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Abstract

Mediastinal masses can present with symptoms, signs, and syndromes or incidentally. Selecting the appropriate diagnostic imaging study
for mediastinal mass evaluation requires awareness of the strengths and weaknesses of the various imaging modalities with regard to tissue
characterization, soft tissue contrast, and surveillance. This publication expounds on the differences between chest radiography, CT,
PET/CT, ultrasound, and MRI in terms of their ability to decipher and surveil mediastinal masses. Making the optimal imaging choice
can yield diagnostic specificity, avert unnecessary biopsy and surgery, guide the interventionist when necessary, and serve as a means of
surveillance for probably benign, but indeterminate mediastinal masses.
The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually

by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer
reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations
Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios.
In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.
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Variant 1. Clinically suspected mediastinal mass. Initial imaging.

Procedure Appropriateness Category Relative Radiation Level

Radiography chest Usually Appropriate ☢

MRI chest without and with IV contrast Usually Appropriate O

MRI chest without IV contrast Usually Appropriate O

CT chest with IV contrast Usually Appropriate ☢☢☢

CT chest without IV contrast Usually Appropriate ☢☢☢

US chest Usually Not Appropriate O

Image-guided transthoracic needle biopsy Usually Not Appropriate Varies

CT chest without and with IV contrast Usually Not Appropriate ☢☢☢

FDG-PET/CT skull base to mid-thigh Usually Not Appropriate ☢☢☢☢

Variant 2. Indeterminate mediastinal mass on radiography. Next imaging study.

Procedure Appropriateness Category Relative Radiation Level

MRI chest without and with IV contrast Usually Appropriate O

MRI chest without IV contrast Usually Appropriate O

CT chest with IV contrast Usually Appropriate ☢☢☢

CT chest without IV contrast Usually Appropriate ☢☢☢

US chest Usually Not Appropriate O

Image-guided transthoracic needle biopsy Usually Not Appropriate Varies

CT chest without and with IV contrast Usually Not Appropriate ☢☢☢

FDG-PET/CT skull base to mid-thigh Usually Not Appropriate ☢☢☢☢

ACR Appropriateness Criteria� Imaging of Mediastinal Masses. Variants 1 to 5 and Tables 1 and 2.
Variant 3. Indeterminate mediastinal mass on CT. Next imaging study.

Procedure Appropriateness Category Relative Radiation Level

MRI chest without and with IV contrast Usually Appropriate O

MRI chest without IV contrast Usually Appropriate O

Image-guided transthoracic needle biopsy May Be Appropriate Varies

FDG-PET/CT skull base to mid-thigh May Be Appropriate ☢☢☢☢

US chest Usually Not Appropriate O

Radiography chest Usually Not Appropriate ☢
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Variant 4. Indeterminate mediastinal mass on FDG-PET/CT. Next imaging study.

Procedure Appropriateness Category Relative Radiation Level

Image-guided transthoracic needle biopsy Usually Appropriate Varies

MRI chest without and with IV contrast Usually Appropriate O

MRI chest without IV contrast Usually Appropriate O

CT chest with IV contrast May Be Appropriate ☢☢☢

US chest Usually Not Appropriate O

Radiography chest Usually Not Appropriate ☢

CT chest without and with IV contrast Usually Not Appropriate ☢☢☢

CT chest without IV contrast Usually Not Appropriate ☢☢☢

Variant 5. Indeterminate mediastinal mass on MRI. Next imaging study or surveillance.

Procedure Appropriateness Category Relative Radiation Level

Image-guided transthoracic needle biopsy Usually Appropriate Varies

MRI chest without and with IV contrast Usually Appropriate O

MRI chest without IV contrast May Be Appropriate O

CT chest with IV contrast May Be Appropriate ☢☢☢

CT chest without IV contrast May Be Appropriate ☢☢☢

FDG-PET/CT skull base to mid-thigh May Be Appropriate ☢☢☢☢

US chest Usually Not Appropriate O

Radiography chest Usually Not Appropriate ☢

CT chest without and with IV contrast Usually Not Appropriate ☢☢☢

Table 1. Appropriateness category names and definitions

Appropriateness Category
Name

Appropriateness
Rating Appropriateness Category Definition

Usually Appropriate 7, 8, or 9 The imaging procedure or treatment is indicated in the specified
clinical scenarios at a favorable risk-benefit ratio for patients.

May Be Appropriate 4, 5, or 6 The imaging procedure or treatment may be indicated in the
specified clinical scenarios as an alternative to imaging
procedures or treatments with a more favorable risk-benefit ratio,
or the risk-benefit ratio for patients is equivocal.

May Be Appropriate
(Disagreement)

5 The individual ratings are too dispersed from the panel median. The
different label provides transparency regarding the panel’s
recommendation. “May be appropriate” is the rating category
and a rating of 5 is assigned.

Usually Not Appropriate 1, 2, or 3 The imaging procedure or treatment is unlikely to be indicated in the
specified clinical scenarios, or the risk-benefit ratio for patients is
likely to be unfavorable.
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Table 2. Relative radiation level designations

RRL Adult Effective Dose Estimate Range (mSv) Pediatric Effective Dose Estimate Range (mSv)

O 0 0

☢ <0.1 <0.03

☢☢ 0.1-1 0.03-0.3

☢☢☢ 1-10 0.3-3

☢☢☢☢ 10-30 3-10

☢☢☢☢☢ 30-100 10-30

Note: Relative radiation level (RRL) assignments for some of the examinations cannot be made, because the actual patient doses in these
procedures vary as a function of a number of factors (eg, region of the body exposed to ionizing radiation, the imaging guidance that is
used). The RRLs for these examinations are designated as “varies.”
SUMMARY OF LITERATURE REVIEW

Introduction/Background
Although the true prevalence of mediastinal masses is not
known, a 0.9% prevalence of anterior or prevascular medi-
astinal masses was found among the 2,571 chest CTs of the
51% female cohort of the Framingham Heart Study, with a
mean age of 59 years [1]. A 0.73% prevalence of prevascular
mediastinal nodules was found on the chest CTs of a 63%
male cohort (n ¼ 56,358 participants), with a mean age of
52 years, undergoing baseline low-dose chest CT for routine
health surveillance [2]. A 4% prevalence of mediastinal
masses was found on 589 CT pulmonary angiograms in a
63% female cohort with a mean age of 53 years [3]. On
baseline lung cancer screening in the Early Lung Cancer
Action Project, a 0.77% mediastinal mass prevalence was
found in a cohort of 9,263 patients that was 51% female
and had a median age of 65 years [4].

Although many mediastinal nodules or masses may
present as incidental findings on chest radiographs and
cross-sectional imaging, others present with symptoms,
signs, and syndromes that include chest pain, cough, dys-
pnea, dysphagia, cardiac tamponade, diaphragmatic paraly-
sis, central venous thrombosis, superior vena cava syndrome,
B symptoms in the setting of lymphoma, myasthenia gravis,
and other paraneoplastic syndromes. Other mediastinal
masses present during staging and treatment of a known
malignancy, including metastatic spread of disease to the
mediastinum, rebound thymic hyperplasia, and acquired
thymic cysts. Mediastinal lesions are also detected on lung
cancer screening CTs [4] and during screening by cross-
sectional imaging for patients with genetic mutations pre-
disposing toward mediastinal masses, such as the succinate
dehydrogenase subunits B and D mutations for para-
gangliomas [5,6] and the anti–N-methyl D-aspartate
receptor antibody for teratomas [7]. Because mediastinal
S40
masses are so varied, not only in terms of benignity and
malignancy but also in terms of their behavior, a general
statement regarding their clinical course and treatment
cannot be made.

Localization of a mediastinal mass to 1 of the 3 medias-
tinal compartments by chest radiography and cross-sectional
imaging can narrow the differential diagnosis [8,9]. Cross-
sectional imaging, by its very nature, can more definitively
localize a lesion to a mediastinal compartment—hence the
more recently prescribed use of cross-sectional imaging,
rather than chest radiography, for definition of mediastinal
compartments [10] and the use of new descriptive terms for
the 3 mediastinal compartments—prevascular, visceral, and
paravertebral—in lieu of anterior, middle, and posterior.
A recently published international multi-institutional study
confirmed the most common prevascular mediastinal lesions
to be thymomas (28%), benign cysts (20%), and lymphomas
(16%). Benign cysts were most common in the visceral
compartment and neurogenic tumors were most common
in the paravertebral compartment [11].

The classic imaging approach to mediastinal mass eval-
uation found on radiography has generally entailed a step-
wise progression from chest radiography to CT [12-15] to
diagnostic intervention when needed [16,17], with or
without an intervening PET/CT. However, more recent
recognition of the long-literature-supported ability of MRI
to characterize tissue and add diagnostic specificity [18-23],
prevent unnecessary biopsy and surgery [24-26], and modify
and guide the approach to biopsy and surgery [27] has
moved MRI into a valued position in terms of workup
and triage of these lesions [28-33].
Special Imaging Considerations
For indeterminate hypervascular mediastinal masses on CT
and MRI in typical locations for paraganglioma, Ga-68-
Journal of the American College of Radiology
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DOTATATE has the potential to make a specific diagnosis
[34]; however, such additional testing may not be necessary if
surgery is planned, regardless of histopathology. The role of
Ga-68-DOTATATE PET/CT in the clinical management
of thymic epithelial tumors (TETs) and the differentiation of
neuroendocrine from non-neuroendocrine tumors needs
further clarification, as somatostatin receptors are present in
normal thymus and most TETs [35-37]. If ectopic thyroid
tissue is a diagnostic consideration for an indeterminate
prevascular or visceral mediastinal mass, Tc-99m pertechne-
tate or I-123 scintigraphy can be performed and can yield a
specific diagnosis, although I-123 scintigraphy may be pref-
erable because of its higher uptake in thyroid tissue and less
background activity [38]. If extramedullary hematopoiesis is a
diagnostic consideration for a paravertebral mass or multiple
paravertebral masses, then Tc-99m sulfur colloid scintig-
raphy can be performed and can yield a specific diagnosis
[39]. Imaging of parathyroid adenomas will be covered in a
separate ACR Appropriateness Criteria� topic on
“Parathyroid Adenoma” and therefore will not be discussed
here.
Initial Imaging Definition
Initial imaging is defined as imaging at the beginning of the
care episode for the medical condition defined by the
variant. More than one procedure can be considered usually
appropriate in the initial imaging evaluation when:

n There are procedures that are equivalent alternatives (ie,
only one procedure will be ordered to provide the clinical
information to effectively manage the patient’s care)

OR

n There are complementary procedures (ie, more than one
procedure is ordered as a set or simultaneously in which
each procedure provides unique clinical information to
effectively manage the patient’s care).
DISCUSSION OF PROCEDURES BY VARIANT

Variant 1: Clinically suspected mediastinal
mass. Initial imaging

CT Chest. Cross-sectional imaging can more definitively
localize a lesion to a mediastinal compartment than chest
radiography. Further tissue characterization of mediastinal
masses beyond chest radiography is achievable by CT, which
can demonstrate and distinguish not only calcium and
macroscopic fat but also water attenuation fluid, permitting
noninvasive diagnosis of many mature teratomas [40]. Pre-
and postcontrast conventional CT or dual-energy CT can
show enhancing cellular components of lesions [41,42];
however, the soft tissue contrast of CT is sometimes
Journal of the American College of Radiology
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insufficient. For example, benign hyperattenuating thymic
cysts on CT can be misinterpreted as thymomas, leading to
unnecessary thymectomy [24]. Not infrequently, a
mediastinal lesion is indeterminate by CT and requires
further workup.

CT is superior to chest radiography for detection of
invasion of the mass across tissue planes, secondary to its
higher contrast resolution. Invasion of adjacent large blood
vessels and the chest wall is important to identify, as it is
associated with a higher probability of incomplete surgical
resection of primary malignant mediastinal masses [43]. In
addition, it can direct surgery when still planned and, in
other cases, direct toward other forms of clinical
management, including neoadjuvant chemotherapy and
radiation therapy. As a supplement to static assessment of
tissue plane transgression, which can be difficult, dynamic
CT [44] during free-breathing or cinematic cardiac gating,
can be performed to assess movement of the mass relative to
adjacent structures and confirm or exclude adherence of the
mass to adjacent structures; however, dynamic MRI during
free-breathing can accomplish the same task [45-48]. MRI
remains superior to CT for detection of invasion of the
mass across tissue planes, including the chest wall and
diaphragm, and involvement of neurovascular structures,
secondary to its higher soft tissue contrast [49-52].

FDG-PET/CT Skull Base to Mid-Thigh. Fluorine-18-
2-fluoro-2-deoxy-D-glucose (FDG)-PET/CT offers limited
additional value beyond that of conventional CT in the
initial assessment of mediastinal masses [53], with the
exception of its use for primary mediastinal lymphoma
staging and surveillance and detection of metastatic
lymphadenopathy, the latter of which is not within the
scope of this topic. With regard to prevascular mediastinal
masses, a negative FDG-PET/CT has been shown to be
helpful in excluding malignancy; however, a positive FDG-
PET/CT has little value for discrimination between benign
and malignant lesions [53]. The frequent FDG-PET/CT
avidity of normal and hyperplastic thymus [54] is a
confounder in FDG-PET/CT assessment of the pre-
vascular mediastinum. Benign thymic cysts can also be
FDG-PET/CT-avid [42]. Combined use of FDG-PET/CT
and dynamic contrast-enhanced (DCE) MRI has been
shown to be helpful to distinguish prevascular mediastinal
solid tumors from one another [55]. Higher standardized
uptake values (SUVs) on FDG-PET/CT are more
frequently found in high-risk thymoma, thymic carcinoma,
and lymphoma than in low-risk thymoma [55-57].

MRI Chest. MRI allows further tissue characterization of
mediastinal masses beyond that of CT [21] and FDG-PET/
CT because of its ability to detect not only serous fluid and
macroscopic fat [58,59] but also hemorrhagic and
S41



proteinaceous fluid [19,24], microscopic or intravoxel fat
[22,60,61], cartilage [62,63], smooth muscle [64,65], and
fibrous material [66-68], though not calcium. MRI can
prove the cystic nature of an indeterminate, non–water
attenuation thymic mass on CT, preventing unnecessary
biopsy and thymectomy [20,21,24,69]. The ability of MRI
to distinguish cystic from solid lesions definitively carries
diagnostic importance in all compartments of the
mediastinum. MRI can also show sites of restricted
diffusion of water within lesions by employing diffusion-
weighted imaging (DWI), further assisting in lesion char-
acterization [70,71] DCE and postprocessed subtraction
imaging can be used for further differentiation of lesions
[55,72] and direction of biopsy toward areas of cellularity
as opposed to hemorrhagic necrosis, the latter of which
can be hyperattenuating and mimic solid tissue on CT.
MRI is more useful than CT for evaluation of neurogenic
tumors, because of its better depiction of neural and
spinal involvement [73] and can be helpful in
distinguishing schwannomas, neurofibromas, and
ganglioneuromas [74-77], all of which may appear similar
on CT. MRI can distinguish normal and hyperplastic
thymus from thymic tumors and lymphoma, whether by
chemical-shift MRI in adults [22,61] or by DWI with
apparent diffusion coefficient (ADC) mapping [78,79],
the latter with potential to make this distinction in all age
groups. MRI can also help differentiate low-risk from
high-risk thymomas, thymic carcinoma, and lymphoma
by the DCE pattern of these lesions [72] and by DWI [71].
CT currently cannot achieve this degree of tissue
characterization.

Cross-sectional imaging by MRI remains superior to CT
for detection of invasion of the mass across tissue planes,
including the chest wall and diaphragm, and involvement of
neurovascular structures, secondary to its higher soft tissue
contrast [48-52]. As a supplement to static assessment of
tissue plane transgression, dynamic MRI [45-48] during
free-breathing or cinematic cardiac gating can be per-
formed to assess movement of the mass relative to adjacent
structures, confirm or exclude adherence of the mass to
adjacent structures, and observe diaphragmatic motion in
real time [80-84]; paradoxical motion or lack of motion can
indicate phrenic nerve involvement by the mediastinal mass,
without the need to perform a subsequent fluoroscopic sniff
test.

Radiography Chest. When there is a clinically suspected
mediastinal mass, it is reasonable to perform a chest radio-
graph as an initial imaging step. Chest radiography can help
localize a mass to a specific mediastinal compartment and
thereby narrow the differential diagnosis [85-88]. It can also
show any associated pleural, lung, and bone findings to
S42
some extent. Chest radiography offers limited assistance
regarding tissue characterization of mediastinal masses,
with the exception of its occasional demonstration of
calcium within a lesion.

US Chest. There is little relevant literature to support the
use of ultrasound (US) in the initial evaluation of a clinically
suspected mediastinal mass. Because of the limited trans-
thoracic sonographic window, US would not be useful to
screen for a clinically suspected mediastinal mass. Trans-
thoracic US can be used to evaluate mediastinal masses,
when accessible to the sonographic window, delineating
their size, location, cystic versus solid nature, relationship to
important vascular structures, and vascularity, with some
diagnostic potential [89]. Endoscopic US can similarly
evaluate mediastinal masses when encompassed in the
sonographic window [90]. The tissue characterization
capability of US is inferior to MRI but not to CT.

Image-Guided Transthoracic Needle Biopsy. Image-
guided transthoracic needle biopsy is not a form of initial
imaging.
Variant 2: Indeterminate mediastinal mass on
radiography. Next imaging study

CT Chest. Cross-sectional imaging, by its very nature, can
more definitively localize a lesion to a mediastinal
compartment than chest radiography. Further tissue char-
acterization of mediastinal masses beyond chest radiography
is achievable by CT, which can demonstrate and distinguish
not only calcium and macroscopic fat but also water
attenuation fluid, thus permitting noninvasive diagnosis of
many mature teratomas [40]. Pre- and postcontrast
conventional CT or dual-energy CT can show enhancing,
cellular components of lesions [41,42]; however, the soft
tissue contrast of CT is sometimes insufficient. For
example, benign hyperattenuating thymic cysts on CT can
be misinterpreted as thymomas, leading to unnecessary
thymectomy [24]. Not infrequently, a mediastinal lesion is
indeterminate by CT and requires further workup.

CT is superior to chest radiography for detection of
invasion of the mass across tissue planes, secondary to its
higher contrast resolution. Invasion of adjacent large blood
vessels and the chest wall is important to identify, as it is
associated with a higher probability of incomplete surgical
resection of primary malignant mediastinal masses [43]. In
addition, it can direct surgery when still planned, and in
other cases, direct toward other forms of clinical
management, including neoadjuvant chemotherapy and
radiation therapy. As a supplement to static assessment of
tissue plane transgression, which can be difficult, dynamic
CT [44] during free-breathing or cinematic cardiac gating
Journal of the American College of Radiology
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can be performed to assess movement of the mass relative to
adjacent structures and to confirm or exclude adherence of
the mass to adjacent structures; however, dynamic MRI
during free-breathing can accomplish the same task [45-48].
MRI remains superior to CT for detection of invasion of the
mass across tissue planes, including the chest wall and
diaphragm, and involvement of neurovascular structures,
secondary to its higher soft tissue contrast [49-52].

FDG-PET/CT Skull Base to Mid-Thigh. FDG-PET/
CT offers limited additional value beyond that of conven-
tional CT in the assessment of mediastinal masses [53], with
the exception of its use for primary mediastinal lymphoma
staging and surveillance and detection of metastatic
lymphadenopathy, the latter of which is not within the
scope of this topic. FDG-PET/CT has become the stan-
dard for staging and assessment of treatment response for
lymphomas that are FDG-PET-avid at baseline or at the
time of recurrence [91-97]. A caveat is that although a
negative surveillance FDG-PET/CT is reassuring of a
good outcome, a positive FDG-PET/CT can be misleading,
as it does not always implicate residual or recurrent lym-
phoma [96,98]. CT and MRI can be used for surveillance of
lymphadenopathy when the metabolic activity of the
lymphadenopathy is not of interest and when allowed
within a clinical protocol. With regard to prevascular
mediastinal masses, a negative FDG-PET/CT has been
shown to be helpful in excluding malignancy; however, a
positive FDG-PET/CT has little value for discrimination
between benign and malignant lesions [53]. The frequent
FDG-PET/CT avidity of normal and hyperplastic thymus
[54] is a confounder in FDG-PET/CT assessment of the
prevascular mediastinum. Benign thymic cysts can also be
FDG-PET/CT-avid [42]. Combined use of FDG-PET/CT
and DCE MRI has been shown to be helpful to distinguish
prevascular mediastinal solid tumors from one another [55].
Higher SUVs on FDG-PET/CT are more frequently found
in high-risk thymoma, thymic carcinoma, and lymphoma
than in low-risk thymoma [55-57]. FDG-PET/CT appears
to be more sensitive than CT alone for detection of medi-
astinal recurrence of thymoma [99].

MRI Chest. MRI allows further tissue characterization of
mediastinal masses beyond that of CT [21] and FDG-PET/
CT because of its ability to detect not only serous fluid and
macroscopic fat [58,59] but also hemorrhagic and
proteinaceous fluid [19,24], microscopic or intravoxel fat
[22,60,61], cartilage [62,63], smooth muscle [64,65], and
fibrous material [66-68], though not calcium. MRI can
prove the cystic nature of an indeterminate, non–water
attenuation thymic mass on CT, preventing unnecessary
biopsy and thymectomy [20,21,24,69]. The ability of MRI
to distinguish cystic from solid lesions definitively carries
Journal of the American College of Radiology
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diagnostic importance in all compartments of the
mediastinum. MRI can also show sites of restricted
diffusion of water within lesions by employing DWI,
further assisting in lesion characterization [70,71] and can
employ DCE and postprocessed subtraction imaging for
further differentiation of lesions [55,72] and for direction
of biopsy toward areas of cellularity, as opposed to
hemorrhagic necrosis, the latter of which can be
hyperattenuating and mimic solid tissue on CT. MRI is
more useful than CT for evaluation of neurogenic tumors,
because of its better depiction of neural and spinal
involvement [73], and it can be helpful in distinguishing
schwannomas, neurofibromas, and ganglioneuromas [74-
77], all of which may appear similar on CT. MRI can
distinguish normal and hyperplastic thymus from thymic
tumors and lymphoma, whether by chemical-shift MRI in
adults [22,61] or by DWI with ADC mapping [78,79], the
latter with potential to make this distinction in all age
groups. MRI can also help differentiate low-risk from
high-risk thymomas, thymic carcinoma, and lymphoma by
the DCE pattern of these lesions [72] and by DWI [71]. CT
currently cannot achieve this degree of tissue
characterization. MRI has been shown to be slightly
superior to CT for surveillance of treated TETs, although,
if there is insurmountable susceptibility artifact from
sternotomy wires using fast spin-echo and other MRI
techniques, alternating MRI and CT follow-up can be
performed [100].

Cross-sectional imaging by MRI remains superior to CT
for detection of invasion of the mass across tissue planes,
including the chest wall and diaphragm, and involvement of
neurovascular structures, secondary to its higher soft tissue
contrast [48-52]. As a supplement to static assessment of
tissue plane transgression, dynamic MRI [45-48] during
free-breathing or cinematic cardiac gating can be per-
formed to assess movement of the mass relative to adjacent
structures, confirm or exclude adherence of the mass to
adjacent structures, and observe diaphragmatic motion in
real time [80-84]; paradoxical motion or lack of motion can
indicate phrenic nerve involvement by the mediastinal mass,
without the need to perform a subsequent fluoroscopic sniff
test.

US Chest. Unless a mediastinal mass found on chest
radiography is deemed fully accessible by transthoracic US,
there is little relevant literature to support its use as the next
step. Transthoracic US can be used to evaluate mediastinal
masses, when accessible to the sonographic window, delin-
eating their size, location, cystic versus solid nature, rela-
tionship to important vascular structures, and vascularity,
with some diagnostic potential [89]. Endoscopic US can
similarly evaluate mediastinal masses when encompassed in
S43



the sonographic window [90]. The tissue characterization
capability of US is inferior to MRI but not to CT.

Image-Guided Transthoracic Needle Biopsy. Image-
guided transthoracic needle biopsy would seldom be per-
formed without a preceding cross-sectional imaging study.

Variant 3: Indeterminate mediastinal mass on
CT. Next imaging study

FDG-PET/CT Skull Base to Mid-Thigh. FDG-PET/
CT offers limited additional value beyond that of conven-
tional CT in the assessment of mediastinal masses [53], with
the exception of its use for primary mediastinal lymphoma
staging and surveillance and detection of metastatic
lymphadenopathy, the latter of which is not within the
scope of this topic. FDG-PET/CT has become the stan-
dard for staging and assessment of treatment response for
lymphomas that are FDG-PET-avid at baseline or at the
time of recurrence [91-97]. A caveat is that although a
negative surveillance FDG-PET/CT is reassuring of a
good outcome, a positive FDG-PET/CT can be misleading,
as it does not always implicate residual or recurrent lym-
phoma [96,98]. CT and MRI can be used for surveillance of
lymphadenopathy, when the metabolic activity of the
lymphadenopathy is not of interest and when allowed
within a clinical protocol. With regard to prevascular
mediastinal masses, a negative FDG-PET/CT has been
shown to be helpful in excluding malignancy; however, a
positive FDG-PET/CT has little value for discrimination
between benign and malignant lesions [53]. The frequent
FDG-PET/CT avidity of normal and hyperplastic thymus
[54] is a confounder in FDG-PET/CT assessment of the
prevascular mediastinum. Benign thymic cysts can also be
FDG-PET/CT-avid [42]. Combined use of FDG-PET/CT
and DCE MRI has been shown to be helpful to distinguish
prevascular mediastinal solid tumors from one another [55].
Higher SUVs on FDG-PET/CT are more frequently found
in high-risk thymoma, thymic carcinoma, and lymphoma
than in low-risk thymoma [55-57]. FDG-PET/CT appears
to be more sensitive than CT alone for detection of medi-
astinal recurrence of thymoma [99].

MRI Chest. MRI allows further tissue characterization of
mediastinal masses beyond that of CT [21] and FDG-PET/
CT because of its ability to detect not only serous fluid and
macroscopic fat [58,59] but also hemorrhagic and
proteinaceous fluid [19,24], microscopic or intravoxel fat
[22,60,61], cartilage [62,63], smooth muscle [64,65], and
fibrous material [66-68], though not calcium. MRI can
prove the cystic nature of an indeterminate, non–water
attenuation thymic mass on CT, preventing unnecessary
biopsy and thymectomy [20,21,24,69]. The ability of MRI
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to distinguish cystic from solid lesions definitively carries
diagnostic importance in all compartments of the
mediastinum. MRI can also show sites of restricted
diffusion of water within lesions by employing DWI,
further assisting in lesion characterization [70,71], and can
employ DCE and postprocessed subtraction imaging for
further differentiation of lesions [55,72] and for direction
of biopsy toward areas of cellularity, as opposed to
hemorrhagic necrosis, the latter of which can be
hyperattenuating and mimic solid tissue on CT. MRI is
more useful than CT for evaluation of neurogenic tumors,
because of its better depiction of neural and spinal
involvement [73], and can be helpful in distinguishing
schwannomas, neurofibromas, and ganglioneuromas [74-
77], all of which may appear similar on CT. MRI can
distinguish normal and hyperplastic thymus from thymic
tumors and lymphoma, whether by chemical-shift MRI in
adults [22,61] or by DWI with ADC mapping [78,79], the
latter with potential to make this distinction in all age
groups. MRI can also help differentiate low-risk from
high-risk thymomas, thymic carcinoma, and lymphoma by
the DCE pattern of these lesions [72] and by DWI [71]. CT
currently cannot achieve this degree of tissue
characterization. MRI has been shown to be slightly
superior to CT for surveillance of treated TETs, although,
if there is insurmountable susceptibility artifact from
sternotomy wires using fast spin-echo and other MRI
techniques, alternating MRI and CT follow-up can be
performed [100].

Cross-sectional imaging by MRI remains superior to
CT for detection of invasion of the mass across tissue
planes, including the chest wall and diaphragm, and
involvement of neurovascular structures, secondary to its
higher soft tissue contrast [48-52]. As a supplement to
static assessment of tissue plane transgression, dynamic
MRI [45-48] during free-breathing or cinematic cardiac
gating can be performed to assess movement of the mass
relative to adjacent structures, confirm or exclude adher-
ence of the mass to adjacent structures, and observe dia-
phragmatic motion in real time [80-84]; paradoxical
motion or lack of motion can indicate phrenic nerve
involvement by the mediastinal mass, without the need
to perform a subsequent fluoroscopic sniff test.

US Chest. There is little relevant literature to support US
of an indeterminate mediastinal mass on CT. Transthoracic
US can be used to evaluate mediastinal masses when
accessible to the sonographic window, delineating their size,
location, cystic versus solid nature, relationship to important
vascular structures, and vascularity, with some diagnostic
potential [89]. Endoscopic US can similarly evaluate
mediastinal masses when encompassed in the sonographic
Journal of the American College of Radiology
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window [90]. The tissue characterization capability of US is
inferior to MRI but not to CT.

Image-Guided Transthoracic Needle Biopsy. CT-
guided percutaneous needle and core biopsy of accessible
mediastinal masses has been shown to be safe and to have a
good diagnostic yield, with core biopsy more effective than
fine-needle aspiration. Biopsy was more frequently diag-
nostic for TETs than for lymphoma [101-104]. A
retrospective study of 293 consecutive CT-guided medias-
tinal biopsies performed in 285 patients showed an overall
diagnostic yield of 87% for mediastinal masses with a mean
size of 5.3 cm and 57% for residual masses at the site of
treated lymphoma [101]. Another retrospective study of 52
patients reported a 77% diagnostic yield for needle biopsy of
mediastinal masses with a mean size of 6.9 cm [102]. When
the distinction of TETs from lymphoma cannot be
definitively made by imaging, image-guided biopsy has a
role. PET/CT guidance for biopsy reportedly yields no
diagnostic advantage [104]. When the lesion is visible
within the sonographic window, transthoracic US-guided
biopsy of mediastinal masses is also feasible, with color
Doppler and contrast-enhanced sonographic techniques
providing additional value [105-108] and with core biopsy
more effective than fine-needle aspiration. Endoscopic bi-
opsy of mediastinal masses is also feasible and effective,
although not in the purview of this topic [109]. DWI MR
may be helpful in directing CT-guided biopsy toward sites
of higher cellularity and diagnostic yield [110], as may DCE
MRI with postprocessed subtraction. MR-guided percuta-
neous needle biopsy has also been shown to be safe and
diagnostically accurate [111].

Radiography Chest. After cross-sectional imaging has
been performed for mediastinal mass evaluation, there is
seldom a role for chest radiography.
Variant 4: Indeterminate mediastinal mass on
FDG-PET/CT. Next imaging study

CT Chest. After FDG-PET/CT has been performed for
mediastinal mass evaluation, there is seldom a role for
chest CT.

MRI Chest. MRI allows further tissue characterization of
mediastinal masses beyond that of CT [21] and FDG-PET/
CT because of its ability to detect not only serous fluid and
macroscopic fat [58,59] but also hemorrhagic and
proteinaceous fluid [19,24], microscopic or intravoxel fat
[22,60,61], cartilage [62,63], smooth muscle [64,65], and
fibrous material [66-68], though not calcium. MRI can
prove the cystic nature of an indeterminate, non–water
attenuation thymic mass on CT, preventing unnecessary
Journal of the American College of Radiology
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biopsy and thymectomy [20,21,24,69]. The ability of MRI
to distinguish cystic from solid lesions definitively carries
diagnostic importance in all compartments of the
mediastinum. MRI can also show sites of restricted
diffusion of water within lesions by employing DWI,
further assisting in lesion characterization [70,71], and can
employ DCE and postprocessed subtraction imaging for
further differentiation of lesions [55,72] and for direction
of biopsy toward areas of cellularity, as opposed to
hemorrhagic necrosis, the latter of which can be
hyperattenuating and mimic solid tissue on CT. MRI is
more useful than CT for evaluation of neurogenic tumors,
because of its better depiction of neural and spinal
involvement [73], and it can be helpful in distinguishing
schwannomas, neurofibromas, and ganglioneuromas [74-
77], all of which may appear similar on CT. MRI can
distinguish normal and hyperplastic thymus from thymic
tumors and lymphoma, whether by chemical-shift MRI in
adults [22,61] or by DWI with ADC mapping [78,79], the
latter with potential to make this distinction in all age
groups. MRI can also help differentiate low-risk from
high-risk thymomas, thymic carcinoma, and lymphoma by
the DCE pattern of these lesions [72] and by DWI [71]. CT
currently cannot achieve this degree of tissue
characterization. MRI has been shown to be slightly
superior to CT for surveillance of treated TETs, although
if there is insurmountable susceptibility artifact from
sternotomy wires using fast spin-echo and other MRI
techniques, alternating MRI and CT follow-up can be
performed [100].

Cross-sectional imaging by MRI remains superior to
CT for detection of invasion of the mass across tissue
planes, including the chest wall and diaphragm, and
involvement of neurovascular structures, secondary to its
higher soft tissue contrast [48-52]. As a supplement to
static assessment of tissue plane transgression, dynamic
MRI [45-48] during free-breathing or cinematic cardiac
gating can be performed to assess movement of the mass
relative to adjacent structures, confirm or exclude adher-
ence of the mass to adjacent structures, and observe dia-
phragmatic motion in real time [80-84]; paradoxical
motion or lack of motion can indicate phrenic nerve
involvement by the mediastinal mass, without the need
to perform a subsequent fluoroscopic sniff test.

US Chest. There is little relevant literature to support US
of an indeterminate mediastinal mass on FDG-PET/CT.
Transthoracic US can be used to evaluate mediastinal
masses when accessible to the sonographic window, delin-
eating their size, location, cystic versus solid nature, rela-
tionship to important vascular structures, and vascularity,
with some diagnostic potential [89]. Endoscopic US can
S45



similarly evaluate mediastinal masses when encompassed in
the sonographic window [90]. The tissue characterization
capability of US is inferior to MRI but not to CT.

Image-Guided Transthoracic Needle Biopsy. CT-
guided percutaneous needle and core biopsy of accessible
mediastinal masses has been shown to be safe and to have a
good diagnostic yield, with core biopsy more effective than
fine-needle aspiration. Biopsy was more frequently diag-
nostic for TETs than for lymphoma [101-104]. A
retrospective study of 293 consecutive CT-guided medias-
tinal biopsies performed in 285 patients showed an overall
diagnostic yield of 87% for mediastinal masses with a mean
size of 5.3 cm and 57% for residual masses at the site of
treated lymphoma [101]. Another retrospective study of 52
patients reported a 77% diagnostic yield for needle biopsy of
mediastinal masses with a mean size of 6.9 cm [102]. When
the distinction of TETs from lymphoma cannot be
definitively made by imaging, image-guided biopsy has a
role. PET/CT guidance for biopsy reportedly yields no
diagnostic advantage [104]. When the lesion is visible
within the sonographic window, transthoracic US-guided
biopsy of mediastinal masses is also feasible, with color
Doppler and contrast-enhanced sonographic techniques
providing additional value [105-108], and with core biopsy
more effective than fine-needle aspiration. Endoscopic bi-
opsy of mediastinal masses is also feasible and effective,
although not in the purview of this topic [109]. DWI MR
may be helpful in directing CT-guided biopsy toward sites
of higher cellularity and diagnostic yield [110], as may DCE
MRI with postprocessed subtraction. MR-guided percuta-
neous needle biopsy has also been shown to be safe and
diagnostically accurate [111].

Radiography Chest. After cross-sectional imaging has
been performed for mediastinal mass evaluation, there is
seldom a role for chest radiography.
Variant 5: Indeterminate mediastinal mass on
MRI. Next imaging study or surveillance

CT Chest. Unless there is concern for missed calcification
within a mediastinal mass and any diagnostic utility such a
finding may have, CT would be unlikely to add additional
diagnostic information regarding a mediastinal mass beyond
that offered by MRI. CT can be used as a means of follow-
up of indeterminate mediastinal masses, readily showing any
change in size, morphology, or attenuation of the lesion.
However, surveillance by CT would be less likely to provide
the level of diagnostic certainty that MR could provide at
follow-up on account of MR’s greater sensitivity for detec-
tion of increased lesion complexity and its greater capacity to
characterize tissue. Surveillance could be performed at a 3-,
S46
6-, or 12-month interval over 2 or more years, depending
upon the level of clinical concern.

FDG-PET/CT Skull Base to Mid-Thigh. Unless the
degree of metabolic activity of a mediastinal mass is sought and
deemed capable of changing clinical management, FDG-PET/
CT would be unlikely to add diagnostic information regarding
a mediastinal mass beyond that offered by MRI. FDG-PET/
CT offers limited additional value beyond that of conven-
tional CT and MRI in the assessment of mediastinal masses
[53], with the exception of its use for primary mediastinal
lymphoma staging and surveillance and detection of
metastatic lymphadenopathy, the latter of which is not
within the scope of this topic. FDG-PET/CT has become
the standard for staging and assessment of treatment response
for lymphomas that are FDG-PET-avid at baseline or at the
time of recurrence [91-97]. A caveat is that although a negative
surveillance FDG-PET/CT is reassuring of a good outcome, a
positive FDG-PET/CT can be misleading, as it does not al-
ways implicate residual or recurrent lymphoma [96,98]. With
regard to prevascular mediastinal masses, a negative FDG-
PET/CT has been shown to be helpful in excluding malig-
nancy; however, a positive FDG-PET/CT has little value for
discrimination between benign and malignant lesions [53].
The frequent FDG-PET/CT avidity of normal and hyper-
plastic thymus [54] is a confounder in FDG-PET/CT assess-
ment of the prevascular mediastinum. Benign thymic cysts can
also be FDG-PET/CT-avid [42]. Combined use of FDG-
PET/CT and DCE MRI has been shown to be helpful to
distinguish prevascular mediastinal solid tumors from one
another [55]. Higher SUVs on FDG-PET/CT are more
frequently found in high-risk thymoma, thymic carcinoma,
and lymphoma than in low-risk thymoma [55-57]. FDG-
PET/CT appears to be more sensitive than CT alone for
detection of mediastinal recurrence of thymoma [99].

MRI Chest. Sometimes a mediastinal mass is found and
incompletely evaluated on chest MR angiography or a neck,
breast, abdominal, spine, or chest wall MRI and more
dedicated chest MR evaluation is needed. When a medias-
tinal mass is indeterminate on MRI after more compre-
hensive evaluation, a short-term follow-up chest MRI can be
performed, rather than proceeding to biopsy or resection, at
a 3-, 6-, or 12-month interval over 2 or more years,
depending upon the level of clinical concern. MRI can not
only provide information about any interval change in size
or morphology, which CT can accomplish, but can also
provide additional detail regarding lesion complexity and
tissue characterization beyond that of CT [21] and FDG-
PET/CT. This added value is due to its ability to detect
not only serous fluid and macroscopic fat [58,59] but also
hemorrhagic and proteinaceous fluid [19,24], microscopic
or intravoxel fat [22,60,61], cartilage [62,63], smooth
Journal of the American College of Radiology
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muscle [64,65], and fibrous material [66-68], though not
calcium. MRI can prove the cystic nature of an
indeterminate, non–water attenuation thymic mass on
CT, preventing unnecessary biopsy and thymectomy
[20,21,24,69]. The ability of MRI to distinguish cystic from
solid lesions definitively carries diagnostic importance in all
compartments of the mediastinum. MRI can also show sites
of restricted diffusion of water within lesions by employing
DWI, further assisting in lesion characterization [70,71],
and can employ DCE and postprocessed subtraction
imaging for further differentiation of lesions [55,72] and
for direction of biopsy toward areas of cellularity, as
opposed to hemorrhagic necrosis, the latter of which can
be hyperattenuating and mimic solid tissue on CT. MRI
is more useful than CT for evaluation of neurogenic
tumors, because of its better depiction of neural and
spinal involvement [73], and can be helpful in
distinguishing schwannomas, neurofibromas, and
ganglioneuromas [74-77], all of which may appear similar
on CT. MRI can distinguish normal and hyperplastic
thymus from thymic tumors and lymphoma, whether by
chemical-shift MRI in adults [22,61] or by DWI with
ADC mapping [78,79], the latter with potential to make
this distinction in all age groups. MRI can also help
differentiate low-risk from high-risk thymomas, thymic
carcinoma, and lymphoma by the DCE pattern of these
lesions [72] and by DWI [71]. CT currently cannot achieve
this degree of tissue characterization. MRI has been shown
to be slightly superior to CT for surveillance of treated
TETs, although if there is insurmountable susceptibility
artifact from sternotomy wires despite use of fast spin-
echo and other MRI techniques, alternating MRI and CT
follow-up can be performed [100].

Cross-sectional imaging by MRI remains superior to CT
for detection of invasion of the mass across tissue planes,
including the chest wall and diaphragm, and involvement of
neurovascular structures, secondary to its higher soft tissue
contrast [48-52]. As a supplement to static assessment of
tissue plane transgression, dynamic MRI [45-48] during free-
breathing or cinematic cardiac gating can be performed to
assess movement of the mass relative to adjacent structures, to
confirm or exclude adherence of the mass to adjacent struc-
tures, and to observe diaphragmatic motion in real time [80-
84]; paradoxical motion or lack of motion can indicate
phrenic nerve involvement by the mediastinal mass, without
the need to perform a subsequent fluoroscopic sniff test.

US Chest. Transthoracic US is unlikely to offer additional
information regarding mediastinal mass characterization
beyond that of MRI.

Image-Guided Transthoracic Needle Biopsy. CT-
guided percutaneous needle and core biopsy of accessible
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mediastinal masses has been shown to be safe and to have a
good diagnostic yield, with core biopsy more effective than
fine-needle aspiration. Biopsy was more frequently diag-
nostic for TETs than for lymphoma [101-104]. A
retrospective study of 293 consecutive CT-guided medias-
tinal biopsies performed in 285 patients showed an overall
diagnostic yield of 87% for mediastinal masses with a mean
size of 5.3 cm and 57% for residual masses at the site of
treated lymphoma [101]. Another retrospective study of 52
patients reported a 77% diagnostic yield for needle biopsy of
mediastinal masses with a mean size of 6.9 cm [102]. When
the distinction of TETs from lymphoma cannot be
definitively made by imaging, image-guided biopsy has a
role. PET/CT guidance for biopsy reportedly yields no
diagnostic advantage [104]. When the lesion is visible
within the sonographic window, transthoracic US-guided
biopsy of mediastinal masses is also feasible, with color
Doppler and contrast-enhanced sonographic techniques
providing additional value [105-108], and with core biopsy
more effective than fine-needle aspiration. Endoscopic bi-
opsy of mediastinal masses is also feasible and effective,
although not in the purview of this topic [109]. DWI MR
may be helpful in directing CT-guided biopsy toward sites
of higher cellularity and diagnostic yield [110], as may DCE
MRI with postprocessed subtraction. MR-guided percuta-
neous needle biopsy has also been shown to be safe and
diagnostically accurate [111].

Radiography Chest. After cross-sectional imaging has
been performed for mediastinal mass evaluation, there is a
seldom a role for chest radiography.
SUMMARY OF RECOMMENDATIONS

n Variant 1: Radiography chest or MRI chest without
and with intravenous (IV) contrast or MRI chest
without IV contrast or CT chest without IV contrast
or CT chest with IV contrast or CT chest without
IV contrast is usually appropriate for the initial
imaging of patients with clinically suspected
mediastinal mass. These procedures are equivalent
alternatives (ie, only one procedure will be ordered to
provide the clinical information to effectively manage
the patient’s care).

n Variant 2: MRI chest without and with IV contrast or
MRI chest without IV contrast or CT chest with IV
contrast or CT chest without IV contrast is usually
appropriate for the next imaging study of patients
with indeterminate mediastinal mass on radiography.
These procedures are equivalent alternatives (ie, only
one procedure will be ordered to provide the clinical
information to effectively manage the patient’s care).
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n Variant 3: MRI chest without and with IV contrast or
MRI chest without IV contrast is usually appropriate
for the next imaging study of patients with
indeterminate mediastinal mass on CT. These
procedures are equivalent alternatives (ie, only one
procedure will be ordered to provide the clinical
information to effectively manage the patient’s care).

n Variant 4: Image-guided transthoracic needle biopsy or
MRI chest without and with IV contrast or MRI chest
without IV contrast is usually appropriate for the next
imaging study of patients with indeterminate medias-
tinal mass on FDG-PET/CT. These procedures are
equivalent alternatives (ie, only one procedure will be
ordered to provide the clinical information to effec-
tively manage the patient’s care).

n Variant 5: Image-guided transthoracic needle biopsy or
MRI chest without and with IV contrast is usually
appropriate for the next imaging study or surveillance
of patients with indeterminate mediastinal mass on
MRI. These procedures are equivalent alternatives (ie,
only one procedure will be ordered to provide the
clinical information to effectively manage the patient’s
care).
SUPPORTING DOCUMENTS
The evidence table, literature search, and appendix for this
topic are available at https://acsearch.acr.org/list. The ap-
pendix includes the strength of evidence assessment and the
final rating round tabulations for each recommendation.

For additional information on the Appropriateness
Criteria methodology and other supporting documents go to
www.acr.org/ac.
RELATIVE RADIATION LEVEL INFORMATION
Potential adverse health effects associated with radiation
exposure are an important factor to consider when selecting
the appropriate imaging procedure. Because there is a wide
range of radiation exposures associated with different diag-
nostic procedures, a relative radiation level (RRL) indication
has been included for each imaging examination. The RRLs
are based on effective dose, which is a radiation dose
quantity that is used to estimate population total radiation
risk associated with an imaging procedure. Patients in the
pediatric age group are at inherently higher risk from
exposure, because of both organ sensitivity and longer life
expectancy (relevant to the long latency that appears to
accompany radiation exposure). For these reasons, the RRL
dose estimate ranges for pediatric examinations are lower as
compared with those specified for adults (see Table 2).
S48
Additional information regarding radiation dose
assessment for imaging examinations can be found in the
ACR Appropriateness Criteria� Radiation Dose
Assessment Introduction document [112].
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