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A B S T R A C T

Background: Multiple sclerosis (MS) is an inflammatory autoimmune neurologic disease that causes progressive
destruction of myelin sheath and axons. Affecting more than 2 million people worldwide, MS may presents
distinct clinical courses. However, information regarding key gene expression and genic pathways related to
each clinical form is still limited.
Objective: To assess the whole transcriptome of blood leukocytes from patients with remittent-recurrent (RRMS)
and secondary-progressive (SPMS) forms to explore the gene expression profile of each form.
Methods: Total RNA was obtained and sequenced in Illumina HiSeq platform. Reads were aligned to human
genome (GRCh38/hg38), BAM files were mapped and differential expression was obtained with DeSeq2. Up or
downregulated pathways were obtained through Ingenuity IPA. Pro-inflammatory cytokines levels were also
assessed.
Results: The transcriptome was generated for nine patients (6 SPMS and 3 RRMS) and 5 healthy controls. A total
of 731 and 435 differentially expressed genes were identified in SPMS and RRMS, respectively. RERE, IRS2,
SIPA1L1, TANC2 and PLAGL1 were upregulated in both forms, whereas PAD2 and PAD4 were upregulated in
RRMS and downregulated in SPMS. Inflammatory and neuronal repair pathways were upregulated in RRMS,
which was also observed in cytokine analysis. Conversely, SPMS patients presented IL-8, IL-1, Neurothrophin
and Neuregulin pathways down regulated.
Conclusions: Overall, the transcriptome of RRMS and SPMS clearly indicated distinct inflammatory profiles,
where RRMS presented marked pro-inflammatory profile but SPMS did not. SPMS individuals also presented a
decrease on expression of neuronal repair pathways.

1. Background

Multiple Sclerosis (MS) is the most prevalent neurological auto-
immune disease, causing significant clinical impairment of patients.
Clinical courses of MS such as relapsing remitting (RR) and progressive

forms have been suggested to be distinct entities (Zeydan and
Kantarci, 2018). The transition from relapsing-remitting to progressive
forms is not totally understood, but it is likely to be associated with
previous lesion load, age, gender and low vitamin-D levels (Zeydan and
Kantarci, 2018; Scalfari et al., 2018; Ascherio et al., 2014).
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Pathologically the RRMS form presents an important inflammatory
component, whereas neurodegenerative and noninflammatory profiles
prevail in the progressive form (Lublin et al., 2014). Previous tran-
scriptome studies in MS patients evaluated the expression of miRNAs
and mRNAs using cDNA microarrays as well as real-time quantitative
PCR and Next Generation Sequencing (NGS) approaches in order to
understand the transcriptional effects of MS treatment (Angerer et al.,
2018; Freiesleben et al., 2016; Guo et al., 2014; Smets et al., 2018;
Gurevich et al., 2015; Moreno-Torres et al., 2018). Many studies
dedicated to understand the role of distinct therapies in the tran-
scriptome of MS patients. Regardless the drugs studied most of them
reported altered level of expression of pro-inflammatory genes and
pathways such as IL-2, IL-6 and others (Gurevich et al., 2015; Moreno-
Torres et al., 2018; Mousavi Nasl-khameneh et al., 2018; Azoulay et al.,
2009).

However, there have been limited information of overall gene ex-
pression of different forms of MS. Certainly, this may allow us to
evaluate what genes and metabolic pathways are abnormally regulated
in such conditions. Comprehensive and comparative analysis of tran-
scriptomic alterations in RRMS and secondary progressive forms has
not yet been undertaken.

Here we assessed the transcriptome of blood leukocytes obtained
from MS patients presenting relapsing remitting (RRMS) and secondary
progressive (SPMS) forms to deeply explore and compare gene ex-
pression profiles, highlighting the main disease-associated canonical
pathways.

2. Methods

2.1. Study population

MS patients were diagnosed according to McDonald and Polman
criteria (Angerer et al., 2018; Freiesleben et al., 2016;
Polman et al., 2011; McDonald et al., 2001) and were enrolled in the
study according to their clinical status. Healthy individuals with no
family history of MS were also included as controls. Serum and total
blood were collected from: i) Relapsing Remitting Group (RRMS) that
included relapsing remitting MS patients under confirmed relapsing
condition at the time of sampling and Expanded Disability Status Scale
(EDSS) <=4.5. Samples were collected before corticosteroids treat-
ment; ii) Secondary Progressive Group (SPMS), composed of patients
diagnosed >10 years; EDSS >= 6; high neuronal lesion load with at
least 1 lesion in every site of the Central Nervous System (CNS); iii)
non-MS Control Group (CG), composed of age and gender matched
healthy individuals with no familial history of MS. This study was ap-
proved by the ethical comittees from Santa Casa de Misericórdia de São
Paulo and Faculdade de Medicina da Universidade de São Paulo (protocol
# 620.741 e 896.341). All participants were informed and signed the
consent form.

2.2. RNA extraction and purification

Peripheral blood mononuclear cells (PBMCs) were obtained after
incubating 1mL of total blood with EL buffer (Qiagen) and centrifuga-
tion. RNA was extracted (Trizol-chloroform method) and 40U of RNAse
inhibitor Ambion (California, USA) was added to avoid RNA degrada-
tion. The RNA was treated with DNAse as recommended (DNAse-Free
Turbo – Ambion) and the absence of genomic DNA was confirmed by
Real-Time PCR with primers to endogenous gene with multiple copies
(HERV-W) without reverse transcriptase. RNA amount and quality were
assessed after the procedure, through Bioanalyzer electrophoresis with
Agilent RNA 6000 pico kit (Santa Clara, USA).

2.3. RNASeq

RNA samples were sequenced on Illumina HiSeq 2500 platform
using pair-ended method. Briefly, library construction was performed
with 100ng of total RNA using TruSeq Stranded Total RNA sample kit
with Ribo Zero Globin (Illumina) or GLOBINclear-Human kit (Ambion).
Around 10nM of the cDNA were used to construction and dispersion of
clusters through the flowcell, which was performed in the cbot with
HiSeq PE Cluster v4 cbot kit (Illumina). The sequencing was performed
with HiSeq SBS v4 kit (Illumina) in two separate runs.

2.4. Bioinformatics pipeline

FastaQ files were assessed through fastQC software and aligned to
human genome (GRCh38/hg38) using STAR Aligner (Dobin et al.,
2013) with high stringency parameters, such as single hit reads and
only one mismatch allowed per read. Low quality reads and short reads
were discarded and BAM files were quantified with Salmon program
(Patro et al., 2017). DESeq2 (Love et al., 2004) was used to identify
differentially expressed transcripts (p<0.05), which were exported to a
.csv file and uploaded in Ingenuity IPA (Qiagen) to perform pathway
analysis.

2.5. Cytokine quantification in serum samples

A panel with selected pro inflammatory cytokines and chemokynes
including IL-6, IL-1β, TNF-α, IFN-γ IP/CXCL10, MCP-1 and soluble
CD14 (sCD14) was tested in an expanded cohort to validate the dif-
ferential expression transcripts as suggested by the NGS transcriptome
data. To quantify the cytokines we used a designed model of Luminex
xMAP platform and for sCD14 the Quantikine ELISA for sCD14 (RnD
Systems).

Table 1
Clinical and demographic information of individuals included in the study.

MS Groups Controls
Groups RR (3) SP (6) CG(5)

Gender 2 women
1 men

4 women
2 men

4 women
1 men

Age (median) 25-54 (45) 36-60 (48,5) 29-57 (40)
Duration of the relapse* 1-6 days (5 days) NA NA
EDSS (median) 1-4.5 (2) 6-8 (6.5) NA
Duration of disease 4-20 years (4.5) 10-20 years (15) NA
Current treatment 1 wo treatment

1 Avonex
1 βInterferon

6 Natalizumab♦ NA

*Only applicable for RRG, ♦Less than 6 infusions
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3. Results

3.1. Patients

The global transcriptome was assessed for 14 samples including 9
MS patients (3 RRMS and 6 SPMS) and five age and gender matched
healthy controls (Table 1). Relevant clinical data is given in (Table 1).

3.2. Differential expression and pathway analysis

Above 21 million paired-end mapped reads were obtained per
sample leading to a transcriptome coverage varying from 30 to 46x.

Since we performed the RNA sequencing in two separate runs, with
distinct library kits we performed separate Principal Component
Analyzes (PCA) comparing RRMS x controls and SSG x controls to avoid
batch effects. In both PCA, MS cases grouped apart from controls
(Fig. 1).

Differential expression analysis on DESeq2 revealed 731 genes

differentially expressed in SPMS compared to controls and 485 genes
differentially expressed in RRMS (P<0.05). (S5 and S6)

We also identified 44 genes that were differently expressed in both
RRMS and SPMS, of those RERE, IRS2, SIPA1L1, TANC2 and PLAGL1
were upregulated in both groups, whereas RPS27 and RPS29 were
downregulated in both groups. Interesting the gene PAD4 was upre-
gulated in RRMS but downregulated in SPMS. Heatmaps showing the
expression levels of each of these genes per individual are given in
(Figures S1 and S2). The differentially expressed genes for each group
were used to perform core analysis and comparisons on Ingenuity IPA
(Qiagen), when clinically relevant pathways were assessed for both MS
groups compared to controls. Core analysis for RRMS versus controls
revealed 12 canonical pathways affected with biological support to the
disease (Table 2) and in SPMS 15 affected canonical pathways (Table 3)
were identified. The pathways are also represented on Figures S3 and

Figure 1. PCA analysis of normalized reads. A) PCA for RRMS (blue) versus healthy controls (red); B) PCA for SPMS (blue) versus healthy controls (red).

Table 2
Canonical pathways revealed from RNA-Seq analysis of RRG compared to
controls.

Affected Pathway Biological function *Z score

IL-12 Pro-inflammatory response 0.06
Th1 Intracellular immune response 1.32
IL-7 Pro-inflammatory response 1.342
PEDF(Pigment epithelium

derived factor)
Neuronal survival factor promotion 1.633

ILK(Integrin linked kinase Integrin connections to cytoskeleton 1.897
IL-2 Lymphocyte growth and homeostasis 2
Integrin signaling Cell adhesion molecules interaction

with blood brain barrier
2.121

Paxilin Cell mobility, adhesion to
extracelullar matrix

2.45

IL-6 Pro-inflammatory response 2.646
Dendritic cell maturation Adaptative and innate immune

response enhancer
2.646

NFkβ Adaptative and innate immune
response cytokines

2.828

Lymphocyte leakage Diapedesis promotion 3.05

⁎ Z score values are related to more active pathways in cases as compared to
controls (positive scores). No down-regulated pathways were seen for RRG as
compared to controls.

Table 3
Canonical pathways revealed from RNA-Seq analysis of SSG compared to con-
trols.

Affected Pathway Biologic function Z Score*

NGF (Neuronal Growth Factor) Cell growth and proliferation of
neuronal cells

-3.31

IL-8 Pro inflammatory response -3.3
IL-1 Pro inflammatory response -3.3
B cell receptor B cell activation -3.1
IL-6 Pro inflammatory response -3.05
P13k (AKT) Cell growth and proliferation -2.7
VEGF (Vascular endothelial

growth factor)
Cell growth and development of
endothelial tissue

-2.6

iNOS Cell signaling -2.6
Neurotrophin Neuronal cell growth -2.6
B Lymphocyte activation factor B cell activation -2.23
Toll Like Receptor Humoral and cell responses -2.12
Neuregulin Maintenance and growth of

neuronal cells
-1.4

EIF4 Cell growth, proliferation and
development

-1.13

mTOR Cell growth, proliferation and
development

-0.33

EIF2 (Eukaryotic initiation factor) Apoptosis, cell damage 2.6

⁎ Z score values are related to more active pathways in cases as compared to
controls (positive scores), whereas down-regulated pathways are given by ne-
gative-scores.
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S4. Comparisons of the altered pathways were performed (Fig. 2) and
the pathways with stronger biological associations to MS are given in
Tables 2 and 3.

Since analyses were always performed against the control group, we
sought to analyze whether the genes responsible for the observed al-
terations of the pathways in both groups were the same. As illustrated
in (Figure 3), the genes contributing of IL-6 pathway alterations in
RRMS and SPMS were distinct, suggesting that these pathways are up or
downregulated by distinct mechanisms.

3.3. Cytokine analysis

The quantification of cytokines (IL-6, IL-1β, TNF-α, IFN-γ, IP/
CXCL10, MCP-1) and sCD14 were done after the RNA sequencing with
the aim of validating some of the differentially expressed genes/path-
ways. To this, a larger number of individuals was evaluated (16 RRMS,
7 SPMS and 26 healthy controls). This analysis confirmed the abnormal
expression of four pro-inflammatory cytokines observed in RRMS
transcriptome analysis (IL-6, IL-1β, TNF-α, IFN-γ, p<0.01). The only
chemokine upregulated in SPMS group was MCP-1(Fig. 4).

4. Discussion

RRMS and SPMS are distinct entities (Zeydan and Kantarci, 2018);
whereas RRMS displays an intense inflammatory condition, with acute
clinical signs and periods of remission (Lublin et al., 2014), SPMS have
a more degenerative profile (Lublin et al., 2014). The transcriptome
analysis of patient-derived PBMCs revealed several upregulated path-
ways in RRMS related to inflammatory response. Oppositely, secondary
progressive patients presented upregulated pathways linked, funda-
mentally, to a non-inflammatory profile but with transcripts that sug-
gest an exhaustion of the neuronal repair, as evidenced in Table 3.

RRMS patients had activated canonical pathways that include in-
tegrin signaling and diapedesis promotion, indicating a typical im-
muno-inflammatory state with pro-inflammatory cytokines, vascular
permeability and neuronal repair also activated. In fact, alterations in
some of these pathways were already reported in MS, including IFNγ,
IL-12, IL-2, and IL-6 (Balashov et al., 1997; Balashov et al., 1998;
Sun et al., 2015; Malekzadeh et al., 2015; Wylezinski and
Hawiger, 2016). Some integrins are current targets for MS treatment, in
an attempt to avoid the migration of T-lymphocytes through the blood-
brain barrier, such as Natalizumab (Polman et al., 2006). Nearly all
studies focused on MS transcriptome analysis have compared groups
receiving different drugs or before and after treatment (Gurevich et al.,
2015; Moreno-Torres et al., 2018; Mousavi Nasl-khameneh et al., 2018;
Azoulay et al., 2009). Interestingly, despite the drugs evaluated, the
results revealed pro-inflammatory genes and/or pathways that are
found to be altered in MS prior the treatment consistent with data
obtained here, as well IL-2, IL-6, IL-12, Th1 (Moreno-Torres et al.,
2018).

In addition to the upregulated pro-inflammatory cytokines, path-
ways involved in the migration of lymphocytes were also activated in
RRMS. Among them, Paxillin, a focal adhesion adaptor protein that
interact with integrins and potentially contribute for immune response
in different sites (Liu et al., 1999; Kummer et al., 2010). Paxillin can
also interact with proteins involved in the modification of cytoskeleton
organization (Zaidel-Bar et al., 2003). Therefore, it is possible that
when upregulated, Paxilin may increase lymphocyte adhesion and mi-
gration.

Intersection analysis of the differently expressed genes revealed that
5 genes were upregulated and 2 were down regulated in both groups of
MS patients. Among these genes we highlight the function of RERE,
formerly known as Athrophin, that play a role on the development of
the cerebellum, specially Purkinje cells (Kim and Scott, 2014). In fact,
lesions in the cerebellum are frequent disorder in MS patients
(Smets et al., 2018; Kalron et al., 2018), and over expression of thisFigure 2. Comparison analysis of up and down regulated pathways for RG and

SPMS.
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gene seems to be an alternative route for neuronal repair in the cere-
bellum. TANC2, other gene found to be up regulated in MS patients
seems to play a role in synapsis signaling and plasticity and differ-
entiation of neurons (Gasparini et al., 2017). Therefore, these findings
suggest a signature of the transcriptional profile of some genes in
Multiple sclerosis regardless the clinical conditions of the patients

The transcriptome data is in agreement with previous findings that
described several differentially expressed genes and affected pathways
in MS patients based on distinct approaches, such as microarray. For
example, some of the upregulated genes found in the present study in
RRMS patients as HBA-1 and 2, TNFRS, FC6R3, ANPEP, IL6R, DYSF,
ENTPD, MX1 were already reported as overexpressed in MS
(Angerer et al., 2018; Guo et al., 2014,; Herrmann et al., 2016;
Koch et al., 2018). Nevertheless, our transcriptome data revealed sev-
eral other differentially expressed genes that have not been previously
reported, regardless the same inflammatory outcome in MS patients

observed previously (Guo et al., 2014; Hendrickx et al., 2017).
Peptidylargininedeiminase family (PAD) is involved in physiolo-

gical processes as immune responses, and cell signaling. PAD2 and
PAD4 in particular are expressed in the brain and the peripheral blood
cells and it has been demonstrated that their upregulation may con-
tribute to citrullination of myelin basic protein (MBP) in MS patients
(Calabrese et al., 2012; Wood et al., 2008). Here we also confirmed that
PAD4 is upregulated in RRMS but surprisingly, PAD2 and PAD4 were
downregulated in SPMS group. PAD2 have been repeatedly reported to
have a detrimental effect in MS by preventing MBP to form compact
sheaths, letting myelin to remains immature (Beniac et al., 2000;
Musse et al., 2008). Interestingly, however, the role of PAD2 in MS
appears to be more complex and some controversial. For instance, the
progression of EAE was not impaired in PAD2 knockout mice
(Raijmakers et al., 2006). In another study, mice lacking PAD2 display
impaired motor function and also a decrease in the number of

Figure 3. IL-6 pathway genic network. A) IL-6 pathway related genes in RRMS. B) IL-6 pathway related genes in SPMS. Genes in red/pink are upregulated, genes in
green are downregulated, and genes in blank were not differentially expressed in MS patients. Genes in purple represent upregulated protein observed in cytokine
quantification.
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myelinated axons (Falcão et al., 2019). The authors also showed that
PAD2-mediated citrullination may act as an epigenetic modulator and
is required for oligodendrocytes differentiation and myelination.
Therefore, the downregulation of this gene as well PAD4 in secondary
progressive group may be linked to the degenerative profile and re-
myelination failure. The role of PAD enzymes in other proteins ci-
trullination and regulation needs further investigations.

Patients with Diabetes Mellitus (DM) present increased probability
to develop MS compared to non-DM individuals (Dorman et al., 2003;
Hou et al., 2017; Bechtold et al., 2014). Also, the risk for DM is in-
creased in MS patients, as compared to non-MS (Dobson and
Giovannoni, 2013; Marrosu et al., 2002), revealing an striking inter-
relation between both conditions. In fact, both diseases share the in-
flammatory profile and previous transcriptomic analysis revealed dif-
ferentially expressed genes related to inflammatory response in DM
(Evangelista et al., 2014). Accordingly, pathways such as cytokine
signaling and other genes were commonly differentially expressed in
this study and DM, as CCR1, CD46, TNF, IL6 and RXRA, suggesting that
both diseases share particular pathways involved in autoimmunity.

Regarding SPMS, a non-inflammatory profile was evident, with
decreased expression of pro-inflammatory pathways as IL-1, IL-6, IL-8
and B-cell response genes. Inflammation may be present in all stages of
MS, including SPMS; however, the degree of inflammation appears to
reflect disease-activity, which is more intense in acute MS and RRMS as
compared to more advanced stages of the disease (Frischer et al., 2009).
The SP group studied here presented EDSS >6 and no recent relapses,
agreeing to the decline of the inflammatory process previously observed
at this stage. It is important to highlight that the Neuregulin pathway,
which promotes oligodendrogenesis and remyelinization (Kataria et al.,
2018) was also downregulated. Similarly, low levels of this protein and
also mutations in the correspondent gene were related to the

progressive forms of MS (Kataria et al., 2018; Bahadori et al., 2015).
Additionally, other pathways related to neuronal growth and neuronal
regeneration were also previously found to be downregulated or non-
functional in MS, including neurotrophin and nerve grow factor
(Minnone et al., 2017; Acosta et al., 2015) as well as the galanin gene.
Neurotrophin is class of proteins of the family of grow factors, and
among several functions, they play a role in synaptic physiology
(Shinoda et al., 2019) and in myelin repair (Zhu et al., 2014). Mutations
in Brain Derived Neutrophin (BNDF) gene are related to the progression
of MS (Nociti et al., 2018).

Nerve growth factor (NGF) regulates the synthesis of several neu-
rological receptors, as neurotransmitters and neuropeptides. Its effects
in local immune response have also been explored and several immune
cells as monocytes, macrophages, dendritic, T and B cells have re-
ceptors to NGF and respond to this protein altering the proliferation,
maturation and cytokine release among others (Minnone et al., 2017;
Thorpe et al., 1987). Studies on inflammatory and autoimmune diseases
have revealed an increase in NGF at the sites of inflammation and its
activity appears to be bidirectional, as NGF participates in neuronal
repair during inflammation process in Experimental Autoimmune En-
cephalomyelitis (EAE), decreasing the inflammation and contributing
to the neurological recovery (Acosta et al., 2015). Additional experi-
ments in EAE clearly demonstrated that increasing the NGF levels re-
duces disease severity by diminishing tissue inflammation and by pre-
venting the full development of EAE lesions and immune cell infiltrates
(Villoslada et al., 2000; Arredondo et al., 2001).

Therefore, the NGF downregulation detected in our RNA-Seq data
may probably be related to the inability to control the neurological
recovery, contributing to the maintenance of a chronic inflammation
status and neurodegeneration observed in these individuals.

Other studies focused on transcriptome analysis of distinct

Figure 4. Analysis of cytokine levels in MS patients and controls. *=p < 0.01
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degenerative neuropsychiatric conditions, such as Alzheimer's disease,
demonstrated several differentially expressed genes (Berchtold et al.,
2014; Sekar et al., 2015), including ARHGEF11 and CD93 that were also
altered in RRMS group. However, none of the affected pathways of
SPMS and RRMS were observed in the previous studies, suggesting that
the degeneration process in both diseases is probably an outcome from
distinct pathways. The observation of genes involved these pathways
may reveal hallmark signatures of genetic profiles associated to these
diseases.

Together with the reduced sample size, using total PBMC rather
than brain lesion samples might be a limitation of this study. However,
most transcriptome studies using RNA-Seq and other methods
(Angerer et al., 2018; Guo et al., 2014; Herrmann et al., 2016;
Koch et al., 2018; Hendrickx et al., 2017) consider the whole PBMCs as
a representative cellular group since these cells usually reflect patterns
of expression that operate in the disease, even when the studied sam-
ples are not representative of the diseased tissue.

Another limitation includes distinct treatment approaches in the
subjects of the groups. All patients from SP group were receiving
Natalizumab (NTZ) for less than 6 months, and of the three RR in-
dividuals, one was receiving Avonex, other received B-Interferon, and
the third was drug naïve. Avonex is also a class of B-interferon and both
may produce similar effects on the patients’ transcriptome. In fact, the
results of all three individuals were similar (see Figure S1) and distinct
from the controls. We can't exclude, however, the possibility that part of
the transcriptome alterations observed in SPMS are derived from the
treatment since NTZ is capable of changing the patients inflammatory
mechanism and of altering the number of circulating immune cells
(Börnsen et al., 2012) as well as the expression of some pro- and anti-
inflammatory proteins (Ramos-Cejudo et al., 2011). Nevertheless, the
immunological effects of NTZ are mostly observed in long-term treated
patients (Jilek et al., 2010; Arru et al., 2014). Short effects were also
observed (24h after the first infusion) but they apparently support a
pro-inflammatory phenotype, with increased IL-2 and IL-17
(Benkert et al., 2012). The very opposite scenario we observed here,
with decreasing pro-inflammatory biomarkers in SPMS. Therefore our
observations are unlikely to be NTZ-derived artifacts.

In summary, data described here agree with the two different sce-
narios for MS according to its clinical course. The pathways altered
correspond to the main characteristics observed in each stage.
Critically, the downregulation of NGF found in SP group was not totally
unexpected. Others have observed a decrease in this protein in SP in-
dividuals in comparison to RRMS and CIS, where inflammation is more
prominent (Villoslada and Genain, 2004). Comparing particular acti-
vated and inactivated pathways in the transcriptome of both groups
suggest that the ability to keep the balance between inflammation and
repair is crucial to control the progression of the disease. In this sense,
the release of NGF during the inflammation may play a key role in the
repair of inflammation-induced damages.
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