861	3(2),5-bisphosphate nucleotidase 1	BPNT1	-
P12004	Proliferating cell nuclear antigen	PCNA	Positive regulation of response to DNA damage stimulus
P17844	Probable ATP-dependent RNA helicase DDX5	DDX5	Positive regulation of response to DNA damage stimulus
P18615	Negative elongation factor E	NELFE	Regulation of mRNA processing
P19367	Hexokinase-1	HK1	-
P23381	TryptophantRNA ligase, cytoplasmic;T1-TrpRS;T2-TrpRS	WARS	-
P23526	Adenosylhomocysteinase	AHCY	-
P26368	Splicing factor U2AF 65 kDa subunit	U2AF2	Negative regulation of protein modification by small protein conjugation or removal
P28074	Proteasome subunit beta type-5	PSMB5	Regulation of cellular amino acid metabolic process
P31943	Heterogeneous nuclear ribonucleoprotein H;Heterogeneous nuclear ribonucleoprotein H, N-terminally processed	HNRNPH1	Regulation of RNA splicing
P35222	Catenin beta-1	CTNNB1	Negative regulation of protein modification by small protein conjugation or removal
P36969	Phospholipid hydroperoxide glutathione peroxidase, mitochondrial	GPX4	
P38919	Eukaryotic initiation factor 4A-III; Eukaryotic initiation factor 4A-III, N-terminally processed	EIF4A3	-
P46063	ATP-dependent DNA helicase Q1	RECQL	<u>-</u>
P48444	Coatomer subunit delta	ARCN1	-
P51116	Fragile X mental retardation syndrome-related protein 2	FXR2	Positive regulation of response to DNA damage stimulus
P52272	Heterogeneous nuclear ribonucleoprotein M	HNRNPM	Alternative mRNA splicing, via spliceosome
P98179	RNA-binding protein 3	RBM3	Regulation of mRNA processing
Q01581	Hydroxymethylglutaryl-CoA synthase, cytoplasmic	HMGCS1	-
Q01844	RNA-binding protein EWS	EWSR1	-
Q07812	Apoptosis regulator BAX	BAX	-
Q12888	Tumor suppressor p53-binding protein 1	TP53BP1	<u>-</u>

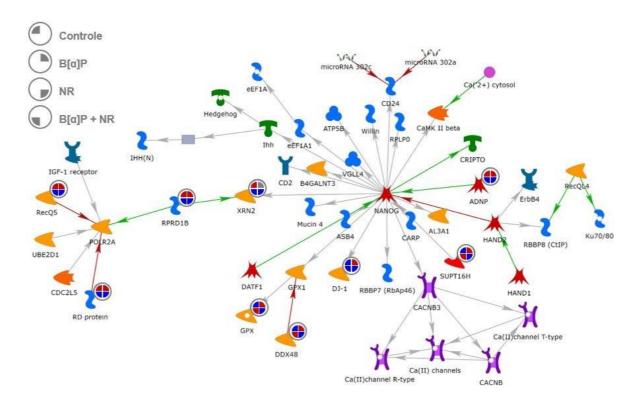
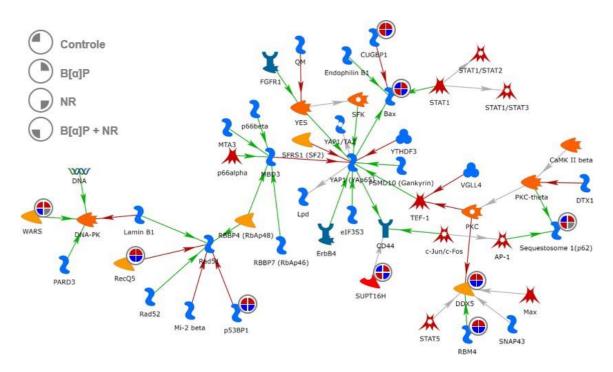

ID	Proteína	Gene	Processos Biológicos (GO Term)
Q13263	Transcription intermediary factor 1-beta	TRIM28	Positive regulation of response to DNA damage stimulus
Q13501	Sequestosome-1	SQSTM1	Negative regulation of protein modification by small protein conjugation or removal
Q13596	Sorting nexin-1	SNX1	
Q14671	Pumilio homolog 1	PUM1	-
Q15717	ELAV-like protein 1	ELAVL1	-
Q2TAL8	Glutamine-rich protein 1	QRICH1	-
Q8IX12	Cell division cycle and apoptosis regulator protein 1	CCAR1	-
Q8IZL8	Proline-, glutamic acid- and leucine-rich protein 1	PELP1	-
Q8WUP2	Filamin-binding LIM protein 1	FBLIM1	-
Q92599	Septin-8	SEPT8	-
Q92879	CUGBP Elav-like family member 1	CELF1	Regulation of mRNA processing
Q96GA7	Serine dehydratase-like	SDSL	-
Q96I24	Far upstream element-binding protein 3	FUBP3	-
Q96JM3	Chromosome alignment-maintaining phosphoprotein 1	CHAMP1	-
Q96KR1	Zinc finger RNA-binding protein	ZFR	-
Q99497	Protein deglycase DJ-1	PARK7	Positive regulation of DNA binding
Q9BTW9	Tubulin-specific chaperone D	TBCD	-
Q9BWF3	RNA-binding protein 4	RBM4	Regulation of mRNA processing
Q9H0D6	5-3 exoribonuclease 2	XRN2	-
Q9H2P0	Activity-dependent neuroprotector homeobox protein	ADNP	-
Q9H3U1	Protein unc-45 homolog A	UNC45A	-
Q9NQ88	Fructose-2,6-bisphosphatase TIGAR	TIGAR	Positive regulation of response to DNA damage stimulus
Q9NQG5	Regulation of nuclear pre-mRNA domain-containing protein 1B	RPRD1B	-
Q9NQR4	Omega-amidase NIT2	NIT2	-
Q9UHB6	LIM domain and actin-binding protein 1	LIMA1	-
Q9UHG3	Prenylcysteine oxidase 1	PCYOX1	-
Q9UKM9	RNA-binding protein Raly	RALY	-
Q9Y3C6	Peptidyl-prolyl cis-trans isomerase-like 1	PPIL1	-
Q9Y496;	Kinesin-like protein KIF3A; Kinesin-like protein KIF3B; Kinesin-like protein	KIF3A; KIF3B	
O15066	KIF3B, N-terminally processed		-
Q9Y5B9	FACT complex subunit SPT16	SUPT16H	-

Figura 15. Cluster 1 e suas funções com base no banco de dados Gene Ontology. Nele estão presentes proteínas envolvidas na regulação do splicing do mRNA, regulação positiva da resposta ao estímulo de dano ao DNA, regulação negativa da modificação de proteínas e regulação do processo metabólico de aminoácidos.

Relacionados com o processo metabólico da glutationa estão as proteínas DJ-1(PARK7), fator de alongamento negativo E (NELFE) e glutationa peroxidase 4 (GPX4), estando as duas últimas também envolvidas no processo catabólico de compostos sulfurados. Essas proteínas atuam na proteção das células ao dano oxidativo (ELTOWEISSY *et al.*, 2011; IMAI et al., 2016).

A GPX4, aumentada em ambos os grupos expostos ao B[α]P, protege as células contra a peroxidação lipídica, enquanto a DJ-1, proteína muitas vezes citados como indutor da proliferação celular, atua como um sensor do balanço redox e está aumentada apenas no grupo B[α]P (Figura 16). Apesar do seu papel de proteção contra o estresse oxidativo, o aumento da proteína DJ-1 também é apontando como um fator crucial para a progressão de vários tipos de câncer, além disso, já foi descrito que pacientes com câncer de pulmão apresentam alta expressão desta proteína, sendo relacionado com menor sobrevivência e maior recorrência desse tipo de câncer (HAN *et al.*, 2017; JIN, 2020). A abundância de DJ-1 nos grupos tratados com NR ficaram mais próximas do grupo controle, reforçando a ação da NR na proteção contra o estresse oxidativo induzido pelo B[α]P.


Figura 16. Interações das proteínas presentes no cluster 1 em vias que possuem como ponto central o fator de transcrição NANOG. Os círculos marcam a abundância das proteínas, em vermelho estão os grupos em que as proteínas estão mais abundantes e em azul, menos abundantes.

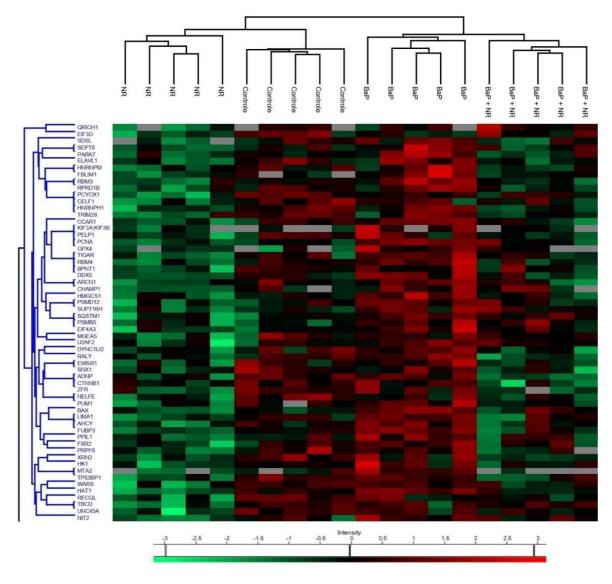
A proteína DDX48, abundante nos grupos expostos ao $B[\alpha]P$, e com abundância diminuída no grupo NR, está interagindo negativamente com GPX1. DDX48 é um membro da família de proteínas *DEAD box*, RNA helicases envolvidas em diversos processos que alteram a estrutura do RNA.

Na Figura 17, pode-se observar proteínas atuantes na regulação do splicing do mRNA como a CELF1 (CUGBP1), proteína de ligação ao RNA 4 (RBM4) e a RNA helicase p68 (DDX5). Torna-se importante analisar essas proteínas, pois a desregulação do splicing é um dos *hallmarks* do câncer (OLTEAN; BATES, 2013).

A proteína RBM4 controla a proliferação celular e induz as células à apoptose através da regulação de proteínas da família Bcl2. Neste cluster está presente a proteína reguladora de apoptose BAX, membro da família Bcl2. A expressão dessa proteína também é regulada pelo p53 (WANG et al., 2014). DDX5 é um co-ativador do p53, sugerindo que pode atuar como um co-supressor tumoral juntamente com o p53. A proteína 1 de ligação ao p53 (TP53BP1) também é encontrada neste cluster e atua principalmente no reparo de quebra de dupla fita do DNA (BATES et al., 2005). CCAR1, outra proteína coativadora do p53 também é encontrada. Como reguladora negativa do processo glicolítico, está presente a frutose-2,6-bifosfatase (TIGAR),

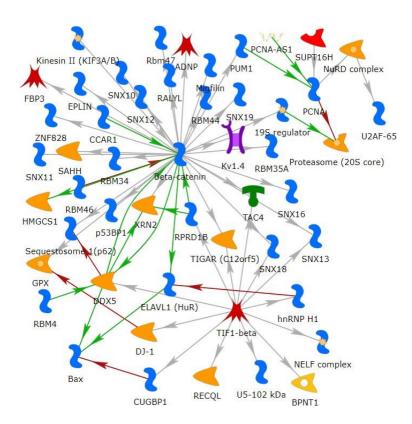
que atua reduzindo as concentrações intracelulares de frutose-2,6-bifosfato, de uma maneira dependente de p53, protegendo a célula do estresse redox, reduzindo as concentrações de ROS e diminuindo a sensibilidade a sinais apoptóticos (BENSAAD et al., 2006).

Figura 17. Proteínas do Cluster 1 envolvidas em processos de reparo de DNA e proliferação celular. Os círculos marcam a abundância das proteínas, em vermelho estão os grupos em que as proteínas estão mais abundantes e em azul, menos abundantes.


Pode-se observar a interação de algumas dessas proteinas, a RBM4 está interagindo positivamente com DDX5, e ambas proteínas estão mais abundantes nos grupos Controle e $B[\alpha]P$ enquanto nos grupos tratados com NR a abundância está diminuída. No lado esquerdo da figura podemos observar algumas proteínas desse cluster que interagem com a proteína de reparo de DNA, RAD51. P53BP1 e RecQL, abundantes no grupo controle e no grupo $B[\alpha]P$ interagem negativamente com Rad51.

Essas proteínas, reguladas em sua maioria pelo p53, atuam em conjunto formando uma cascata de sinalização para apoptose, sugerindo que a alteração em suas concentrações possa estar relacionada com a modulação pela suplementação com NR, pois assim como no cluster 4, a abundância das proteínas no grupo exposto ao $B[\alpha]P$ e suplementado com NR está mais próxima da abundância das proteínas do grupo Controle.

Outras proteínas importantes estão presentes nesse cluster, como a beta-catenina-1 (CTNNB1), componente chave da via de sinalização Wnt, sendo uma proteína necessária para


a funcionalidade da via canônica. A CTNNB1 pode tornar-se importante, pois na análise de proteínas exclusivas do grupo NR, notamos muitos processos relacionados a essa via. A alteração das concentrações dessa proteína pode levar a progressão tumoral através da disrupção do complexo de adesão caderina-catenina (HAJRA; FEARON, 2002; (CHANG *et al.*, 2017).

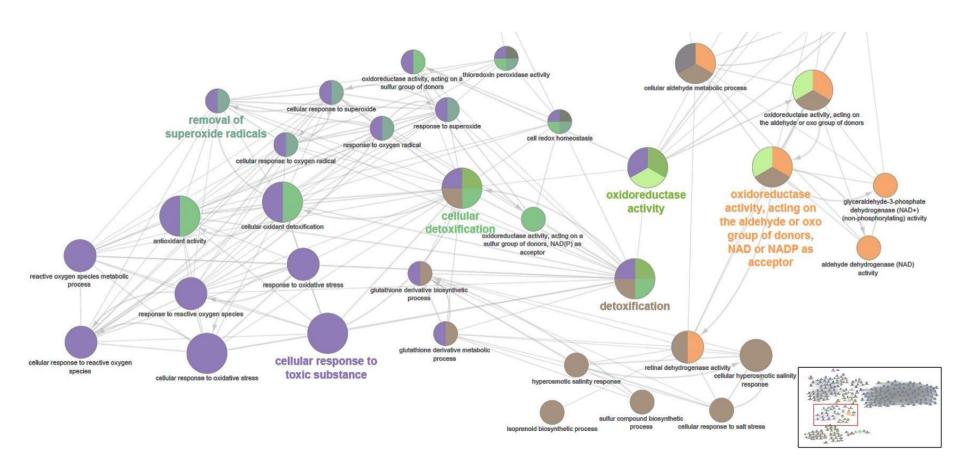
A Figura 18 mostra o heatmap expandido, para podermos observar melhor o efeito dos diferentes tratamentos na abudância das proteínas desse cluster. No geral, as proteínas do grupo $B[\alpha]P$ estão com a abundância aumentada quando comparado aos grupos tratados com NR, e no grupo tratado apenas com NR, a abundância das proteínas está diminuída. No grupo $B[\alpha]P$ e Controle, os padrões variam de acordo com as proteínas, sendo necessária uma análise individualizada.

Figura 18. Heatmap do Cluster 1 expandido. As proteínas em vermelho estão com maior abundância, e as proteínas em verde estão com menor abundância.

A interação entre as proteínas desse grupo também é bem complexa, envolve diversas proteínas discutidas acima, mas possui como ponto central a β-catenina, proteína atuante em diversas vias de sinalização celular (Figura 19).

Figura 19. Interações entre as proteínas do cluster 1. Beta-catenina está como ponto central, interagindo positivamente com diversas proteínas presentes no cluster.

Foi observado que o grupo controle e o grupo $B[\alpha]P$ tiveram uma abundância maior de β -catenina, enquanto nos grupos que foram tratados com NR, a abundância foi menor. O que pode ser explicado juntamente com a expressão das proteínas exclusivas do grupo NR, em que proteínas relacionadas com a via canônica de Wnt estavam presentes. CCAR1, que interage ativando a β -catenina, também está menos abundante nos grupos tratados com NR, o que pode significar que a via Wnt está menos ativa, pois a menor abundância de β -catenina nos grupos tratados com NR pode significar que ela esteja sendo fosforilada pelo complexo de degradação e marcada para degradação por proteossoma, não sendo ativada e consequentemente, os genes da via Wnt não sendo expressos. (CHANG *et al.*, 2017).


O cluster 2 é composto de 262 proteínas (Anexo A) formando processos relacionados a respiração celular, fosforilação oxidativa e regulação da resposta celular ao estresse redox (Figura 20). O heatmap (Figura 14), mostra que a abundância das proteínas do cluster 2 foi

alterada (aumentada) pela exposição ao $B[\alpha]P$, mas a suplementação com NR não reverteu grande parte das alterações causadas.

Neste cluster, pode-se destacar os processos catabólicos de aldeídos e metabólicos de aldeídos e a biossíntese de colesterol. Processos envolvidos no metabolismo de NAD⁺ e NADH estão presentes, juntamente com a resposta ao estresse redox. A análise de enriquecimento também apresentou outros processos, como a atividade de endopeptidase do tipo treonina e a regulação da localização de proteínas no corpo de cajal. A abundância da maioria das proteínas dos grupos tratados se mostra alterada em relação ao grupo controle. Processos relacionados a biossintese e metabolisom de nucleotídeos, além de outros processos metabólicos também foram enriquecidos neste cluster (Figura 21).

O cluster 3 é composto por 192 proteínas (Anexo B), destacando-se duas proteínas importantes para o processo de carcinogênese, o fator de transcrição STAT3 e o guardião do genoma TP53, conhecido supressor tumoral em diversos tipos de câncer(MADDOCKS; VOUSDEN, 2011). A expressão geral das proteínas deste cluster foi diminuída nos grupos tratados com BaP e BaP + NR. O cluster 3 também apresentou processos relacionados a regulação positiva da via de sinalização apoptótica, ligação de caderina envolvida em adesão célula-célula e processo metabólico da frutose-6-fosfato (Figura 22). Tais processos foram destacados devido à sua importância na progressão tumoral.

Além dos processos destacados também foi possível observar a resposta ao estresse do retículo endoplasmático, processo metabólico da 4-hidroxiprolina, biogênese ribossomal e translocação de proteínas do retículo endoplasmático.

Figura 20. Cluster 2 apresenta funções relacionadas a detoxificação, resposta celular a substâncias tóxicas, remoção de radical superóxido e atividade de oxidorredutases.

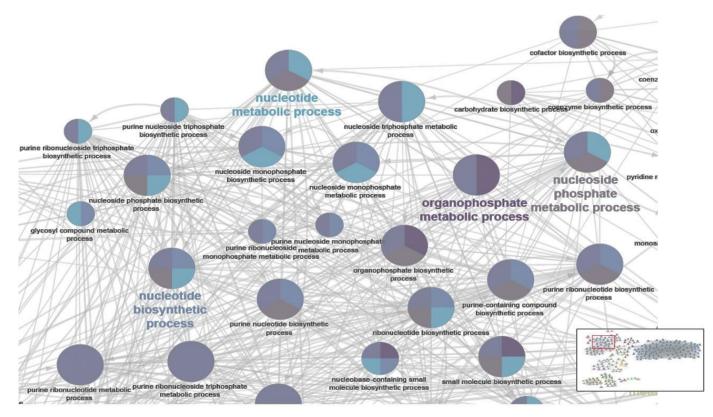
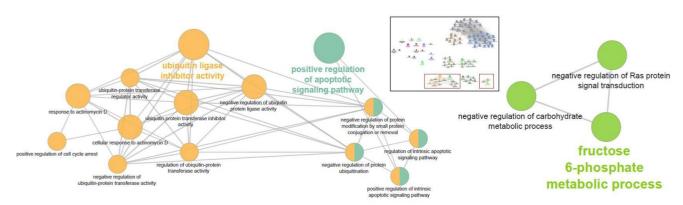



Figura 21. Cluster 2 também apresenta funções relacionadas ao processo biossintético e metabólico de nucleotídeos, além de outros processos metabólicos.

Figura 22. Cluster 3 apresenta funções de regulação positiva da via de sinalização apoptótica, e processo metabólico da frutose-6-fosfato

Como proteína de destaque deste cluster está a proteína 1 de ligação ao fator de iniciação eucariótica 4E, que atua modulando o crescimento e proliferação celular através da via PI3K/AKT/mTOR, cujo aumento da expressão está relacionado com a progressão tumoral (RUTKOVSKY et al., 2019). Também estão presentes, a subunidade Bap18 do complexo da cromatina (BAP18), fator de exportação de mRNA e transcrição ENY2 (ENY2) e LARP1, a última também atuante na via mTOR, regulando a tradução de mRNAs (HONG et al., 2017).

O cluster 4 (Figura 23) é composto por 51 proteínas (Tabela 6) que além de estarem envolvidas em etapas importantes da via glicolítica, também participam de processos como crescimento, adesão, migração e invasão celular. A suplementação com NR aumentou a abundância de algumas proteínas presentes nesse cluster e a exposição ao $B[\alpha]P$ diminuiu a abundância das proteínas (Figura 24). O padrão de abundância do grupo $B[\alpha]P+NR$ está mais parecido com o do Controle e mais distante do grupo exposto apenas a $B[\alpha]P$, o que pode ser um indício de que algumas dessas proteínas estejam envolvidas no efeito protetor da NR, sendo interessante ampliar as buscas neste cluster.

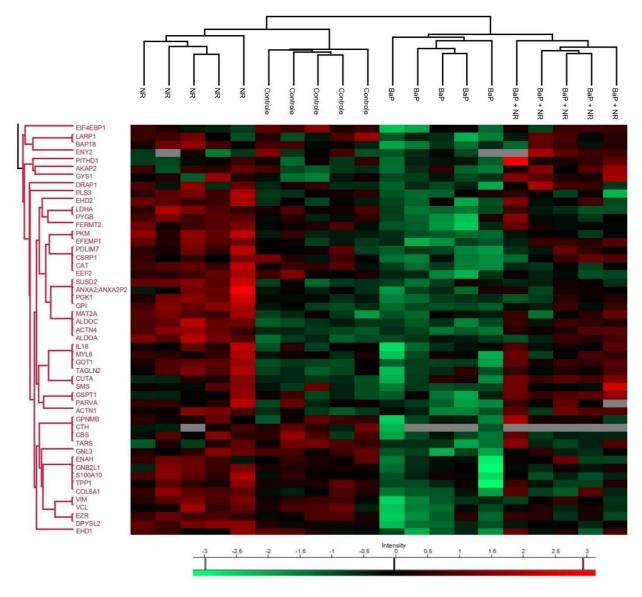
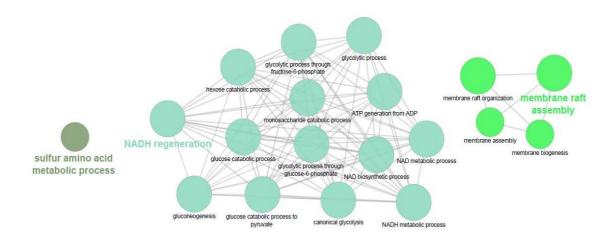



Figura 23. Heatmap expandido do Cluster 4.

A análise individual das proteínas do grupo permitiu verificar que diversas delas estão envolvidas em etapas importantes do processo de carcinogênese. As proteínas frutose-bifosfato aldolase A e C que participam de etapa de conversão de frutose para gliceraldeído da via glicolítica são encontradas com abudância aumentada nos grupos NR e B[α]P + NR e com abundância diminuída nos grupos Controle e B[α]P (Figura 25), e já foram descritas estarem alteradas em diversos tipos de câncer e foram estudadas como potenciais marcadores de progressão tumoral e metástase (CHANG et al., 2008; DU et al., 2014).

Figura 24. Cluster 4 e suas funções com base no banco de dados Gene Ontology. Nele estão presentes as proteínas com participação na via glicolítica, regeneração de NADH, processo metabólico de aminoácidos sulfurados e *membrane raft assembly*.

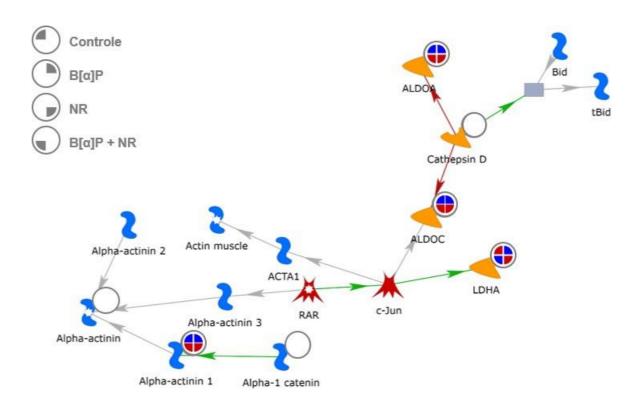

A proteína glicose-6-fosfato isomerase, que também participa da segunda etapa de conversão de glicose para frutose da via glicolítica e a ação reversa na gliconeogênese, também é encontrada nesse cluster, com abundância aumentada nos grupos tratados com NR e diminuída no Controle e B[α]P. É descrito que a GPI participa de vias de sinalização que promovem a progressão tumoral, pois além da função como enzima, também atua no controle da secreção de citocinas que atuam como fator angiogênico (DOBASHI et al., 2006).

Tabela 6. Lista de proteínas presente no cluster 4

ID	Proteína	Gene	Processos Biológicos (GO Term)
O14773	Tripeptidyl-peptidase 1	TPP1	-
O43707	Alpha-actinin-4	ACTN4	-
O60888	Protein CutA	CUTA	-
P00338	L-lactate dehydrogenase A chain	LDHA	Glycolytic process
P00558	Phosphoglycerate kinase 1	PGK1	NADH regeneration
P04040	Catalase	CAT	-
P04075	Fructose-bisphosphate aldolase A	ALDOA	NADH regeneration; Glycolytic process
P06744	Glucose-6-phosphate isomerase	GPI	NADH regeneration
P07355	Annexin A2; Putative annexin A2-like protein	ANXA2	- -
P08670	Vimentin	VIM	-
P09972	Fructose-bisphosphate aldolase C	ALDOC	NADH regeneration; Glycolytic process
P0DN79	Cystathionine beta-synthase	CBS	Sulfur amino acid metabolic process
P11216	Glycogen phosphorylase, brain form	PYGB	<u>-</u>
P12814	Alpha-actinin-1	ACTN1	Membrane raft assembly
P13639	Elongation factor 2	EEF2	<u>-</u>
P13797	Plastin-3	PLS3	-
P13807	Glycogen [starch] synthase, muscle	GYS1	-
P14618	Pyruvate kinase PKM	PKM	NADH regeneration; ATP generation from ADP
P15170	Eukaryotic peptide chain release factor GTP-binding subunit ERF3A	GSPT1	-
P15311	Ezrin	EZR	-
P17174	Aspartate aminotransferase, cytoplasmic	GOT1	Sulfur amino acid metabolic process
P18206	Vinculin	VCL	Membrane raft assembly
P21291	Cysteine and glycine-rich protein 1	CSRP1	<u>-</u>
P26639	ThreoninetRNA ligase, cytoplasmic	TARS	-
P27658	Collagen alpha-1(VIII) chain; Vastatin	COL8A1	-
P31153	S-adenosylmethionine synthase isoform type-2	MAT2A	-
P32929	Cystathionine gamma-lyase	CTH	Sulfur amino acid metabolic process
P37802	Transgelin-2	TAGLN2	<u>-</u>
P52788	Spermine synthase	SMS	Sulfur amino acid metabolic process
P60660	Myosin light polypeptide 6	MYL6	-
P60903	Protein S100-A10	S100A10	Membrane raft assembly
P63244	Guanine nucleotide-binding protein subunit beta-2-like 1;	GNB2L1	-

Q12805	EGF-containing fibulin-like extracellular matrix protein 1	EFEMP1	-
Q13541	Eukaryotic translation initiation factor 4E-binding protein 1	EIF4EBP1	-
Q14116	Interleukin-18	IL18	-
Q14919	Dr1-associated corepressor	DRAP1	-
Q14956	Transmembrane glycoprotein NMB	GPNMB	-
Q16555	Dihydropyrimidinase-related protein 2	DPYSL2	-
Q6PKG0	La-related protein 1	LARP1	-
Q8IXM2	Chromatin complexes subunit BAP18	BAP18	-
Q8N8S7	Protein enabled homolog	ENAH	-
Q96AC1	Fermitin family homolog 2	FERMT2	Membrane raft assembly
Q9BVP2	Guanine nucleotide-binding protein-like 3	GNL3	-
Q9GZP4	PITH domain-containing protein 1	PITHD1	-
Q9H4M9	EH domain-containing protein 1	EHD1	-
Q9NPA8	Transcription and mRNA export factor ENY2	ENY2	-
Q9NR12	PDZ and LIM domain protein 7	PDLIM7	-
Q9NVD7	Alpha-parvin	PARVA	-
Q9NZN4	EH domain-containing protein 2	EHD2	-
Q9UGT4	Sushi domain-containing protein 2	SUSD2	-
Q9Y2D5	A-kinase anchor protein 2	AKAP2	-

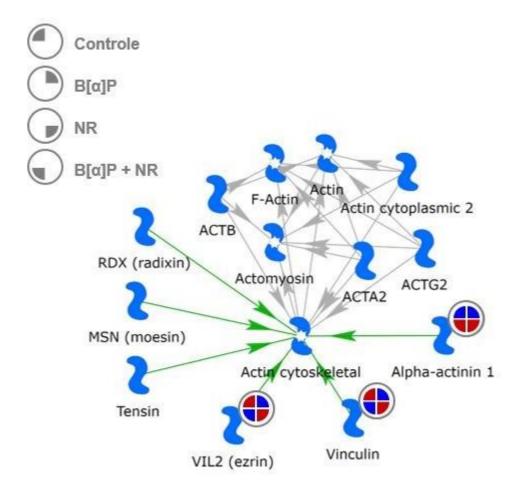

Piruvato quinase (abundância aumentada no grupo NR e diminuída no grupo $B[\alpha]P$) e e lactato desidrogenase (abundância diminuída nos grupos expostos a $B[\alpha]P$) também são pertencentes ao cluster e estão sendo moduladas pela suplementação de NR. É descrito na literatura que essas enzimas influenciam a sobrevivência e a proliferação de células transformadas devido à sua importância na alteração da via glicolítica conhecida como efeito Warburg. Além disso, essas enzimas atuam em conjunto com fatores de crescimento e vias de sinalização, aumentando a capacidade invasora das células, resistência e metástase (YANG; LU, 2013; ZHAO et al., 2017).

Figura 25. Interações entre as proteínas do Cluster 4. Catepsina D interage negativamente com as proteínas frutose-bifosfato aldolase A e C, que possuem papel importante na via glicolítica. Os círculos marcam a abundância das proteínas, em vermelho estão os grupos em que as proteínas estão mais abundantes e em azul, menos abundantes.

Proteínas de adesão como a anexina A2 e a vinculina podem ajudar a explicar o efeito protetor da NR contra a transformação induzida pelo $B[\alpha]P$. Ambas são descritas em diversos tipos de câncer e estão relacionadas com o prognóstico da doença (CH et al., 2018). Um estudo realizado com a vinculina demonstrou que a transfecção do cDNA de vinculina em células tumorais de camundongos com concentrações endógenas diminuídas de vinculina suprimiu drasticamente a tumorigenicidade e a capacidade metastática das células. Além disso, diminuiu

o crescimento de células em *soft-agar* (FERNÁNDEZ et al., 1992; GOLDMANN et al., 2013). Foi observado anteriormente em nosso grupo que a NR protegeu as células contra a formação de colônias induzidas por B[α]P em *soft-agar*. Os nossos resultados demonstraram que a exposição ao B[α]P diminuiu a abundância da Vinculina, enquanto a exposição a NR aumentou a abundância, estando de acordo com o estudo observado na literatura (Figura 26).

Figura 26. Interações entre proteínas presentes no Cluster 4: VIL2, Vinculina e Alpha-actinin 1. Os círculos marcam a abundância das proteínas, em vermelho estão os grupos em que as proteínas estão mais abundantes e em azul, menos abundantes.

No geral, pode-se dizer que o tratamento com NR aumentou a abundância da maioria das proteínas desse cluster, enquanto o tratamento com $B[\alpha]P$ diminuiu a abundância.

5. CONCLUSÃO

A análise proteômica das células BEAS-2B expostas a benzo[α]pireno e nicotinamida ribosídeo revelou 3024 proteínas somando os quatro grupos de exposição. O conteúdo e a abundância proteica variaram entre os grupos e nos deram informações sobre os efeitos dos diferentes tratamentos. Além disso, a análise possibilitou destacar vias moduladas pela exposição à NR que podem estar envolvidas no efeito protetor detectado anteriormente no grupo.

O tratamento com $B[\alpha]P$, assim como esperado, resultou em danos ao DNA, mas quando o tratamento foi feito juntamente com NR, foi observado um aumento de processos relacionados com reparo de DNA, sugerindo que o aumento das concentrações de NAD⁺ poderia estar relacionado com uma maior eficiência no reparo, assim como observado na literatura. É sugerido também que o tratamento com NR possa modular processos como crescimento, proliferação e invasão celular, pois as proteínas relacionadas a esses processos tiveram a abundância alterada no grupo tratado com NR.

A exposição ao $B[\alpha]P$ causou aumento da abundância de proteínas relacionadas a processos de resposta a dano ao DNA e apoptose, essas alterações foram parcialmente revertidas no grupo $B[\alpha]P + NR$, mas no grupo tratado apenas com NR, a abundância foi diminuída. O estresse celular causado pela exposição ao $B[\alpha]P$ também teve efeitos na via glicolítica, onde observamos uma diminuição da abundância das proteínas nos grupos expostos ao $B[\alpha]P$, efeito que foi revertido em ambos os grupos tratados com NR, onde a abundância das proteínas está aumentada. O mesmo padrão de abundância se observou em proteínas relacionadas com adesão e migração celular, sugerindo que a NR possa estar atuando como um agente moludador do crescimento e proliferação das células BEAS-2B nesse modelo de estudo.

Os resultados encontrados anteriormente pelo grupo suportam os resultados obtidos neste trabalho. Há uma modulação do metabolismo e da abundância de proteínas pela suplementação com NR que podem estar relacionados com o efeito protetor da NR contra a transformação maligna induzida pelo benzo[α]pireno. A suplementação com NAD⁺ como uma terapia é algo novo na literatura, e há poucos estudos sobre câncer em etapa clínica, pois seu papel no metabolismo energético, reparo de DNA, expressão gênica e respostas ao estresse oxidativo ainda não estão totalmente elucidados. As vias destacadas neste trabalho podem guiar novas buscas e a escolha de novos alvos terapêuticos.

6. REFERÊNCIAS BIBLIOGRÁFICAS

BATES, G. J. et al. The DEAD box protein p68: a novel transcriptional coactivator of the p53 tumour suppressor. The Embo Journal, [s.l.], v. 24, n. 3, p.543-553, 20 jan. 2005.

BERNARDO, D. L.; BARROS, K. A.; SILVA, R. C.; PAVÃO, A. C. Carcinogenicidade De Hidrocarbonetos Policíclicos Aromáticos. Quim. Nova, Pernambuco, v. 39, p. 789-794, junho, 2016.

BENSAAD, K. et al. TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis. Cell, [s.l.], v. 126, n. 1, p.107-120, jul. 2006.

BINDEA, G. et al. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics, Paris, v. 25, p. 1091-1093, 2009.

BOGAN, K. L.; BRENNER, C. Nicotinic Acid, Nicotinamide, and Nicotinamide Riboside: A Molecular Evaluation of NAD+ Precursor Vitamins in Human Nutrition. The Annual Review Of Nutrition, Lebanon, v. 28, n. 1, p.115-130, abr. 2008.

CACAN, Ercan; ALI, Mourad W.; BOYD, Nathaniel H.; HOOKS, Shelley B.; GREER, Susanna F.. Inhibition of HDAC1 and DNMT1 Modulate RGS10 Expression and Decrease Ovarian Cancer Chemoresistance. Plos One, [S.L.], v. 9, n. 1, p. 1483-1489, 27 jan. 2014. Public Library of Science (PLoS).

CARUSO, M. S. F.; ALABURDA, J. Polycyclcic aromatic hydrocarbons - benzo(a)pyrene: a review. Rev. Inst. Adolfo Lutz, São Paulo, v. 67(1), p.1-27, Abril, 2008.

CH, M. V. et al. Annexin A2 and cancer: A systematic review. International Journal Of Oncology, Copenhagen, v. 52, p.5-18, 2018.

CHANG, Te-Sheng; WEI, Kuo-Liang; LU, Chung-Kuang; CHEN, Yi-Hsing; CHENG, Ying-Tung; TUNG, Shui-Yi; WU, Cheng-Shyong; CHIANG, Ming-Ko. Inhibition of CCAR1, a Coactivator of β -Catenin, Suppresses the Proliferation and Migration of Gastric Cancer Cells. International Journal Of Molecular Sciences, [S.L.], v. 18, n. 2, p. 460, 21 fev. 2017. MDPI AG.

CHAPPELL, G. et al. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review. Mutation Research, College Station, v. 768, p.27-45, 2016.

CHEN, J.; XU, X. Diet, Epigenetic, and Cancer Prevention. Advances In Genetics, Nova Iorque, v. 71, p.237-255, 2010.

CHEN, H. et al. Upregulation of glycolysis and oxidative phosphorylation in benzo[α]pyrene and arsenic-induced rat lung epithelial transformed cells. Oncotarget, Guangdong, v. 7, n. 26, p.40674-40689, 2016.

CHIARUGI, A. et al. The NAD metabolome — a key determinant of cancer cell biology. Nature Reviews Cancer, Florença, 2012.

- CORDEIRO, Everson Willian Fialho. Modulação da concentração intracelular de NAD+ e seu efeito na tumorigênese induzida por benzo[a]pireno em células bronquiais epiteliais humanas. 2021. Tese (Doutorado em Toxicologia) Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 2021. doi:10.11606/T.9.2021.tde-05082021-095853. Acesso em: 2021-09-07.
- COX, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. Journal of Proteome Research, Martinsried, v. 10, p.1794-1805, 2011.
- COX, J.; MANN, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology, Martinsried, v. 26, p.1367-1372, 2008.
- CROTEAU, D. L. et al. NAD+ in DNA repair and mitochondrial maintenance. Cell Cycle, Baltimore, v. 16, p.491-492, 2017.
- DIAZ, J. et al. Rab5 is required in metastatic cancer cells for Caveolin-1-enhanced Rac1 activation, migration and invasion. Journal Of Cell Science, [s.l.], v. 127, n. 11, p.2401-2406, 21 mar. 2014. The Company of Biologists.
- ELTOWEISSY, M. et al. Proteomics analysis identifies PARK7 as an important player for renal cell resistance and survival under oxidative stress. Molecular Biosystems, [s.l.], v. 7, n. 4, p.1277-1288, 2011. Royal Society of Chemistry (RSC).
- FANG, E. F. et al. NAD+ in Aging: Molecular Mechanisms and Translational Implications. Trends In Molecular Medicine, Baltimore, v. 23, p.899-916, 2017.
- FANG, E. Fei et al. NAD+ Replenishment Improves Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA Repair. Cell Metabolism, Baltimore, v. 24, p.566-581, 2016.
- FERECATU, I.et al. Polycyclic aromatic hydrocarbon components contribute to the mitochondria-antiapoptotic effect of fine particulate matter on human bronchial epithelial cells via the aryl hydrocarbon receptor. Particle And Fibre Toxicology, Paris, p.7-18, julho, 2010.
- FERNÁNDEZ, J. L. R. et al. Suppression of Tumorigenicity in Transformed Cells after Transfection with Vinculin cDNA. The Journal Of Cell Biology, Rehovot, v. 119, n. 2, p.427-438, out. 1992.
- GOLDMANN, W. H. et al. Vinculin, cell mechanics and tumour cell invasion. Cell Biology International, Erlangen, v. 37, p.397-405, 2013.
- GSTAIGER, M.; AEBERSOLD, R. Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nature Reviews: Genetics, Zurique, v. 10, p.617-627, 2009.
- HAJRA, K. M.; FEARON, E. R. Cadherin and catenin alterations in human cancer. Genes, Chromosomes And Cancer, [s.l.], v. 34, n. 3, p.255-268, 6 maio 2002.
- HAMILTON, Erika; INFANTE, Jeffrey R.. Targeting CDK4/6 in patients with cancer. Cancer Treatment Reviews, [S.L.], v. 45, p. 129-138, abr. 2016. Elsevier BV.

- HAN, Binbin; WANG, Jiwen; GAO, Jia; FENG, Shana; ZHU, Yu; LI, Xuexiang; XIAO, Ting; QI, Jun; CUI, Wei. DJ-1 as a potential biomarker for the early diagnosis in lung cancer patients. Tumor Biology, [S.L.], v. 39, n. 6, p. 101042831771462, jun. 2017
- HARDONNIÈRE, K.et al. Role for the ATPase inhibitory factor 1 in the environmental carcinogen-induced Warburg phenotype. Scientific Reports, Rennes, v. 7, 2017.
- HIGASHITSUJI, H. et al. A novel protein overexpressed in hepatoma accelerates export of NF-kappa B from the nucleus and inhibits p53-dependent apoptosis. Cancer Cell, Kyoto, v. 2, n. 4, p.335-346, out. 2002.
- HONG, S. et al. AbsLARP1 functions as a molecular switch for mTORC1-mediated translation of an essential class of mRNAstract. Elifesciences, Tokyo, p.1-24, jun. 2017.
- HOOKS, Shelley B; MURPH, Mandi M. Cellular deficiency in the RGS10 protein facilitates chemoresistant ovarian cancer. Future Medicinal Chemistry, [S.L.], v. 7, n. 12, p. 1483-1489, ago. 2015. Future Science Ltd.
- IMAI, H. et al. Lipid Peroxidation-Dependent Cell Death Regulated by GPx4 and Ferroptosis. Current Topics In Microbiology And Immunology, [s.l.], p.143-170, 2016. Springer International Publishing.
- JANG, S.; KANG, H. T.; HWANG, E. S. Nicotinamide-induced Mitophagy: EVENT MEDIATED BY HIGH NAD/NADH RATIO AND SIRT1 PROTEIN ACTIVATION. The Journal Of Biological Chemistry, Seoul, v. 287, p.19304-19314, 2012.
- JENKINS, L. M. M. et al. Quantitative Proteomics Analysis of the Effects of Ionizing Radiation in Wild Type and p53K317R Knock-in Mouse Thymocytes. Molecular & Cellular Proteomics, Bethesda, v. 7, p.716-727, 2008.
- JIN, Wook. Novel Insights into PARK7 (DJ-1), a Potential Anti-Cancer Therapeutic Target, and Implications for Cancer Progression. Journal Of Clinical Medicine, [S.L.], v. 9, n. 5, p. 1256, 26 abr. 2020. MDPI AG.
- JIN, Z.; LIU, Y. DNA methylation in human diseases. Genes & Diseases, Shangai, v. 5, p.1-8, jan. 2018.
- KASSIE, F. et al. Indole-3-carbinol Inhibits 4-(Methylnitrosamino)-1-(3-pyridyl) -1- butanone Plus Benzo(a)pyrene—Induced Lung Tumorigenesis in A/J Mice and Modulates Carcinogen-Induced Alterations in Protein Levels. Cancer Research, Minnesota, v. 67, p.6502-6511, 2007.
- KENNEDY, B. E. et al. NAD+ salvage pathway in cancer metabolism and therapy. Pharmacological Research, Halifax, v. 114, p.274-283, 2016.
- KAHL, Christina R.; MEANS, Anthony R.. Regulation of Cyclin D1/Cdk4 Complexes by Calcium/Calmodulin-dependent Protein Kinase I. Journal Of Biological Chemistry, [S.L.], v. 279, n. 15, p. 15411-15419, abr. 2004. Elsevier BV.
- KRAIS, A. M. et al. The impact of p53 on DNA damage and metabolic activation of the environmental carcinogen benzo[α]pyrene: effects in Trp53(+/+), Trp53(+/-) and Trp53(-/-)

mice. Archives Of Toxicology, Londres, v. 90, p.839-851, Maio, 2015.

KULIKOVA, V. et al. Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells. The Journal Of Biological Chemistry, São Petersburgo, v. 290, p.27124-27137, 2015.

LEE, J. et al. Integrated omics-analysis reveals Wnt-mediated NAD+ metabolic reprogramming in cancer stem-like cells. Oncotarget, Suwon, v. 7, n. 30, p.48562-48576, jun. 2016.

LI, Qinfang; XU, Aiping; CHU, Yuan; CHEN, Tao; LI, Hongqi; YAO, Liqing; ZHOU, Pinghong; XU, Meidong. Rap1A promotes esophageal squamous cell carcinoma metastasis through the AKT signaling pathway. Oncology Reports, [s. l], p. 1815-1824, 12 nov. 2019.

MADDOCKS, O. D. K.; VOUSDEN, K. H. Metabolic regulation by p53. Journal Of Molecular Medicine, Glasgow, v. 89, p.237-245, Março, 2011.

MAIESE, K. et al. The Vitamin Nicotinamide: Translating Nutrition into Clinical Care. Molecules, [s.l.], v. 14, n. 9, p.3446-3485, 9 set. 2009. MDPI AG.

MARTENS, C. R. et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nature Communications, Boulder, v. 9, 2018.

MINAKAWA, Miki; SONE, Takayuki; TAKEUCHI, Tomoharu; YOKOSAWA, Hideyoshi. Regulation of the Nuclear Factor (NF)-.KAPPA.B Pathway by ISGylation. Biological And Pharmaceutical Bulletin, [S.L.], v. 31, n. 12, p. 2223-2227, 2008. Pharmaceutical Society of Japan.

MIN, L., HE, S., CHEN, Q., PENG, F. et al. Comparative proteomic analysis of cellular response of human airway epithelial cells (A549) to benzo(a)pyrene. Toxicol. Mech. Methods. Changsha, v.21, p.374–382. 2011.

MORIN, A. et al. Oncometabolites-driven tumorigenesis: From genetics totargeted therapy. International Journal Of Cancer, Paris, v. 135, p.2237-2248, 2014.

NAGARAJ, N. et al. System-wide Perturbation Analysis with Nearly Complete Coverage of the Yeast Proteome by Single-shot Ultra HPLC Runs on a Bench Top Orbitrap. Molecular & Cellular Proteomics, Odense, v. 11, p.1-11, 2011.

PANDEY, A.; MANN, M. Proteomics to study genes and genomes. Nature, Massachusetts, v. 405, p.837-846, 2000.

OLIVEROS, J. C. "Venny", An interactive tool for comparing list with Venn Diagrams. In: Venny 2.1.0. 2008. Disponível em: https://bioinfogp.cnb.csic.es/tools/venny/. Acesso em: 10 nov. 2019.

OLTEAN, S; BATES, D O. Hallmarks of alternative splicing in cancer. Oncogene, [s.l.], v. 33, n. 46, p.5311-5318, 16 dez. 2013. Springer Science and Business Media LLC.

O'LEARY, Ben; FINN, Richard S.; TURNER, Nicholas C.. Treating cancer with selective

CDK4/6 inhibitors. Nature Reviews Clinical Oncology, [S.L.], v. 13, n. 7, p. 417-430, 31 mar. 2016. Springer Science and Business Media LLC.

PATNAIK, Amita; ROSEN, Lee S.; TOLANEY, Sara M.; TOLCHER, Anthony W.; GOLDMAN, Jonathan W.; GANDHI, Leena; PAPADOPOULOS, Kyriakos P.; BEERAM, Muralidhar; RASCO, Drew W.; HILTON, John F.. Efficacy and Safety of Abemaciclib, an Inhibitor of CDK4 and CDK6, for Patients with Breast Cancer, Non–Small Cell Lung Cancer, and Other Solid Tumors. Cancer Discovery, [S.L.], v. 6, n. 7, p. 740-753, 23 maio 2016. American Association for Cancer Research (AACR).

PRATT, M. M. et al. Polycyclic Aromatic Hydrocarbon (PAH) Exposure and DNA Adduct Semi-Quantitation in Archived Human Tissues Int. J. Environ. Res. Public Health. Bethesda, v.8, p.2675-2691. Junho, 2011.

RAPPSILBER, Juri; MANN, Matthias; ISHIHAMA, Yasushi. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nature Protocols, [s.l.], v. 2, n. 8, p.1896-1906, ago. 2007. Springer Science and Business Media LLC.

RUTKOVSKY, A. C. et al. Eukaryotic initiation factor 4E-binding protein as an oncogene in breast cancer. Bmc Cancer, [s.l.], v. 19, n. 1, p.1-15, 23 maio 2019. Springer Science and Business Media LLC.

SHANNON, P.. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, [s.l.], v. 13, n. 11, p.2498-2504, 1 nov. 2003. Cold Spring Harbor Laboratory.

TAO, G. et al. Effect of PARP-1 deficiency on DNA damage and repair in human bronchial epithelial cells exposed to Benzo(a)pyrene. Molecular Biology Reports, Guangzhou, v. 36, p.2413-2422, 2009.

THE GENE ONTOLOGY CONSORTIUM. Gene Ontology Consortium: going forward. Nucleic Acids Research, v. 28, p. 1049-1056, 2015.

TUNG, E. W.Y. et al. Benzo[α]pyrene increases DNA double strand break repair in vitro and in vivo: A possible mechanism for benzo[α]pyrene-induced toxicity. Mutation Research/genetic Toxicology And Environmental Mutagenesis, Ontario, v. 760, p.64-69, 2014.

TYANOVA, Stefka; TEMU, Tikira; COX, Juergen. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nature Protocols, [s.l.], v. 11, n. 12, p.2301-2319, 27 out. 2016. Springer Science and Business Media LLC.

TYANOVA, Stefka et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods, [s.l.], v. 13, n. 9, p.731-740, 27 jun. 2016. Springer Science and Business Media LLC.

VERMA, N. et al. Review on proteomic analyses of benzo[α]pyrene toxicity. Proteomics, Essen, v. 12, p.1731-1755, 2012.

YANG, M. et al. The emerging role of fumarate as an oncometabolite. Frontiers In Oncoloy, Oxford, v. 2, p.1-7, 2012.

YANG, W.; LU, Z. Regulation and function of pyruvate kinase M2 in cancer. Cancer Letters, Houston, v. 339, p.153-158, 2013.

YE, Chenyang; QI, Lina; LI, Xiaofen; WANG, Ji; YU, Jiekai; ZHOU, Biting; GUO, Cheng; CHEN, Jiani; ZHENG, Shu. Targeting the NAD+ salvage pathway suppresses APC mutation-driven colorectal cancer growth and Wnt/β-catenin signaling via increasing Axin level. **Cell** Communication And Signaling, [S.L.], v. 18, n. 1, p. 1-17, 31 jan. 2020. Springer Science and Business Media LLC.

YOSHINO, I. et al. Induction of epithelial-mesenchymal transition-related genes by benzo[α]pyrene in lung cancer cells. American Cancer Society, Fukuoka, v. 110, p.369-374, Julho, 2007.

WANG, Yan-Yang; ZHAO, Ren; ZHE, Hong. The emerging role of CaMKII in cancer. Oncotarget, [S.L.], v. 6, n. 14, p. 11725-11734, 29 abr. 2015. Impact Journals, LLC.

WANG, Y. et al. The Splicing Factor RBM4 Controls Apoptosis, Proliferation, and Migration to Suppress Tumor Progression. Cancer Cell, [s.l.], v. 26, n. 3, p.374-389, set. 2014. Elsevier BV.

WANG, Y. et al. Clusterin and neuropilin-2 as potential biomarkers of tumor progression in benzo[α]pyrene-transformed 16HBE cells xenografted nude mouse model. Chemico-biological Interactions, Beijing, v. 275, p.145-151, 2017.

WEISS, R. et al. Nicotinamide: a vitamin able to shift macrophage differentiation toward macrophages with restricted inflammatory features. Innate Immunity, [s.l.], v. 21, n. 8, p.813-826, 18 set. 2015. SAGE Publications.

WITHERSPOON, M. et al. ETHE1 overexpression promotes SIRT1 and PGC1 α mediated aerobic glycolysis, oxidative phosphorylation, mitochondrial biogenesis and colorectal cancer. Oncotarget, Nova Iorque, v. 10, n. 40, p.4004-4017, jun. 2019.

SHEN, W.; LIU, H.; YU, Y. Translation initiation proteins, ubiquitin–proteasome system related proteins, and 14-3-3 proteins as response proteins in FL cells exposed to anti-benzo[α]pyrene-7,8-dihydrodiol-9,10-epoxide. Proteomics, Hangzhou, v.8, p. 3450-3468. 2008

WORLD HEALTH ORGANIZATION. Global Cancer Observatory. Setembro, 2018. WÜNSCH, V. F. et al. Tobacco smoking and cancer in Brazil: evidence and prospects. Rev. Bras. Epidemiol, São Paulo, v.13(2) p.175-87. Junho, 2010.

ZENG, G. et al. Identification of Candidate Biomarkers for Early Detection of Human Lung Squamous Cell Cancer by Quantitative Proteomics. Molecular & Cellular Proteomicsmolecular & Cellular Proteomics, Changsha, v. 11, p.1-16, 2012.

ZHANG, H. et al. NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science, Lausanne, v. 1, p.1-14, 2016.

ZHAO, J. et al. LDHA promotes tumor metastasis by facilitating epithelial-mesenchymal transition in renal cell carcinoma. Molecular Medicine Reports, Shanghai, p.8335-8344, ago. 2017.

ZHAO, P. et al. In vitro malignant transformation of human bronchial epithelial cells induced by benzo(a)pyrene. Toxicology In Vitro, Beijin, v. 26, p.362-368, 2012.

ZHAO, P. et al. Label-free quantitative proteomic analysis of benzo(a)pyrenetransformed 16HBE cells serum-free culture supernatant and xenografted nude mice sera. Chemicobiological Interactions, Beijing, v. 245, p.39-49, 2016

ANEXO A

Lista de proteínas do cluster 2

ID	Proteínas do cluster 2	Gene
O00151	PDZ and LIM domain protein 1	PDLIM1
O00170	AH receptor-interacting protein	AIP
O00273	DNA fragmentation factor subunit alpha	DFFA
O00299	Chloride intracellular channel protein 1	CLIC1
O00622	Protein CYR61	CYR61
O15067	Phosphoribosylformylglycinamidine synthase	PFAS
O15355	Protein phosphatase 1G	PPM1G
O43396	Thioredoxin-like protein 1	TXNL1
O43598	2-deoxynucleoside 5-phosphate N-hydrolase 1	DNPH1
O60488	Long-chain-fatty-acidCoA ligase 4	ACSL4
O75131	Copine-3	CPNE3
O75312	Zinc finger protein ZPR1	ZPR1
O75390	Citrate synthase, mitochondrial	CS
O75717	WD repeat and HMG-box DNA-binding protein 1	WDHD1
O94903	Proline synthase co-transcribed bacterial homolog protein	PROSC
O95400	CD2 antigen cytoplasmic tail-binding protein 2	CD2BP2
O95757	Heat shock 70 kDa protein 4L	HSPA4L
O95816	BAG family molecular chaperone regulator 2	BAG2
O96000	NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10	NDUFB10
P00390	Glutathione reductase, mitochondrial	GSR
P00441	Superoxide dismutase [Cu-Zn]	SOD1
P00491	Purine nucleoside phosphorylase	PNP
P00568	Adenylate kinase isoenzyme 1	AK1
P02751	Fibronectin; Anastellin; Ugl-Y1; Ugl-Y2; Ugl-Y3	FN1
P04179	Superoxide dismutase [Mn], mitochondrial	SOD2
	Ornithine aminotransferase, mitochondrial; Ornithine aminotransferase, hepatic	
P04181	form;Ornithine aminotransferase, renal form	OAT
P04183	Thymidine kinase, cytosolic	TK1
P06493	Cyclin-dependent kinase 1	CDK1
P06576	ATP synthase subunit beta, mitochondrial	ATP5B
P06703	Protein S100-A6	S100A6
P06733	Alpha-enolase	ENO1
P06737	Glycogen phosphorylase, liver form	PYGL
P07195	L-lactate dehydrogenase B chain	LDHB
P07203	Glutathione peroxidase 1	GPX1
P07311	Acylphosphatase-1	ACYP1
D07000	Heat ah ash matein HCD 00 alsha	HSP90AA
P07900	Heat shock protein HSP 90-alpha	1
P07919	Cytochrome b-c1 complex subunit 6, mitochondrial	UQCRH
P07942	Laminin subunit beta-1	LAMB1
P07954	Fumarate hydratase, mitochondrial	FH
P08133	Annexin A6	ANXA6
P09012	U1 small nuclear ribonucleoprotein A	SNRPA
P09104	Gamma-enolase	ENO2
P09211	Glutathione S-transferase P	GSTP1
P09622	Dihydrolipoyl dehydrogenase, mitochondrial	DLD
P09936	Ubiquitin carboxyl-terminal hydrolase isozyme L1	UCHL1
P09960	Leukotriene A-4 hydrolase	LTA4H
P10253	Lysosomal alpha-glucosidase;76 kDa lysosomal alpha-glucosidase;70 kDa lysosomal alpha-glucosidase	GAA
P10809	60 kDa heat shock protein, mitochondrial	HSPD1
P11142	Heat shock cognate 71 kDa protein	HSPA8

ID	Proteínas do cluster 2	Gene
P11172	Uridine 5-monophosphate synthase;Orotate phosphoribosyltransferase;Orotidine 5- phosphate decarboxylase	UMPS
P11413		G6PD
P11413 P11766	Glucose-6-phosphate 1-dehydrogenase Alcohol dehydrogenase class-3	
P11700 P11908	Ribose-phosphate pyrophosphokinase 2	ADH5 PRPS2
P12081 P12268	HistidinetRNA ligase, cytoplasmic	HARS IMPDH2
P12208 P12532	Inosine-5-monophosphate dehydrogenase 2	CKMT1A
P12956	Creatine kinase U-type, mitochondrial X-ray repair cross-complementing protein 6	XRCC6
P12930 P13010	X-ray repair cross-complementing protein 5	XRCC5
P13611	Versican core protein	VCAN
P13804	Electron transfer flavoprotein subunit alpha, mitochondrial	ETFA
P14324	Farnesyl pyrophosphate synthase	FDPS
P14524 P14550	Alcohol dehydrogenase [NADP(+)]	AKR1A1
P15121	Aldose reductase	AKR1A1 AKR1B1
P15559	NAD(P)H dehydrogenase [quinone] 1	NQO1
P15927	Replication protein A 32 kDa subunit	RPA2
P16070	CD44 antigen	CD44
P17980	26S protease regulatory subunit 6A	PSMC3
P17980 P17987	T-complex protein 1 subunit alpha	TCP1
P21266	Glutathione S-transferase Mu 3	GSTM3
P21281	V-type proton ATPase subunit B, brain isoform	ATP6V1B
		2
P21399	Cytoplasmic aconitate hydratase	ACO1
P21980	Protein-glutamine gamma-glutamyltransferase 2	TGM2
P22570	NADPH:adrenodoxin oxidoreductase, mitochondrial	FDXR
P23921	Ribonucleoside-diphosphate reductase large subunit	RRM1
P24941	Cyclin-dependent kinase 2	CDK2
P25440	Bromodomain-containing protein 2	BRD2
P25705	ATP synthase subunit alpha, mitochondrial	ATP5A1
P25786	Proteasome subunit alpha type-1	PSMA1
P25787	Proteasome subunit alpha type-2	PSMA2
P25788	Proteasome subunit alpha type-3	PSMA3
P26885	Peptidyl-prolyl cis-trans isomerase FKBP2	FKBP2
P27694	Replication protein A 70 kDa DNA-binding subunit; Replication protein A 70 kDa DNA-binding subunit, N-terminally processed	RPA1
P27708	CAD protein; Glutamine-dependent carbamoyl-phosphate synthase; Aspartate carbamoyltransferase; Dihydroorotase	CAD
P28062	Proteasome subunit beta type-8	PSMB8
P28065	Proteasome subunit beta type-9	PSMB9
P28066	Proteasome subunit alpha type-5	PSMA5
P28070	Proteasome subunit beta type-4	PSMB4
P28072	Proteasome subunit beta type-6	PSMB6
P28838	Cytosol aminopeptidase	LAP3
P29218	Inositol monophosphatase 1	IMPA1
P29401	Transketolase	TKT
P29466	Caspase-1;Caspase-1 subunit p20;Caspase-1 subunit p10	CASP1
P30048	Thioredoxin-dependent peroxide reductase, mitochondrial	PRDX3
P30084	Enoyl-CoA hydratase, mitochondrial	ECHS1
P30085	UMP-CMP kinase	CMPK1
P30154	Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A beta isoform	PPP2R1B
P30740	Leukocyte elastase inhibitor	SERPINB 1
P31040	Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial	SDHA
P31150	Rab GDP dissociation inhibitor alpha	GDI1
P31350	Ribonucleoside-diphosphate reductase subunit M2	RRM2
P31689	DnaJ homolog subfamily A member 1	DNAJA1
P31930	Cytochrome b-c1 complex subunit 1, mitochondrial	UQCRC1

——————————————————————————————————————	Proteínas do cluster 2	Gene
	Bifunctional purine biosynthesis protein	
P31939	PURH;Phosphoribosylaminoimidazolecarboxamide formyltransferase;IMP cyclohydrolase	ATIC
P31942	Heterogeneous nuclear ribonucleoprotein H3	
P31948	Stress-induced-phosphoprotein 1	3 STIP1
P32119	Peroxiredoxin-2	PRDX2
P33240	Cleavage stimulation factor subunit 2	CSTF2
P33316	Deoxyuridine 5-triphosphate nucleotidohydrolase, mitochondrial	DUT
P34897	Serine hydroxymethyltransferase, mitochondrial	SHMT2
P35232	Prohibitin	PHB
P35237	Serpin B6	SERPINB 6
P35244	Replication protein A 14 kDa subunit	RPA3
P35580	Myosin-10	MYH10
P35613	Basigin	BSG
P35998	26S protease regulatory subunit 7	PSMC2
P36542	ATP synthase subunit gamma, mitochondrial	ATP5C1
	Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate	
P36957	dehydrogenase complex, mitochondrial	DLST
P37235; P84074	Hippocalcin-like protein 1; Neuron-specific calcium-binding protein hippocalcin	HPCAL1; HPCA
P37268	Squalene synthase	FDFT1
P38117	Electron transfer flavoprotein subunit beta	ETFB
P40227	T-complex protein 1 subunit zeta	CCT6A
P40261	Nicotinamide N-methyltransferase	NNMT
P40925	Malate dehydrogenase, cytoplasmic	MDH1
P40925	Malate dehydrogenase, mitochondrial	MDH1
F40920	Trifunctional enzyme subunit alpha, mitochondrial;Long-chain enoyl-CoA	MIDIIZ
P40939	hydratase;Long chain 3-hydroxyacyl-CoA dehydrogenase	HADHA
P42224	Signal transducer and activator of transcription 1-alpha/beta	STAT1
P42330	Aldo-keto reductase family 1 member C3	AKR1C3
P43490	Nicotinamide phosphoribosyltransferase	NAMPT
P45973	Chromobox protein homolog 5	CBX5
P46926	Glucosamine-6-phosphate isomerase 1	GNPDA1
P47895	Aldehyde dehydrogenase family 1 member A3	ALDH1A3
P48047	ATP synthase subunit O, mitochondrial	ATP5O
P48643	T-complex protein 1 subunit epsilon	CCT5
P49189	4-trimethylaminobutyraldehyde dehydrogenase	ALDH9A1
	Fatty acid synthase; [Acyl-carrier-protein] S-acetyltransferase; [Acyl-carrier-protein]	
P49327	S-malonyltransferase;3-oxoacyl-[acyl-carrier-protein] synthase;3-oxoacyl-[acyl-	FASN
	carrier-protein] reductase;3-hydroxyacyl-[acyl-carrier-protein] dehydratase;Enoyl-	
D40410	[acyl-carrier-protein] reductase;Oleoyl-[acyl-carrier-protein] hydrolase	ALDII7A1
P49419 P49591	Alpha-aminoadipic semialdehyde dehydrogenase	ALDH7A1
P49391 P49748	SerinetRNA ligase, cytoplasmic	SARS ACADVL
P49748 P49750	Very long-chain specific acyl-CoA dehydrogenase, mitochondrial YLP motif-containing protein 1	YLPM1
P49730 P50213	Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial	IDH3A
P50453	Serpin B9	SERPINB
		9
P50479	PDZ and LIM domain protein 4	PDLIM4
P50570	Dynamin-2	DNM2
P51114	Fragile X mental retardation syndrome-related protein 1	FXR1
P52292	Importin subunit alpha-1	KPNA2
P52298	Nuclear cap-binding protein subunit 2	NCBP2
P52594	Arf-GAP domain and FG repeat-containing protein 1	AGFG1
P52732	Kinesin-like protein KIF11	KIF11
P53634	Dipeptidyl peptidase 1;Dipeptidyl peptidase 1 exclusion domain chain;Dipeptidyl peptidase 1 heavy chain;Dipeptidyl peptidase 1 light chain	CTSC

ID	Proteínas do cluster 2	Gene
P54819	Adenylate kinase 2, mitochondrial; Adenylate kinase 2, mitochondrial, N-terminally processed	AK2
P54886	Delta-1-pyrroline-5-carboxylate synthase;Glutamate 5-kinase;Gamma-glutamyl phosphate reductase	
P55084	Trifunctional enzyme subunit beta, mitochondrial;3-ketoacyl-CoA thiolase	1 HADHB
Q5VTU8	ATP synthase subunit epsilon-like protein, mitochondrial; ATP synthase subunit	ATP5EP2;
;P56381	epsilon, mitochondrial	ATP5EF2,
P56537	Eukaryotic translation initiation factor 6	EIF6
P57076	UPF0769 protein C21orf59	C21orf59
P60900	Proteasome subunit alpha type-6	PSMA6
P61224;		
A6NIZ1	Ras-related protein Rap-1b;Ras-related protein Rap-1b-like protein	RAP1B
P61289	Proteasome activator complex subunit 3	PSME3 ATP6V0D
P61421	V-type proton ATPase subunit d 1	1
P61604	10 kDa heat shock protein, mitochondrial	HSPE1
P62195	26S protease regulatory subunit 8	PSMC5
P62316	Small nuclear ribonucleoprotein Sm D2	SNRPD2
P62937	Peptidyl-prolyl cis-trans isomerase A;Peptidyl-prolyl cis-trans isomerase A, N-terminally processed	PPIA
P67775	Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform	PPP2CA
P78347	General transcription factor II-I	GTF2I
P78371	T-complex protein 1 subunit beta	CCT2
P78417	Glutathione S-transferase omega-1	GSTO1
Q06830	Peroxiredoxin-1	PRDX1
Q07021	Complement component 1 Q subcomponent-binding protein, mitochondrial	C1QBP
Q08380	Galectin-3-binding protein	LGALS3B P
Q09028	Histone-binding protein RBBP4	RBBP4
Q12849	G-rich sequence factor 1	GRSF1
Q12931	Heat shock protein 75 kDa, mitochondrial	TRAP1
Q13011	Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial	ECH1
Q13112	Chromatin assembly factor 1 subunit B	CHAF1B
Q13347	Eukaryotic translation initiation factor 3 subunit I	EIF3I
Q13564	NEDD8-activating enzyme E1 regulatory subunit	NAE1
Q13751	Laminin subunit beta-3	LAMB3
Q13885	Tubulin beta-2A chain	TUBB2A
Q13907	Isopentenyl-diphosphate Delta-isomerase 1	IDI1
Q14166	Tubulintyrosine ligase-like protein 12	TTLL12
Q14694	Ubiquitin carboxyl-terminal hydrolase 10	USP10
Q14764	Major vault protein	MVP
Q14914	Prostaglandin reductase 1	PTGR1
Q14C86	GTPase-activating protein and VPS9 domain-containing protein 1	GAPVD1
Q15019	Septin-2	SEPT2
Q15024	Exosome complex component RRP42	EXOSC7
Q15029	116 kDa U5 small nuclear ribonucleoprotein component	EFTUD2
Q15369 Q15417	Transcription elongation factor B polypeptide 1 Calponin-3	TCEB1 CNN3
Q15417 Q15582	Calponin-3 Transforming growth factor-beta-induced protein ig-h3	TGFBI
Q15382 Q15785	Mitochondrial import receptor subunit TOM34	TOMM34
Q15783 Q15836	Vesicle-associated membrane protein 3	VAMP3
Q16222	UDP-N-acetylhexosamine pyrophosphorylase;UDP-N-acetylgalactosamine	UAP1
_	pyrophosphorylase; UDP-N-acetylglucosamine pyrophosphorylase	
Q16527	Cysteine and glycine-rich protein 2	CSRP2
Q16531	DNA damage-binding protein 1	DDB1 CDC37
Q16543 Q16576	Hsp90 co-chaperone Cdc37;Hsp90 co-chaperone Cdc37, N-terminally processed Histone-binding protein RBBP7	RBBP7
Q16576 Q16643	Drebrin	DBN1
Q16658	Fascin	FSCN1
<u> </u>	1 430.111	IDCIVI

ID	Proteínas do cluster 2	Gene
Q16718	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5	NDUFA5
Q16775	Hydroxyacylglutathione hydrolase, mitochondrial	HAGH
Q16881	Thioredoxin reductase 1, cytoplasmic	TXNRD1
Q49AR2	UPF0489 protein C5orf22	C5orf22
Q5TDH0	Protein DDI1 homolog 2	DDI2
Q6UXN 9	WD repeat-containing protein 82	WDR82
Q6YP21	Kynurenineoxoglutarate transaminase 3	CCBL2
Q8IV08	Phospholipase D3	PLD3
Q8IWE2	Protein NOXP20	FAM114A 1
Q8IWZ3	Ankyrin repeat and KH domain-containing protein 1	ANKHD1
Q8NFH4	Nucleoporin Nup37	NUP37
Q8TBC4	NEDD8-activating enzyme E1 catalytic subunit	UBA3
Q8WVJ2	NudC domain-containing protein 2	NUDCD2
Q8WW	Cytoglobin	CYGB
M9	Cytoglobiii	CIGB
Q8WXF 1	Paraspeckle component 1	PSPC1
Q92945	Far upstream element-binding protein 2	KHSRP
Q96AY3	Peptidyl-prolyl cis-trans isomerase FKBP10	FKBP10
Q96FW1	Ubiquitin thioesterase OTUB1	OTUB1
Q99623	Prohibitin-2	PHB2
Q99714	3-hydroxyacyl-CoA dehydrogenase type-2	HSD17B1 0
Q99873	Protein arginine N-methyltransferase 1	PRMT1
Q99988	Growth/differentiation factor 15	GDF15
Q9BV86	N-terminal Xaa-Pro-Lys N-methyltransferase 1;N-terminal Xaa-Pro-Lys N-methyltransferase 1, N-terminally processed	NTMT1
Q9BWD 1	Acetyl-CoA acetyltransferase, cytosolic	ACAT2
Q9BX68 Q9BXP5	Histidine triad nucleotide-binding protein 2, mitochondrial Serrate RNA effector molecule homolog	HINT2 SRRT
Q9GZS3	WD repeat-containing protein 61; WD repeat-containing protein 61, N-terminally processed	WDR61
Q9GZU8	Protein FAM192A	FAM192A
Q9H4A4	Aminopeptidase B	RNPEP
Q9H832	Ubiquitin-conjugating enzyme E2 Z	UBE2Z
Q9NPH2	Inositol-3-phosphate synthase 1	ISYNA1
Q9NQT4	Exosome complex component RRP46	EXOSC5
Q9NR45	Sialic acid synthase	NANS
Q9NR46	Endophilin-B2	SH3GLB2
Q9NRV9	Heme-binding protein 1	HEBP1
Q9NRY5	Protein FAM114A2	FAM114A 2
Q9NS69 Q9NUU	Mitochondrial import receptor subunit TOM22 homolog	TOMM22
7	ATP-dependent RNA helicase DDX19A	DDX19A
Q9NVP2	Histone chaperone ASF1B	ASF1B
Q9NWV 4	UPF0587 protein C1orf123	C1orf123
Q9P013	Spliceosome-associated protein CWC15 homolog	CWC15
Q9P258	Protein RCC2	RCC2
Q9P287	BRCA2 and CDKN1A-interacting protein	BCCIP
Q9UBR2	Cathepsin Z	CTSZ
Q9UBT2	SUMO-activating enzyme subunit 2	UBA2
Q9UHD 8	Septin-9	SEPT9
Q9UJZ1	Stomatin-like protein 2, mitochondrial	STOML2

ID	Proteínas do cluster 2	Gene
Q9UKV 3	Apoptotic chromatin condensation inducer in the nucleus	ACIN1
Q9UL46 Q9ULZ3	Proteasome activator complex subunit 2 Apoptosis-associated speck-like protein containing a CARD	PSME2 PYCARD
Q9UMS 4	Pre-mRNA-processing factor 19	PRPF19
Q9UNM 6	26S proteasome non-ATPase regulatory subunit 13	PSMD13
Q9UQ35	Serine/arginine repetitive matrix protein 2	SRRM2
Q9Y230	RuvB-like 2	RUVBL2
Q9Y237	Peptidyl-prolyl cis-trans isomerase NIMA-interacting 4	PIN4
Q9Y265	RuvB-like 1	RUVBL1
Q9Y2S6	Translation machinery-associated protein 7	TMA7
Q9Y2V2	Calcium-regulated heat stable protein 1	CARHSP1
Q9Y3Z3	Deoxynucleoside triphosphate triphosphohydrolase SAMHD1	SAMHD1
Q9Y5K5	Ubiquitin carboxyl-terminal hydrolase isozyme L5	UCHL5
Q9Y5P6	Mannose-1-phosphate guanyltransferase beta	GMPPB
Q9Y6A5	Transforming acidic coiled-coil-containing protein 3	TACC3

ANEXO B

Lista de proteínas do cluster 3

ID	Proteínas do cluster 3	Gene
O00115	Deoxyribonuclease-2-alpha	DNASE2
O00469	Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2	PLOD2
O00515	Ladinin-1	LAD1
O15027	Protein transport protein Sec16A	SEC16A
O15042	U2 snRNP-associated SURP motif-containing protein	U2SURP
O15231	Zinc finger protein 185	ZNF185
O15460	Prolyl 4-hydroxylase subunit alpha-2	P4HA2
O43175	D-3-phosphoglycerate dehydrogenase	PHGDH
O43488	Aflatoxin B1 aldehyde reductase member 2	AKR7A2
O43776	AsparaginetRNA ligase, cytoplasmic	NARS
O60437	Periplakin	PPL
O60506	Heterogeneous nuclear ribonucleoprotein Q	SYNCRIP
O60613	15 kDa selenoprotein	SEP15
Q99880;Q99879;Q 99877;Q93079;Q5 QNW6;P62807;P58 876;P57053;O6081 4;Q96A08	Histone H2B type 1-L;Histone H2B type 1-M;Histone H2B type 1-N;Histone H2B type 1-H;Histone H2B type 2-F;Histone H2B type 1-C/E/F/G/I;Histone H2B type 1-D;Histone H2B type F-S;Histone H2B type 1-K;Histone H2B type 1-A	HIST1H2BL;HIST1H2BM;H IST1H2BN;HIST1H2BH;HIS T2H2BF;HIST1H2BC;HIST1 H2BD;H2BFS;HIST1H2BK; HIST1H2BA
O76021	Ribosomal L1 domain-containing protein 1	RSL1D1
O95758	Polypyrimidine tract-binding protein 3	PTBP3
P00966	Argininosuccinate synthase	ASS1
P02545	Prelamin-A/C;Lamin-A/C	LMNA
P04083	Annexin A1	ANXA1
P04406	Glyceraldehyde-3-phosphate dehydrogenase	GAPDH
P04637	Cellular tumor antigen p53	TP53
P04792	Heat shock protein beta-1	HSPB1
Q93077;Q7L7L0;P 04908	Histone H2A type 1-C;Histone H2A type 3;Histone H2A type 1-B/E	HIST1H2AC;HIST3H2A;HIS T1H2AB
P05387	60S acidic ribosomal protein P2	RPLP2
P05388;Q8NHW5	60S acidic ribosomal protein P0;60S acidic ribosomal protein P0-like	RPLP0;RPLP0P6
Q16778;P33778;P2 3527;P06899;Q8N2 57	Histone H2B type 2-E;Histone H2B type 1-B;Histone H2B type 1-O;Histone H2B type 1-J;Histone H2B type 3-B	HIST2H2BE;HIST1H2BB;HI ST1H2BO;HIST1H2BJ;HIST 3H2BB
P07237	Protein disulfide-isomerase	P4HB
P07858	Cathepsin B;Cathepsin B light chain;Cathepsin B heavy chain	CTSB
P08243	Asparagine synthetase [glutamine-hydrolyzing]	ASNS
P08708	40S ribosomal protein S17	RPS17
P09493	Tropomyosin alpha-1 chain	TPM1
Q99878;Q96KK5; Q9BTM1;Q16777; Q6FI13;P20671;P0 C0S8	Histone H2A type 1-J;Histone H2A type 1-H;Histone H2A.J;Histone H2A type 2-C;Histone H2A type 2-A;Histone H2A type 1-D;Histone H2A type 1	HIST1H2AJ;HIST1H2AH;H 2AFJ;HIST2H2AC;HIST2H2 AA3;HIST1H2AD;HIST1H2 AG
P0DMV9;P0DMV8	Heat shock 70 kDa protein 1B;Heat shock 70 kDa	HSPA1B;HSPA1A

ID	Proteínas do cluster 3	Gene
	protein 1A	
P11717	Cation-independent mannose-6-phosphate receptor	IGF2R
P12429	Annexin A3	ANXA3
P12955	Xaa-Pro dipeptidase	PEPD
P13489	Ribonuclease inhibitor	RNH1
P13674	Prolyl 4-hydroxylase subunit alpha-1	P4HA1
Q5VT79;P13928	Annexin A8-like protein 2; Annexin A8	ANXA8L2;ANXA8
P14209	CD99 antigen	CD99
P14854	Cytochrome c oxidase subunit 6B1	COX6B1
P15880	40S ribosomal protein S2	RPS2
P15924	Desmoplakin	DSP
P17858	ATP-dependent 6-phosphofructokinase, liver type	PFKL
P18077	60S ribosomal protein L35a	RPL35A
P18621	60S ribosomal protein L17	RPL17
P20700	Lamin-B1	LMNB1
P23193	Transcription elongation factor A protein 1	TCEA1
P23246	Splicing factor, proline- and glutamine-rich	SFPQ
P23396	40S ribosomal protein S3	RPS3
P26583	High mobility group protein B2	HMGB2
P27635	60S ribosomal protein L10	RPL10
P30043	Flavin reductase (NADPH)	BLVRB
P30050	60S ribosomal protein L12	RPL12
P30101	Protein disulfide-isomerase A3	PDIA3
P31947	14-3-3 protein sigma	SFN
P32969	60S ribosomal protein L9	RPL9
P35221	Catenin alpha-1	CTNNA1
P35268	60S ribosomal protein L22	RPL22
P36578	60S ribosomal protein L4	RPL4
P39019	40S ribosomal protein S19	RPS19
P39023	60S ribosomal protein L3	RPL3
240429;Q6NVV1	60S ribosomal protein L13a;Putative 60S ribosomal protein L13a protein RPL13AP3	RPL13A;RPL13AP3
P40763	Signal transducer and activator of transcription 3	STAT3
P41091;Q2VIR3	Eukaryotic translation initiation factor 2 subunit 3;Putative eukaryotic translation initiation factor 2 subunit 3-like protein	EIF2S3;EIF2S3L
P41227	N-alpha-acetyltransferase 10	NAA10
P41250	GlycinetRNA ligase	GARS
P41252	IsoleucinetRNA ligase, cytoplasmic	IARS
P41567	Eukaryotic translation initiation factor 1	EIF1
P43243	Matrin-3	MATR3
P46776	60S ribosomal protein L27a	RPL27A
P46777	60S ribosomal protein L5	RPL5
P46778	60S ribosomal protein L21	RPL21
P46779	60S ribosomal protein L28	RPL28
P46781	40S ribosomal protein S9	RPS9

ID	Proteínas do cluster 3	Gene
P46783	40S ribosomal protein S10	RPS10
P46821	Microtubule-associated protein 1B;MAP1B heavy chain;MAP1 light chain LC1	MAP1B
P46940	Ras GTPase-activating-like protein IQGAP1	IQGAP1
P47756	F-actin-capping protein subunit beta	CAPZB
P49207	60S ribosomal protein L34	RPL34
P49257	Protein ERGIC-53	LMAN1
P49588	AlaninetRNA ligase, cytoplasmic	AARS
P49589	CysteinetRNA ligase, cytoplasmic	CARS
P49755	Transmembrane emp24 domain-containing protein 10	TMED10
P50454	Serpin H1	SERPINH1
P50895	Basal cell adhesion molecule	BCAM
P51148	Ras-related protein Rab-5C	RAB5C
P51452	Dual specificity protein phosphatase 3	DUSP3
P52943	Cysteine-rich protein 2	CRIP2
P54577	TyrosinetRNA ligase, cytoplasmic;TyrosinetRNA ligase, cytoplasmic, N-terminally processed	YARS
P55010	Eukaryotic translation initiation factor 5	EIF5
P56545	C-terminal-binding protein 2	CTBP2
P58107	Epiplakin	EPPK1
P60953	Cell division control protein 42 homolog	CDC42
61019;Q8WUD1	Ras-related protein Rab-2A;Ras-related protein Rab-2B	RAB2A;RAB2B
P61106	Ras-related protein Rab-14	RAB14
P61158	Actin-related protein 3	ACTR3
P61160	Actin-related protein 2	ACTR2
P61247	40S ribosomal protein S3a	RPS3A
261254;Q9UNX3	60S ribosomal protein L26;60S ribosomal protein L26-like 1	RPL26;RPL26L1
P61313	60S ribosomal protein L15	RPL15
P61353	60S ribosomal protein L27	RPL27
P61513	60S ribosomal protein L37a	RPL37A
P62241	40S ribosomal protein S8	RPS8
P62244	40S ribosomal protein S15a	RPS15A
P62249	40S ribosomal protein S16	RPS16
P62269	40S ribosomal protein S18	RPS18
P62273	40S ribosomal protein S29	RPS29
P62277	40S ribosomal protein S13	RPS13
P62280	40S ribosomal protein S11	RPS11
P62424	60S ribosomal protein L7a	RPL7A
P62701	40S ribosomal protein S4, X isoform	RPS4X
P62750	60S ribosomal protein L23a	RPL23A
P62826	GTP-binding nuclear protein Ran	RAN
P62829	60S ribosomal protein L23	RPL23
P62847	40S ribosomal protein S24	RPS24
P62851	40S ribosomal protein S25	RPS25
P62888	60S ribosomal protein L30	RPL30

ID	Proteínas do cluster 3	Gene
P62906	60S ribosomal protein L10a	RPL10A
P62910	60S ribosomal protein L32	RPL32
P62913	60S ribosomal protein L11	RPL11
P62917	60S ribosomal protein L8	RPL8
P63104	14-3-3 protein zeta/delta	YWHAZ
P63151	Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform	PPP2R2A
P63173	60S ribosomal protein L38	RPL38
P68104;Q5VTE0	Elongation factor 1-alpha 1;Putative elongation factor 1-alpha-like 3	EEF1A1;EEF1A1P5
P78330	Phosphoserine phosphatase	PSPH
Q01082	Spectrin beta chain, non-erythrocytic 1	SPTBN1
Q02543	60S ribosomal protein L18a	RPL18A
Q02809	Procollagen-lysine,2-oxoglutarate 5-dioxygenase 1	PLOD1
Q02878	60S ribosomal protein L6	RPL6
Q03135	Caveolin-1	CAV1
Q03252	Lamin-B2	LMNB2
Q05682	Caldesmon	CALD1
Q06210	Glutaminefructose-6-phosphate aminotransferase [isomerizing] 1	GFPT1
Q07020	60S ribosomal protein L18	RPL18
Q09666	Neuroblast differentiation-associated protein AHNAK	AHNAK
Q13162	Peroxiredoxin-4	PRDX4
Q13188	Serine/threonine-protein kinase 3;Serine/threonine- protein kinase 3 36kDa subunit;Serine/threonine- protein kinase 3 20kDa subunit	STK3
Q13217	DnaJ homolog subfamily C member 3	DNAJC3
Q13740	CD166 antigen	ALCAM
Q13813	Spectrin alpha chain, non-erythrocytic 1	SPTAN1
Q14103	Heterogeneous nuclear ribonucleoprotein D0	HNRNPD
Q14258	E3 ubiquitin/ISG15 ligase TRIM25	TRIM25
Q14697	Neutral alpha-glucosidase AB	GANAB
Q15075	Early endosome antigen 1	EEA1
Q15084	Protein disulfide-isomerase A6	PDIA6
Q15102	Platelet-activating factor acetylhydrolase IB subunit gamma	PAFAH1B3
Q15126	Phosphomevalonate kinase	PMVK
Q15149	Plectin	PLEC
Q15437	Protein transport protein Sec23B	SEC23B
Q15642	Cdc42-interacting protein 4	TRIP10
Q16822	Phosphoenolpyruvate carboxykinase [GTP], mitochondrial	PCK2
Q5JPE7;Q15155;P 69849	Nodal modulator 2;Nodal modulator 1;Nodal modulator 3	NOMO2;NOMO1;NOMO3
Q63ZY3	KN motif and ankyrin repeat domain-containing protein 2	KANK2
Q6NZI2	Polymerase I and transcript release factor	PTRF
Q6YHK3	CD109 antigen	CD109
Q7KZF4	Staphylococcal nuclease domain-containing protein 1	SND1

ID	Proteínas do cluster 3	Gene
Q8IVF2	Protein AHNAK2	AHNAK2
Q8IXH7	Negative elongation factor C/D	NELFCD
Q8IY81	pre-rRNA processing protein FTSJ3	FTSJ3
Q8NF91	Nesprin-1	SYNE1
Q8TDN6	Ribosome biogenesis protein BRX1 homolog	BRIX1
Q8WUM4	Programmed cell death 6-interacting protein	PDCD6IP
Q92522	Histone H1x	H1FX
Q92597	Protein NDRG1	NDRG1
Q92841	Probable ATP-dependent RNA helicase DDX17	DDX17
Q93052	Lipoma-preferred partner	LPP
Q96AE4	Far upstream element-binding protein 1	FUBP1
Q96HC4	PDZ and LIM domain protein 5	PDLIM5
Q96HE7	ERO1-like protein alpha	ERO1L
Q96SB4	SRSF protein kinase 1	SRPK1
Q99848	Probable rRNA-processing protein EBP2	EBNA1BP2
Q99961	Endophilin-A2	SH3GL1
Q9BUJ2	Heterogeneous nuclear ribonucleoprotein U-like protein 1	HNRNPUL1
Q9BZE9	Tether containing UBX domain for GLUT4	ASPSCR1
Q9BZQ8	Protein Niban	FAM129A
Q9C0C2	182 kDa tankyrase-1-binding protein	TNKS1BP1
Q9H307	Pinin	PNN
Q9NR56	Muscleblind-like protein 1	MBNL1
Q9NYL9	Tropomodulin-3	TMOD3
Q9UGI8	Testin	TES
Q9UGV2	Protein NDRG3	NDRG3
Q9UK22	F-box only protein 2	FBXO2
Q9UKD2	mRNA turnover protein 4 homolog	MRTO4
Q9Y3A5	Ribosome maturation protein SBDS	SBDS
Q9Y3B3	Transmembrane emp24 domain-containing protein 7	TMED7
Q9Y3U8	60S ribosomal protein L36	RPL36
Q9Y490	Talin-1	TLN1
Q9Y4L1	Hypoxia up-regulated protein 1	HYOU1
Q9Y617	Phosphoserine aminotransferase	PSAT1
Q9Y696	Chloride intracellular channel protein 4	CLIC4