UNIVERSIDADE DE SÃO PAULO

FACULDADE DE CIÊNCIAS FARMACÊUTICAS Programa de Pós-Graduação em Toxicologia e Análises Toxicológicas

Avaliação de melanócitos humanos expostos ao

inseticida carbaril e à radiação solar em cultura

Bianca Ferrucio

Tese para obtenção do grau de DOUTOR

Orientadora: Profa. Dra. Silvia Berlanga de Moraes Barros

Co-orientadora: Profa. Dra. Silvya Stuchi Maria-Engler

São Paulo 2015

Ficha Catalográfica Elaborada pela Divisão de Biblioteca e Documentação do Conjunto das Químicas da USP.

Ferrucio, Bianca
F398a Avaliação de melanócitos humanos expostos ao inseticida carbaril e à radiação solar em cultura / Bianca Ferrucio. -- São Paulo, 2015. 156p.
Tese (doutorado) - Faculdade de Ciências Farmacêuticas da Universidade de São Paulo. Departamento de Análises Clínicas Clínicas e Toxicológicas. Orientador: Barros, Silvia Berlanga de Moraes Co-orientador: Maria-Engler, Silvya Stuchi
1. Praguicidas : Toxicologia 2. Radiação solar e terrestre
I. T. III. Barros, Silvia, Berlanga de Moraes, orientador. IV. Maria-Engler, Silvya Stuchi, co-orientador.

615.951 CDD

Bianca Ferrucio

Avaliação de melanócitos humanos expostos ao inseticida carbaril e à radiação solar em cultura

Versão original

Comissão Julgadora da Tese para obtenção do grau de Doutor

Profa. Dra. Silvia Berlanga de Moraes Barros orientadora/presidente

1° examinador

2° examinador

3° examinador

4° examinador

São Paulo, ____ de _____ de 2015.

Dedicatória

Dedico este trabalho aos meus pais, Paulo e Tereza, que são meu porto seguro e minha motivação para ser sempre melhor. Amo vocês!

Agradecimentos

Por toda contribuição, direta ou indireta, para que eu chegasse ao fim dessa etapa, agradeço:

À minha orientadora, Profa. Silvia Berlanga, por ter acreditado em mim e ter feito com que eu também acreditasse mais em mim mesma. Sou grata a todos os puxões de orelha e igualmente ao carinho e à paciência que teve comigo durante esses quatro anos, principalmente ao corrigir minha tese na véspera do natal. Terá sempre minha admiração e respeito.

À minha co-orientadora, Profa. Silvya Stuchi, pelos conhecimentos compartilhados, por confiar no meu trabalho e por ser um verdadeiro exemplo de dedicação e conquistas.

Ao meu orientador do mestrado, Prof. João Lauro, que contribuiu para a elaboração desse projeto de pesquisa e está sempre presente nos ensinamentos que me passou.

À Dra. Linda Birnbaum e ao Dr. Richard Paules, por terem feito possível meu estágio no NIEHS, RTP, EUA, e à todos do Microarray Group - Rick Fannin, Liwen Liu, Laura Whaley, Stella Sieber, Kevin Gerrish - que foram sempre muito atenciosos durante meu estágio e que me ajudaram durante todos os processos de geração e análise dos dados.

À técnica Renata Albuquerque, pela eficiência na geração dos resultados de citometria de fluxo e pela paciência em receber minhas amostras mesmo quando tantas vezes eu cheguei atrasada.

Ao laboratório de Citopatologia, que me deu tantos amigos que foram imprescindíveis durante essa etapa: Silvia Romano, técnica ponta firme para quem eu dei tanto trabalho; Paula, amiga do coração, misteriosa e surpeendente, faz tudo parecer mais fácil; Manoela, irmã que a vida me deu, leu e criticou minha tese, e mesmo assim conseguimos continuar amigas; Débora, tem o coração maior de todos, companheira para todas as horas e coletas de RNA e proteínas; Fernanda, menina mãos de ouro, tudo que faz dá certo; Silvana, sempre com espírito materno e preocupada em ajudar; Erica, que convivemos pouco, mas já quer herdar minha mesa e meu armário; Tati, sempre espirituosa e verdadeira; Renato, sempre animado e solícito; Thalita, divertida e sistemática, me lembra que eu não sou tão neurótica assim; Carol, sempre exercitando meu inglês e compartilhando comigo a compulsão por comida; Andrea, o google maps do laboratório, sempre sabe onde está tudo; Michele, risada, bolo de milho e chilli garantidos; Otávio, IC folgado que sempre está rindo escondido; Gustavo, IC cheio de energia e sede de conhecimento; Nayane, IC sempre feliz e motivada; Raquel, amiga que me ensinou a fazer WB; Diogo, que me ajudou com os ensaios no HPLC; e Camila Marinho, que me treinou para realizar cultura de células.

Ao pessoal do laboratório de Bioquímica: Profa. Ana Campa, Cilene, Luziane, Renan, Edson e Mariana, por todos os socorros prestados, pelas risadas e pela boa vizinhança.

À minha família Ferrucio: meus pais Paulo e Tereza, pelo apoio constante; à minha Vó Helena, Vórvs querida, por ser tão amável, e igualmente a meus avós Alcides, Consuelo e Vô Nenê, *in memorian*; meu irmão, Bruno, que tanto torceu pra que eu terminasse meu doutorado; e minha cunhada Juliana, por me ajudar a fazê-lo aceitar que pósgraduação também é trabalho.

Ao meu namorido Ricardo, por ter resistido bravamente ao meu mau humor decorrente das 4 horas diárias no fretado e ao estresse do final da tese. Também te amo muito! Dias melhores virão, prometo!

À minha família Zandonay: Dna. Ortenila, Seu Zando, Jaque, Dema, Tiago e Diogo, por serem tão queridos e por terem me acolhido tão calorosamente. Agradeço especialmente à minha cunhada que aceitou imprimir a tese na véspera do ano novo.

À família que me deu um lar nos EUA, Janine, Valentina e Lorenzo, que foram tão importantes nessa jornada e terão para sempre o meu carinho.

Aos amigos da faculdade: Ana Rachel, Alice, Layla e Henrique, pela amizade que não se altera nem com o passar dos anos e nem com a distância.

Às amigas de infância, Bia, Val, Paula, Lu, Tati e Dani, sempre presentes, e que sempre serão uma parte indispensável na minha vida.

Às funcionárias do departamento de Análises Clínicas e Toxicológicas, principalmente a Claudia e a Rose, e as funcionárias da equipe de limpeza.

Por fim, agradeço à FAPESP pelo apoio financeiro e ao programa de pós Graduação em Toxicologia e Análises Toxicológicas, especialmente, à secretária Samantha, por todos os serviços prestados.

SUMÁRIO

LISTA DE FIGURAS	9
RESUMO	11
ABSTRACT	12
I INTRODUÇÃO	13
1 O inseticida carbaril	13
1.1 Potencial cancerígeno cutâneo do carbaril	15
1.1.1 Evidências epidemiológicas	15
1.1.2 Evidências experimentais in vivo	17
1.2 Genotoxicidade do carbaril	18
2 Radiação ultravioleta (UV) e pele	20
3 Toxicogenômica	25
4 Modelos de carcinogênese cutânea e melanomagênese induzidas por radiação UV	28
5 Biotransformação na pele	32
II OBJETIVO	34
III MATERIAL E MÉTODOS	34
1 Cultura de melanócitos	34
2 Tratamento e irradiação	35
3 Solubilização do carbaril	37
4 Avaliação da citotoxicidade por azul de Tripan	38
5 Caracterização do mecanismo de morte celular	38
6 Avaliação do ciclo celular por citometria de fluxo	39
7 Quantificação de 8-oxo-7,8-diidroguanina	40
8 Quantificação de dímeros de pirimidina do tipo ciclobutano (CPD)	41
9 Análises de expressão proteica por Western Blot	41
9.1 Extração proteica	41
9.2 Fracionamento de proteínas em gel de eletroforese e conjugação com anticorpo	42
10 Ensaio de <i>microarray</i>	43
10.1 Hibridização de cDNA em <i>microarray</i>	44
10.2 Metodologia para análise de dados	44
10.3 Ensaio de validação por gRT-PCR	45
11 Análise estatística	45
IV RESULTADOS	46
1 Solubilização do carbaril	46

1.1 Análise do complexo carbaril/HPβCD em meio de cultura	
1.2 Avaliação da HPβCD como veículo do inseticida carbaril	
1.3 Avaliação do dimetilsulfóxido como veículo do inseticida carbaril 50	
2 Avaliação de citotoxicidade do carbaril 51	
2.1 Ensaio de viabilidade celular por Azul de Tripan 51	
2.2 Cálculo da IC ₅₀ 52	
2.3 Avaliação da morfologia celular	
3 Irradiação dos melanócitos 55	
3.1 Espectro da radiação solar 55	
3.2 Citotoxicidade da radiação solar 55	
4 Ensaio de <i>Microarray</i> 57	
4.1 Qualidade das amostras 57	
4.2 Análise da expressão gênica 57	
4.2.1 Perfil geral da expressão gênica 57	
4.2.2 Análise de componentes principais (PCA) 58	
4.2.3 Comparação entre número de genes alterados por tratamento. 61	
4.2.4 Avaliação da dose de radiação solar	
4.2.5 Genes com expressão diferencial no grupo de tratamento combinado com carbaril e radiação solar	
4.2.6 Análise de vias de sinalização celular	
4.2.7 Validação da expressão gênica por qRT-PCR	
5 Análise da regulação do ciclo celular 86	
6 Curva de crescimento celular 88	
7 Análise dos mecanismos de morte celular e autofagia	
8 Avaliação de estresse oxidativo por tratamento concomitante com antioxidante	
9 Ensaio de quantificação de CPDs por citometria de fluxo	
10 Ensaio de quantificação de 8-oxo-dG por citometria de fluxo	
V DISCUSSÃO E CONCLUSÕES	
VI REFERÊNCIAS BIBLIOGRÁFICAS 103	3
APÊNDICE I 120	6
APÊNDICE II	3

LISTA DE FIGURAS

Figura 1	Espectro da radiação solar - luz visível e radiação UV e seus efeitos biológicos na pele	Pág. 21
Figura 2	Espectro de emissão empregado para a irradiação das culturas de melanócitos.	Pág. 36
Figura 3	Ilustração da posição solar equivalente ao filtro AM 1.5G utilizado nos ensaios de irradiação.	Pág. 37
Figura 4	Caracterização do mecanismo de morte celular em melanócitos humanos primários	Pág. 48
Figura 5	Análise da expressão da proteína MiTF	Pág. 50
Figura 6	Porcentagem de melanócitos humanos primários viáveis tratados com diferentes concentrações de carbaril-DMSO por 24, 48 e 72 horas, analisados pelo ensaio do Azul de Tripan	Pág. 52
Figura 7	Morfologia dos melanócitos primários humanos em cultura após 24 horas de tratamento com DMSO 0,5% (controle de veículo relativo à concentração de 0,7mM de carbaril) e com carbaril diluído em DMSO em diferentes concentrações.	Pág. 46
Figura 8	Porcentagem de melanócitos humanos viáveis após tratamento com diferentes concentrações de carbaril ou DMSO 0,07% e irradiados com diferentes doses de luz solar, analisados após 24 horas da irradiação por meio de ensaio do Azul de Tripan.	Pág. 54
Figura 9	Agrupamento hierárquico dos 5934 genes significativamente alterados, representados por um <i>heatmap</i> de expressão gênica	Pág. 58
Figura 10	Análise de componentes principais da variabilidade para cada amostra no conjunto de dados, considerando a expressão de 5934 genes significantemente alterados induzidos pelos diferentes tratamentos.	Pág. 59
Flgura 11	Análise de componentes principais da variabilidade para cada amostra no conjunto de dados, classificados de acordo com o tratamento com radiação solar.	Pág. 60
Figura 12	Análise de componentes principais da variabilidade para cada amostra no conjunto de dados, classificados de acordo com o tratamento com carbaril	Pág. 60
Figura 13	Diagrama de Venn representando o número de genes significantemente alterados por tratamento, com um cut- off de aumento/diminuição de pelo menos 1,5 vezes	Pág. 61
Figura 14	Expressão de genes de assinatura da resposta à UV - p21 e PCNA - em diferentes condições de tratamento	Pág. 63
Figura 15	Genes relacionados a dano ao DNA e regulação do ciclo celular	Pág. 72

Figura 16	Genes relacionados a estresse oxidativo	Pág. 75
Figura 17	Genes relacionados com estresse de retículo	Pág. 77
	endoplasmático e autofagia	
Figura 18	Genes relacionados à resposta imune	Pág. 78
Figura 19	Genes relacionados a diferenciação e atividade de melanócitos	Pág. 80
Figura 20	Genes relacionados ao metabolismo de xenobióticos	Pág. 82
Figura 21	Validação da expressão gênica por qRT-PCR	Pág. 85
Figura 22	Avaliação de ciclo celular por citometria de fluxo	Pág. 87
	Análise da expressão relativa da proteína Ciclina B1 (55	
Figura 23	Kda) em melanócitos primários humanos após 24 horas	Pág. 88
	de tratamento	
Figura 24	Curva de crescimento celular	Pág. 89
	Avaliação do mecanismo de morte celular por citometria	
Figura 25	de fluxo - melanócitos humanos tratados por 24 horas de	Pág. 90
	tratamento	
Eigura 26	Representação por Dot Plots da análise do mecanismo de	Pág 01
r igura 20	morte celular por citometria de fluxo	1 ag. 51
Figura 27	Análise da expressão relativa da proteína LC3B-II (14,	
	16Kda) em melanócitos primários humanos após 24	Pág. 93
	horas de tratamento.	
Figura 28	Análise da expressão da proteína Beclin-1 (60Kda) em	
	melanócitos primários humanos após 24 horas de	Pág. 94
	tratamento.	
Figura 29	Análise da expressão gênica por qRT-PCR dos genes	Pág 95
	HMOX1 e MITF	1 49.00
Figura 30	Quantificação de dímeros de pirimidina (CPDs)	Pág. 97
Figura 31	Quantificação de 8-oxo-7,8-diidroguanina (8-oxo-dG)	Pág. 98

RESUMO

FERRUCIO, B. Avaliação de melanócitos humanos expostos ao inseticida carbaril e à radiação solar em cultura. 2015. 156p. (Tese de Doutorado). Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 2015.

O carbaril (metilcarbamato de naftila), um inseticida de amplo espectro, foi recentemente associado ao desenvolvimento de melanoma cutâneo em estudo epidemiológico de coorte com trabalhadores agrícolas norte-americanos, expostos também à radiação solar, o principal fator etiológico para o desenvolvimento de tumores cutâneos. Apesar de abrangente e bem planejado, aquele estudo epidemiológico não é suficiente para caracterizar a contribuição direta do inseticida e da radiação solar na melanomagênese. Diversos estudos têm explorado o efeito sinérgico de determinadas substâncias químicas à radiação UV, potencializando seus efeitos deletérios sobre a pele, e possivelmente contribuindo para o desenvolvimento de tumores. A hipótese deste trabalho é de que a exposição ao carbaril associada à radiação solar possa estimular a transformação de melanócitos. Esse estudo visou caracterizar melanócitos humanos após exposição individual ou combinada ao carbaril (100uM) e à radiação solar (375 mJ/ cm²). Em ensaio de *microarray*, o carbaril, mas não a radiação solar, induziu uma importante resposta a estresse oxidativo, evidenciada pelo aumento da expressão de genes antioxidantes, como o Hemeoxigenase-1 (HMOX1), e pela diminuição da expressão do gene MiTF, regulador da atividade melanocítica; os resultados foram confirmados por gRT-PCR. Além disso, tanto o carbaril guanto a radiação solar induziram respostas que sugerem dano ao DNA e alteração de ciclo celular. A expressão dos genes nestas categorias, como p21 e BRCA1/2, foi notavelmente mais intensa no grupo de tratamento combinado e de fato, ensaios por citometria de fluxo demonstraram parada de ciclo celular na fase S, redução do número de células em apoptose e indução mais rápida de lesões do tipo CPD neste grupo experimental. Nossos dados sugerem que o carbaril é genotóxico para melanócitos humanos, especialmente quando associado à radiação solar.

Palavras-chave: carbaril, melanócitos, *microarray*, radiação solar, melanomagênese.

ABSTRACT

FERRUCIO, B. Evaluation of cultured human melanocytes exposed to carbaryl insecticide and solar radiation. 2015. 156p. (Tese de Doutorado). Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 2015.

Carbaryl (1-naphthyl-methylcarbamate), a broad spectrum insecticide, has recently been associated with the development of cutaneous melanoma in an epidemiological cohort study with U.S. farm workers also exposed to ultraviolet radiation, which is known to be the main etiologic factor for skin carcinogenesis. Although comprehensive and well designed, the epidemiological study is not sufficient to characterize the direct contribution of the insecticide and solar radiation in melanomagenesis. Several studies have explored the synergistic effect of certain chemicals with UV radiation, increasing its deleterious effects on the skin, possibly contributing to tumor development. We hypothesized that Carbaryl exposure associated with UV solar radiation may induce melanocyte transformation. This study aims to characterize human melanocytes after individual or combined exposure to Carbaryl (100uM) and solar radiation (375 mJ/ cm²). In a microarray analysis, Carbaryl, but not solar radiation, induced an important oxidative stress response, evidenced by the upregulation of antioxidant genes, such as Hemeoxygenase-1 (HMOX1), and downregulation of MiTF, the main regulator of melanocytic activity; results were confirmed by gRT-PCR. Moreover, both Carbaryl and solar UV induced a gene response that suggests DNA damage and cell cycle alteration. The expression of genes in these categories, such as p21 and BRCA1/2, was notably more intense in the combined treatment group in an additive manner and in fact, flow cytometry assays demonstrated cell cycle arrest in S phase, reduced apoptosis induction and faster induction of CPD lesions in this experimental group. Our data suggests that carbaryl is genotoxic to human melanocytes, especially when associated with solar radiation.

Keywords: Carbaryl, melanocytes, microarray, solar radiation, melanomagenesis.

I - INTRODUÇÃO

1 O inseticida carbaril

O carbaril (metilcarbamato de naftila - CAS 63-25-2), também conhecido por diversos nomes comerciais como Sevin®, Dicarban® e Carbatox®, é um inseticida de amplo espectro da família dos carbamatos, inibidor da acetilcolinesterase em insetos, podendo agir por contato ou ingestão. É um inseticida extensamente utilizado em pastagens, no cultivo de plantas ornamentais, na manutenção profissional de gramados, no ambiente domiciliar e principalmente na agricultura, no cultivo de algodão, frutas, vegetais, nozes e cereais (USEPA, 2004).

A exposição oral aguda ou crônica ao carbaril em humanos causa inibição reversível da enzima acetilcolinesterase, o que pode hiperestimular o sistema nervoso central, causando desde náusea, tontura e confusão mental, até parada respiratória e morte (USEPA, 2004). O carbaril foi classificado pela Agência de Proteção Ambiental norte-americana como provável cancerígeno para a espécie humana, baseado no desenvolvimento de tumores vasculares em camundongos CD-1 expostos ao inseticida pela ração nas concentrações de 100, 1000 e 8000 ppm por dois anos (USEPA, 2006). No entanto, a carcinogenicidade deste produto não tem sido prioridade de investigação no que diz respeito aos riscos à saúde humana, uma vez que sua ação como inibidor de acetilcolinesterase tem sido considerada mais preocupante do ponto de vista toxicológico (USEPA, 2004).

O carbaril diluído em álcool etílico foi absorvido rapidamente após aplicação tópica de 0,19 mg/cm² na cauda de ratos Wistar, em uma solução de

1,67 mg/mL (8 µM) (Tos-Luty et al., 2001). Naquele trabalho, decorridas seis horas do período de aplicação, a quantidade do praguicida presente no local de aplicação era de 21,40% da dose inicial, e após 20 horas, de apenas 3,57%. Adicionalmente, os autores relataram que o carbaril foi encontrado em células sanguíneas e no fígado dos animais tratados. Estes resultados demonstram que o carbaril atravessa facilmente a camada córnea, e deve entrar em contato com a camada basal da epiderme, onde estão localizados os alvos celulares primários de agentes cancerígenos cutâneos.

Um trabalho de revisão da literatura relatou que a hidroxilação por enzimas citocromo P450 (CYPs) constitui a mais importante via de metabolização deste inseticida, e os produtos principais dessa reação são 5hidroxicarbaril, 4-hidroxicarbaril e carbaril metilol (Hodgson & Rose, 2005). Tang et al. (2002) investigaram a atividade metabólica de 16 isoformas de CYPs na metabolização do carbaril, e demonstraram que a maioria das enzimas induziram a geração de metabólitos, sendo que as mais ativas foram CYP1A1, CYP1A2, CYP2B6 e CYP3A4. Naquele trabalho, o 1-naftol, produto da hidrólise do carbaril, foi detectado em quantidades mínimas, sugerindo que esta via não é preferencial na metabolização deste composto. No entanto, em condições ambientais, o carbaril é facilmente degradado por hidrólise em meio alcalino, formando preferencialmente o metabólito 1-naftol (Gunasekara et al., 2008). Análises fluorimétricas de carbaril em água de torneira e de rio, demonstraram que o carbaril não sofre degradação em faixas de pH de 7 a 8 em até quatro horas e, em pH 9, a meia-vida deste composto foi de aproximadamente duas horas (Zhu et al., 2008). Esses dados indicam que, em

ensaios *in vitro*, o carbaril deve ser estável no meio de cultura, cujo pH é de 7,0-7,4.

A exposição ocupacional é a maior preocupação em torno deste praguicida. Trabalhadores agrícolas responsáveis pela mistura, carregamento e aplicação do praguicida, e aqueles que retornam à área agrícola previamente tratada apresentam o maior risco de exposição, e, além disso, frequentemente negligenciam práticas de segurança, como o uso de equipamentos de proteção individual (EPIs) (Carpenter et al., 2002; Perry et al., 2002). Adicionalmente, os EPIs podem ser insuficientes para proteger toda a superfície cutânea e é possível o contato com o exterior contaminado do equipamento (Brouwer et al., 2005).

1.1 Potencial cancerígeno cutâneo do carbaril

1.1.1 Evidências epidemiológicas

Recentemente, um estudo epidemiológico de coorte com trabalhadores agrícolas nos estados de lowa e da Carolina do Norte, EUA, demonstrou associação significante entre o desenvolvimento de melanoma cutâneo e o uso de quatro praguicidas, entre eles o carbaril (tempo de exposição \geq 56 dias; OR = 1,7; 95% IC, 1,1–2,5; *p*-trend = 0,013) (Dennis et al., 2010). Além disso, foi sugerida uma relação dose-resposta entre exposição a praguicidas carbamatos em geral e prevalência de melanoma cutâneo. Naquele estudo, trabalhadores agrícolas foram acompanhados de Dezembro/2003 a Dezembro/2007 e questionados sobre o tempo de exposição ao praguicida, métodos de aplicação, uso de EPI, hábitos alimentares, estilo de vida, histórico de saúde,

exposição ao sol, idade, peso, cor de pele e cabelo, entre outras informações que pudessem influenciar o risco para desenvolvimento de melanoma. Adicionalmente, os autores não encontraram uma relação linear entre a exposição ao sol e o desenvolvimento de melanoma naquela coorte de trabalhadores. Outro trabalho derivado do mesmo estudo de coorte, com dois anos a menos de seguimento e com um número inferior de casos de melanoma cutâneo, também indicou aumento do risco de melanoma associado à exposição ocupacional ao carbaril, com tempo de exposição maior que 175 dias (RR = 4,11; IC 95%, 1,33–12,75; *p*-trend = 0,07), tempo de uso maior que 10 anos (RR = 3,19; IC 95%, 1,28–7,92; *p*-trend = 0,04), ou maior que 10 dias por ano (RR = 5,50; IC 95%, 2,19–13,84; *p*-trend < 0,001) (Mahajan et al., 2007). Este é o primeiro relato na literatura que associa o carbaril ao desenvolvimento deste tipo de tumor maligno.

A radiação ultravioleta é o principal fator etiológico para o desenvolvimento de carcinoma de célula escamosa, carcinoma basocelular e melanoma cutâneos, e é um agente cancerígeno ao qual o ser humano está constantemente exposto (IARC, 1992). Apesar de ser abrangente e bem planejado, o estudo epidemiológico acima citado apresenta limitações, como a dificuldade de estipular com precisão a dose de radiação UV e a dose acumulada de carbaril a que os indivíduos foram expostos. Consequentemente, é insuficiente para determinar a contribuição direta de cada um destes fatores no desenvolvimento dos melanomas.

1.1.2 Evidências experimentais in vivo

A carcinogênese cutânea é um processo que evolui em múltiplas etapas, caracterizadas experimentalmente como as de iniciação, promoção e progressão. A iniciação requer a lesão do DNA e posterior "fixação" desta alteração por pelo menos um ciclo de proliferação; tem por característica a ausência de limiar-de-dose do cancerígeno químico que a provocou, isto é, mesmo doses mínimas podem provocar a iniciação. Assim, todo iniciador da carcinogênese é um agente genotóxico, embora nem todas as substâncias genotóxicas iniciem o processo de carcinogênese (Pitot III & Dragan, 2001). Acredita-se que as células-tronco de queratinócitos, localizadas principalmente na camada basal da epiderme interfolicular e no infundíbulo folicular, sejam os alvos celulares primários na etapa da iniciação, graças à velocidade de proliferação, capacidade de auto renovação e baixas taxas de apoptose (Morris, 2000). A promoção, por sua vez, é a etapa em que ocorre a expansão clonal das células iniciadas e, consequentemente, a expressão fenotípica da alteração do genoma ocorrida na iniciação (DiGiovanni, 1992). O promotor, sendo um agente químico ou físico, age por estímulo à proliferação celular sem agredir o DNA, e tem por característica a existência de um limiar-de-dose abaixo do qual não exerce efeito tumorigênico (Yuspa et al., 1976). Finalmente, na etapa da progressão, as células tumorais adquirem as características básicas da malignidade, como aneuploidia e capacidade de invasão tecidual e de metástases, levando à manifestação clínica da doença (Yuspa et al., 1981).

Ensaios de carcinogênese cutânea de múltiplas etapas (iniciaçãopromoção) foram estabelecidos como testes alternativos aos bioensaios convencionais de dois anos para detecção de cancerígenos químicos, e são

particularmente importantes na investigação do mecanismo de ação destas substâncias, já que permitem a distinção operacional entre as etapas do desenvolvimento de tumores (Abel et al., 2009). Em ensaio de iniciaçãopromoção na pele de camundongos Swiss fêmeas, o carbaril foi relatado como iniciador da carcinogênese (Shukla et al., 1992). Naquele estudo, um número pequeno (2/17) de animais desenvolveu tumores benignos papilíferos e ceratoacantomas quando iniciados com o carbaril em dose única (100 mg/Kg p.c.); guando aplicado em doses múltiplas (3 vezes/semana, por 3 semanas), a atividade iniciadora foi relativamente maior (8/13). No entanto, quando testado como agente promotor ou como cancerígeno completo, o carbaril não exerceu efeito tumorigênico. Uma vez que agentes iniciadores são genotóxicos (Pitot III & Dragan, 2001) e frequentemente agem como cancerígenos completos (Iversen, 1994), é esperado que o carbaril fosse capaz de exercer efeito tumorigênico quando aplicado sucessivamente durante a etapa da promoção. Assim, frente aos achados pouco consistentes, e considerando que os autores não realizaram análise estatística de seus resultados, este estudo não esclarece a questão da genotoxicidade do carbaril.

1.2 Genotoxicidade do carbaril

A genotoxicidade do carbaril é referida como positiva em diversos ensaios *in vitro* com diferentes linhagens de células humanas. Ahmed et al. (1977) relataram que o carbaril diluído em acetona foi capaz de induzir síntese não programada de DNA e reparo em células de fibroblastos transformados SV-40 a partir da concentração de 100µM, e essa indução foi independente de ativação metabólica. No ensaio *GreenScreen Assay*, que utiliza a proteína

verde fluorescente (GFP) como sistema repórter do gene GADD45α (*Growth Arrest and DNA Damage*) em células linfoblastóides, os resultados foram positivos para o carbaril diluído em dimetilsulfóxido (DMSO) na concentração de 470µM, somente após ativação metabólica (Luzy et al., 2012). Em células linfoblastóides humanas, o carbaril foi relatado como indutor de estresse oxidativo, provocou altas taxas de danos no DNA a partir da concentração de 100µM, e estes resultados foram comprovados em células de hepatoma HepG2; aparentemente, seu potencial genotóxico foi indireto, exercido por metabólitos reativos resultantes de sua biotransformação, já que a genotoxicidade foi demonstrada em células transfectadas com hiperexpressão de CYP1A1, mas não na linhagem parental (Delescluse et al., 2001).

O uso de animais produzidos por biotecnologia permite reduzir a duração e o número de animais necessários em modelos experimentais, além de gerar resultados mais precisos e informações acerca do modo/mecanismo de ação das substâncias testadas (Brown & Balmain, 1995). Dentre os modelos mais utilizados estão os camundongos nocaute heterozigotos *Trp*53, que apresentam apenas um alelo funcional do gene supressor tumoral Tp53 e por isso são altamente suscetíveis ao desenvolvimento de tumores induzidos por agentes genotóxicos (French et al., 2001). Quando expostos ao carbaril via ração (0, 10, 30, 100, 300, 1000 e 4000 ppm) por 180 dias, animais desta linhagem não desenvolveram quaisquer neoplasias, o que indica que neste modelo *in vivo* o inseticida não exerceu atividade genotóxica (Bigot-Lasserre et al., 2003). No entanto, aqueles autores não fizeram avaliação toxicocinética do composto, e não investigaram qual foi a taxa de absorção do mesmo por via oral.

2 Radiação ultravioleta (UV) e pele

O espectro de radiação UV que atinge a superfície terrestre compreende os comprimentos de onda UVA (320 nm a 400 nm) e UVB (280 nm a 320 nm). A Figura 1 destaca a subdivisão do espectro da radiação solar e seus efeitos sobre a pele humana. Quanto menor o comprimento de onda, maior a absorção de radiação pela epiderme, pelo DNA e por proteínas celulares; assim, a radiação UVB, por ser mais absorvida pelo DNA, é a que mais deve ser nociva à pele, embora a radiação UVA seja a mais abundante e seja capaz de penetrar mais profundamente na pele, até a derme (De Gruijl & Forbes, 1995). A radiação UV, derivada principalmente dos raios solares, mas também de fontes artificiais como lâmpadas fluorescentes, é sabidamente o principal fator etiológico ambiental do câncer de pele, sendo classificado como cancerígeno humano tipo I pela IARC (Gandini et al., 2005; IARC, 1992). Tumores cutâneos do tipo melanoma correspondem a uma das malignidades que mais cresce em incidência no mundo e com um dos piores prognósticos (De Santis et al., 2014). Entretanto, os mecanismos específicos pelos quais a radiação inicia a formação destes tumores permanecem pouco compreendidos (Zaidi et al., 2008).

Figura 1: Espectro da radiação solar - luz visível e radiação UV e seus efeitos biológicos na pele. Extraído de D'Orazio et al. (2013).

Em uma publicação de Noonan et al. (2012) foi demonstrado que tanto a radiação UVA quanto a radiação UVB são importantes no desenvolvimento do melanoma cutâneo em animais, embora por mecanismos diferentes; a radiação UVA requer a presença de melanina, enquanto que a radiação UVB é capaz de iniciar o melanoma de maneira independente da presença desse pigmento. A radiação UVB provoca dano direto ao DNA de células da epiderme, levando à mutagênese; a radiação UVA provoca genotoxicidade indireta através de espécies reativas de oxigênio (EROs) e estresse oxidativo, e eventualmente gera mutações que desencadeiam o processo de carcinogênese (de Gruijl, 2000). A radiação UVB, apesar de ser menos abundante, é considerada mais cancerígena do que a UVA, induzindo a formação de dímeros de pirimidina do tipo ciclobutano (CPDs) e fotoprodutos 6,4-pirimidona-pirimidina (6-4PP) (Matsumura & Ananthaswamy, 2002). As lesões do tipo CPD são as mais difíceis de serem reparadas, e entre elas, os dímeros formados entre citosinas adjacentes (C-C) ou entre timina e citosina (T-C) são consideradas as mais

mutagências (Marrot & Maunier, 2008). A radiação UVA é uma importante indutora de dano oxidativo em células epidermais através de quebra de fita simples e/ou dupla de DNA e formação de 8-oxo-7,8-diidroguanina (8-oxo-dG), que por sua vez está fortemente associada à carcinogênese cutânea devido à instabilidade genômica gerada (von Thaler et al., 2010; Ridley et al., 2009).

O papel exercido pelas EROs no processo de melanomagênese está bem estabelecido na literatura (Fried & Arbiser, 2008; Wittgen & van Kempen, 2007). Melanócitos são células com baixas taxas de proliferação e, portanto, persistem na pele por décadas, em um ambiente com altos níveis de EROs induzidas pela radiação UV. Kadekaro et al. (2012) descreveram o papel antioxidante do hormônio α-estimulante de melanócitos (αMSH), que é também importante na produção da melanina, por meio de uma via celular mediada pela proteína p53, após exposição à radiação UV.

A proteína p53 é considerada o principal sensor de dano ao DNA, e esse gene supressor tumoral pode ser induzido em melanócitos por ambas as radiações UVA e UVB, por diferentes vias celulares (Waster & Ollinger, 2009). A quinase ATM (*Ataxia telangiectasia mutated*), membro da família PI-3K (*phosphoinositol-3 kinase*), foi descrita como responsável pela fosforilação de p53 após a exposição à radiação UVA em fibroblastos humanos (Zhang et al., 2002). De fato, a ATM está envolvida na resposta ao dano oxidativo, induzindo a parada de ciclo celular nas fases de *checkpoints* G1 e G2 (Shackelford et al., 2001). Adicionalmente, células de melanoma comumente apresentam deficiência nos *checkpoints* G1 e G2, o que foi demonstrado através do monitoramento de alvos transcripcionais da proteína p53, como CDKN1A

(cyclin-dependent kinase inhibitor 1A) e DDB2 (damage-specific DNA binding protein 2) (Kauffman et al., 2008).

Até recentemente, assinatura de mutações UV em melanomas cutâneos não haviam sido identificadas (Zaidi et al., 2008). Um trabalho recente de revisão publicado por Brash (2014), compilou dados que comprovam que mutações em genes críticos, como o BRAF, podem ser causadas pela radiação UV, já que ocorrem predominantemente em melanomas que se desenvolvem em locais expostos ao sol, apesar de não serem decorrentes de trocas de bases típicas da UV e não ocorrerem em sítios de dipirimidinas. Em tumores cutâneos não-melanocíticos, mutações no gene Tp53 são muito frequentes, e é um dos eventos primordiais da resposta celular ao estresse genotóxico induzido pela radiação UV (Benjamin & Ananthaswamy, 2007). Por outro lado, em tumores melanocíticos, além de ocorrerem em menor porcentagem, mutações no gene Tp53 parecem ser um evento tardio da progressão do melanoma (Hussein et al., 2003). Apesar disso, a proteína p53 encontra-se frequentemente inativa em células tumorais e as respostas celulares de melanoma à radiação UV são independentes de p53, indicando que suas funções indiretas, como por exemplo, a indução da apoptose, sejam suprimidas por vias alternativas (Haapajarvi et al., 1999). Em células normais, baixas doses de radiação UV induzem parada de ciclo celular através de um aumento transitório na expressão de p53, enquanto que em altas doses, a radiação induz à apoptose, correlacionado com um aumento lento e continuado de p53 (Latonen & Laiho, 2005).

Além de ser mutagênica, é possível que a radiação UV seja capaz de agir por mecanismos epigenéticos, por exemplo por meio do relaxamento

global da cromatina, que permite melhor acesso ao DNA e facilita o mecanismo de reparo por excisão de nucleotídeo, mas que pode também induzir alterações transcripcionais relacionadas à melanomagênese (Zaidi et al., 2008). Inúmeros genes foram caracterizados como desregulados em melanomas por mecanismos epigenéticos, como os genes APAF1 (*Apoptotic protease activating factor 1*), p16INK4a (*Cyclin-dependent kinase inhibitor 2A*) e PCNA (*Proliferating cell nuclear antigen*), que encontram-se silenciados por hipermetilação do promotor (Rothhammer & Bosserhoff, 2007). Um trabalho publicado por Molognoni et al. (2011) demonstrou que melanócitos murinos transformados por bloqueio de ancoragem apresentam alterações de genes relacionados a metilação de DNA e marcadores de histonas, indicando que os mecanismos epigenéticos devem ocorrer também nos estágios iniciais do desenvolvimento tumoral.

Ziegler et al. (1994) relataram que a exposição repetida à radiação UV é capaz de induzir a proliferação seletiva de queratinócitos com mutação no gene Tp53, uma vez que essas células são resistentes à apoptose; dessa maneira, conclui-se que a radiação pode agir como um agente iniciador, como promotor, ou como um cancerígeno completo. Camundongos *hairless* iniciados com dose única de 7-12-dimetilbenzantraceno (DMBA) e expostos sucessivamente à radiação UVA, UVB ou à combinação UVA + UVB desenvolveram tumores cutâneos do tipo melanoma, enquanto que animais expostos somente ao DMBA ou somente à radiação UV desenvolveram apenas tumores cutâneos não-melanocíticos; tais achados caracterizam a radiação como um agente promotor de melanomas cutâneos (Husain et al., 1991).

Paralelamente, a radiação UVA tem sido investigada com relação à sua capacidade de intensificar a suscetibilidade à carcinogênese induzida por radiação UVB ou por baixas doses de cancerígenos químicos ambientais, caracterizando quadros sinergísticos preocupantes (Burke & Wei, 2009). Camundongos *hairless* expostos simultaneamente a doses subcarcinogênicas de radiação UVA e de benzopireno durante 25 semanas, apresentaram alta incidência e multiplicidade de tumores cutâneos não-melanocíticos (Wang et al., 2005). São denominadas de reações de fotossensibilidade aquelas em que substâncias químicas amplificam os efeitos deletérios da radiação UVA, principalmente UVA, em doses que em condições normais deveriam ser inofensivas, levando à formação de adutos de DNA ou indução de estresse e dano oxidativo (Marrot & Meunier, 2008).

3 Toxicogenômica

Os principais objetivos da toxicologia são identificar fatores ambientais envolvidos na etiologia de doenças humanas e realizar avaliações de risco e segurança para medicamentos e substâncias químicas. A compreensão dos mecanismos de ação de toxicantes é central na tomada de decisões de saúde pública para a proteção dos seres humanos contra exposições de risco. Nesse contexto, a toxicogenômica tem evoluído rapidamente em relação à descoberta de biomarcadores de toxicidade, avaliação de múltiplas vias de toxicidade e elucidação de respostas de organismos a estresse ambiental (Waters & Fostel, 2004).

A análise do perfil de expressão gênica global, também referida como transcriptômica, utilizando tecnologia de *microarray*, é uma abordagem

eficiente para determinar vias alteradas transcricionalmente através do monitoramento da expressão de milhares de genes em uma população e momento específicos (Nuwaysir et al., 1999). Essa metodologia gera uma enorme quantidade de dados que fornece uma avaliação compreensiva de genes, RNAm ou transcritos alterados, tipicamente através do uso de *microarrays* de cDNA ou de oligonucleotídeos, e pode ser aplicada para identificar as principais vias alteradas após exposição a um toxicante e para melhor compreender seus mecanismos de ação (Cui & Paules, 2010).

Respostas biológicas a exposições ambientais podem ser eventos muito dinâmicos, já que um composto pode apresentar múltiplos modos de ação, cada um com múltiplos eventos-chave. Portanto, a investigação de possíveis efeitos tóxicos é desafiadora, especialmente com relação a doenças complexas e de longo prazo como o câncer. Os bioensaios convencionais de carcinogenicidade de dois anos em roedores são caros, longos, requerem um grande número de animais e altas doses do composto-teste, e apresentam baixa especificidade; essas limitações têm estimulado os pesquisadores a desenvolver métodos alternativos que possam prever a carcinogenicidade de substâncias químicas para humanos de maneira eficiente, por meio de biomarcadores derivados de tecnologia genômica (Paules et al., 2011). Perfis de expressão gênica por meio da técnica de microarray podem ser eficientemente usados para predição e avaliação mecanística de carcinógenos não genotóxicos, com base nos níveis de expressão de genes específicos (Bercu et al., 2010; Fielden et al., 2011). Com relação a testes de genotoxicidade, os microarrays têm se mostrado eficientes na discriminação entre compostos genotóxicos e compostos com resultados falso-positivos em

ensaios *in vitro* como o teste de Ames e micronúcleo (Mathijs et al., 2010). Além disso, a análise do perfil transcripcional usando *microarrays* pode ser usada para avaliar os efeitos adversos de substâncias químicas abaixo dos limites de detecção e muito mais cedo que ensaios de toxicidade tradicionais (Irwin et al., 2004).

Uma limitação da tecnologia de *microarray* é que os níveis de RNAm não são sempre comparáveis aos níveis de proteína em decorrência de modificações pós-translacionais; portanto, é importante realizar ensaios complementares para validar os estudos de transcriptomas, os quais podem gerar resultados mais precisos (Liu & Guo, 2012). Adicionalmente os *microarrays* fornecem apenas dados de expressão gênica semi-quantitativos e, por isso, o PCR quantitativo em tempo real é proposto como uma ferramenta eficiente para confirmar os níveis de expressão de um conjunto de genes relevantes relatados como diferencialmente expressos nos ensaios de *microarray* (Provenzano & Mocellin, 2007).

Diversos estudos descreveram a expressão gênica global do melanoma cutâneo humano (Bittner et al., 2000; Freedman et al., 2011; Hoek et al., 2004). Dessa maneira, Valéry et al. (2001) analisaram o perfil transcripcional de melanócitos humanos após a exposição à radiação UV por meio de *microarrays* de cDNA, identificando 198 genes alterados, incluindo fatores de transcrição, receptores, supressores tumorais e (proto)oncogenes. Os dados daquele trabalho foram posteriormente comparados com genes relacionados ao desenvolvimento de melanoma, relatados por um estudo que utilizou uma plataforma de *microarray* semelhante (Bittner et al. 2000), revelando um total de 59% de genes modulados de maneira correspondente, por exemplo,

subexpressão de FN1 (fibronectin 1), de HIF1a (hypoxia inducible factor 1, alpha subunit basic helix-loop-helix transcription factor) e de MAP3K7 (mitogenactivated protein kinase kinase kinase 7) e a superexpressão de AQP4 (aquaporin 4), de ADCY9 (adenylate cylase 9) e de GUK1 (Guanylate kinase 1). Recentemente, um artigo de revisão descreveu detalhadamente uma classificação compreensiva de genes associados a pigmentação, resposta cutânea à UV (sensibilidade ao sol e/ou sardas), e câncer de pele; genes associados a nevus e melanoma; genes associados a pigmentação e/ou resposta cutânea à UV, mas não a câncer de pele; e genes associados a carcinoma de células basais, mas não a pigmentação ou resposta cutânea a radiação (Gerstenblith et al., 2010). Adicionalmente, a análise da expressão gênica de melanócitos transformados por bloqueio de ancoragem revelou possível marcadores da transformação melanocítica, como por exemplo a hiperexpressão do gene Xist (X inactive-specific transcript), que parece ser regulado por mecanismos epigenéticos (de Souza et al., 2011).

4 Modelos de carcinogênese cutânea e melanomagênese induzidas por radiação UV

Nos modelos experimentais de carcinogênese cutânea induzida por radiação UV em camundongos, os animais são expostos diariamente à radiação, geralmente na região dorsal, em doses abaixo do limiar para reações adversas agudas (como queimaduras), de modo que ao final de determinado período desenvolvem tumores cutâneos papilíferos (De Gruijl & Forbes, 1995). A exposição contínua e em baixa intensidade à radiação UV representa maior risco à carcinogênese do que a exposição esporádica e em maior intensidade, na mesma dose cumulativa final (Klein et al., 2010).

É preciso considerar algumas disparidades entre humanos e roedores com relação ao desenvolvimento de tumores. Na espécie humana, a radiação UV pode promover o desenvolvimento de tumores cutâneos não-melanocíticos e melanocíticos. Os tumores não-melanocíticos são os mais frequentes, sendo classificados histologicamente como carcinomas de células escamosas (SCC) e carcinomas basocelulares (BCC) (Marks, 1995). Os tumores melanocíticos, provenientes dos melanócitos da epiderme, representam a forma mais maligna de câncer de pele, apresentando a maior taxa de mortalidade, particularmente quando diagnosticados tardiamente (Rubin & Lawrence, 2009). Em camundongos, melanomas induzidos por radiação UV são muito raros, e tipicamente não são histopatologicamente similares àqueles em humanos; curiosamente, melanomas cutâneos são mais frequentes em animais tratados com cancerígenos químicos sozinhos ou em associação com radiação UV (von Thaler et al., 2010). É provável que a baixa incidência de melanomas cutâneos em camundongos seja decorrente da localização dérmica e folicular dos melanócitos nesses animais, o que provavelmente permite maior proteção contra a radiação (Ley, 2002). Desta maneira, estes modelos tradicionais são limitados no que diz respeito à compreensão da etiologia e biologia dos tumores melanocíticos em humanos.

Modelos animais específicos para melanomas foram desenvolvidos com o objetivo de estudar a biologia desses tumores, avaliar novas abordagens terapêuticas e investigar a função de determinadas proteínas na progressão do melanoma humano; entre eles, estão os modelos animais inoculados com

células de melanoma por transplante singênico ou xenogênico, e modelos com animais geneticamente modificados que desenvolvem melanomas espontaneamente (Becker et al., 2009). Um dos modelos de melanomagênese descrito na literatura consiste no enxerto de pele humana normal de recémnascido em camundongos imunodeprimidos. Após irradiação com UVB e aplicações repetidas de DMBA, ocorrem lesões melanocíticas no enxerto humano, porém apenas uma pequena porcentagem dessas lesões corresponde a melanomas (Atillasoy et al., 1998). Quando estes enxertos são expostos à radiação UVB combinada à hiperexpressão de três fatores de crescimento (fator de crescimento básico de fibroblastos, fator de célulastronco e endotelina-3) induzida por vetor adenoviral, o desenvolvimento de melanomas ocorre em poucas semanas, embora os tumores regridam guando o estímulo àqueles fatores de crescimento é retirado (Berking et al., 2004).

Mais recentemente, foram desenvolvidos camundongos transgênicos com hiperexpressão de fator de crescimento de hepatócito (HGF/SF -Hepatocyte growth fator/scatter factor), que quando irradiados com luz UV de amplo espectro (UVA, UVB e UVC) em dose única, na fase neonatal, desenvolvem melanomas cutâneos após seis a doze meses a partir da exposição; a irradiação na fase adulta não inicia a melanomagênese, mas aumenta a multiplicidade de tumores, condição que recapitula a etiologia do melanoma humano (Noonan et al., 2001). Apesar de serem ensaios tumores induzidos naqueles extremamente longos, os animais são histopatologicamente muito similares àqueles em humanos, enquanto que tumores espontâneos não se assemelham aos humanos e ocorrem somente em idade avançada; além disso, os melanócitos estão localizados na derme e

epiderme, assim como em humanos, em adição à localização no folículo piloso, que é comum a camundongos (Noonan et al., 2003). Outro modelo animal que parece ser eficiente é o que usa camundongos da linhagem C3H/HeN, que desenvolvem melanomas cutâneos após exposição crônica à radiação UV em combinação com etanol ou aloe-emodina. Embora neste modelo a radiação atue como o principal agente cancerígeno, o tratamento com as substâncias químicas, supostamente cancerígenos fracos, foi o responsável pela mudança na natureza dos tumores cutâneos que, tipicamente, são não-melanocíticos (Strickland et al., 2000; 2003).

Em ensaios *in vitro*, é possível irradiar células epidermais humanas cobertas por camada fina de PBS (tampão fosfato-salina) com a finalidade de investigar os efeitos moleculares e celulares induzidos pela radiação UVA ou UVB na pele (Gonzalez et al., 2001; Kowalczuk et al., 2006). Estes ensaios são particularmente importantes para investigar efeitos genotóxicos e citotóxicos induzidos pela radiação UV em combinação com substâncias químicas que podem amplificar seus efeitos nocivos (Marrot & Meunier, 2008). Existem inúmeras análises que podem ser feitas para investigar respostas celulares *in vitro*. Entre elas, está o ensaio do MTT, que é um método colorimétrico para mensurar a viabilidade por meio do metabolismo mitocondrial; e a detecção da proteína p53, que em resposta a estresse genotóxico interrompe o ciclo celular ou induz à apoptose (Marrot et al., 1998).

A atividade dos melanócitos em resposta ao estresse induzido pela radiação pode ser avaliada pela quantificação de marcadores específicos de melanócitos, como a enzima tirosinase, responsável pela hidroxilação da tirosina na etapa inicial da síntese de melanina; a proteína MART1 (*melanoma*

antigens recognized by T-cells), cuja expressão é restrita a melanócitos e melanomas, e parece estar diretamente envolvida na formação de melanossomos (Hoashi et al., 2005); e a proteína MiTF (micropthalmia transcription factor), um dos principais reguladores de atividade melanocítica, responsável pela transcrição de diversos genes específicos de melanócitos, incluindo os que codificam as proteínas anteriores (Tadokoro et al., 2005; Yamaguchi et al., 2008). Além de regular a diferenciação de melanócitos, o fator de transcrição MiTF regula também genes associados ao controle do ciclo celular, como CDK2 (cyclin dependent kinase 2), CDKN1A (cyclin-dependent kinase inhibitor 1A) e CDKN2A (cyclin-dependent kinase inhibitor 2A), e genes associados à sobrevivência celular, como BCL2 (B cell CLL/lymphoma 2) e HIF1A (hypoxia inducible factor 1, alpha subunit) (Cheli et al., 2009). Em células de melanoma humano, a proteína MiTF foi associada a uma maior proteção contra morte celular induzida por EROs (Liu et al., 2009). Por fim, outra ferramenta importante para avaliar a genotoxicidade em células epiteliais irradiadas, é a detecção de CPDs, por serem lesões altamente mutagênicas e que são tipicamente induzidas pela radiação UVB (Marrot et al., 2010).

5 Biotransformação na pele

Além da barreira física que a pele representa contra agentes ambientais, existe uma barreira bioquímica/toxicológica como proteção adicional, composta em parte por enzimas metabolizadoras intracelulares da família citocromo P450 (CYP). Essas enzimas catalisam a oxidação de xenobióticos para que se tornem mais solúveis em água, facilitando assim sua excreção pelo organismo (Baron & Shazik, 2009). Em algumas circunstâncias, no entanto, as CYPs

podem induzir a ativação metabólica de agentes originalmente inertes, e ao gerarem produtos secundários nocivos, podem contribuir para a indução de tumores cutâneos (Baron et al., 2008).

enzimas CYP apresentam diversas As isoformas. expressas constitutivamente ou quando induzidas por estímulos químicos como cancerígenos ambientais, ou físicos, como a radiação UV. As isoenzimas CYP1A1 e CYP1B1 estão envolvidas na ativação metabólica de poluentes ambientais, como hidrocarbonetos policíclicos aromáticos (Marston et al., Paralelamente, o inseticida carbaril foi relatado como indutor da 2001). isoenzima CYP1A1 em células HepG2 de hepatoma e células linfoblastóides humanas, e aparentemente esta indução resultou em metabólitos reativos possivelmente epóxi-derivados, provenientes genotóxicos, de sua biotransformação (Delescluse et al., 2001). Ledirac et al. (1997) demonstraram a associação entre a exposição ao carbaril e a ativação transcripcional de CYP1A1 em células HaCat e HepG2, e relataram que este evento ocorre por ativação indireta de receptores aril-hidrocarbonetos (AhR).

Paralelamente, a radiação UV é responsável pela foto-oxidação do aminoácido triptofano, o que gera produtos agonistas de receptores AhR, que por sua vez são fatores de transcrição que controlam, entre outras, a expressão dos genes que codificam as enzimas CYP1A1 e CYP1B1; esse mecanismo, descrito em células HaCat, resultou em células mais sensíveis a dano no DNA induzido por compostos químicos (Nair et al., 2009). Estas isoformas encontram-se hiperexpressas na pele humana após irradiação pela luz UVB, e é provável que esta condição intensifique a bioativação de cancerígenos químicos ambientais e, consequentemente, resulte em uma

maior suscetibilidade ao câncer (Katiyar et al., 2000). Esses dados apoiam as hipóteses de que a biotransformação seja um mecanismo importante para a genotoxicidade do carbaril e de que haja um efeito sinergístico entre este inseticida e a exposição solar.

II - OBJETIVO

Este estudo visou caracterizar melanócitos humanos após exposição individual ou combinada ao carbaril (100µM) e à radiação solar (375 mJ/ cm²). A técnica de *microarray* foi utilizada para investigar genes alterados envolvidos com a toxicidade do carbaril, possivelmente relacionada à iniciação da melanomagênese. Além disso, foram analisados os seguintes parâmetros: citotoxicidade (ensaio de viabilidade celular por azul de tripan), genotoxicidade (quantificação de CPDs e de 8-oxo-7,8-diidroguanina), análise do ciclo celular e do mecanismo de morte celular por citometria de fluxo e por Western Blot (quantificação de ciclina B1, LC3B e Beclin1). A hipótese deste trabalho é de que o carbaril esteja associado à iniciação do melanoma cutâneo e, além disso, que esse evento ocorra sinergisticamente com a radiação solar.

III - MATERIAL E MÉTODOS

1 Cultura de melanócitos

Melanócitos primários isolados de prepúcio humano (comitê de ética em pesquisa da Faculdade de Ciências Farmacêuticas – USP, Processo n. 943/09) foram cultivados com meio de cultura 254CF, suplementado com cloreto de

cálcio 0,2M e solução HMGS contendo extrato pituitário bovino (0,2% v/v), soro bovino fetal (SBF, 0,5% v/v), insulina bovina (5 μ g/ml), transferrina bovina (5 μ g/ml), fator de crescimento básico de fibroblasto (3 ng/ml), hidrocortisona (0,18 μ g/ml), heparina (3 μ g/ml) e forbol 12-miristato 13-acetato (10ng/ml) (Gibco, Invitrogen Cell Culture, Waltham, MA, USA). Após serem cultivadas em placas de cultura, as células foram mantidas em estufa úmida a 5% CO₂ e 37°C.

Foram utilizados melanócitos extraídos da pele de prepúcio humano, em nosso laboratório, de dois doadores caucasianos de 4 e 6 anos de idade. As células foram expandidas em cultura isoladamente e, no momento do plaqueamento, um *pool* foi formado com proporções iguais dos dois doadores.

2 Tratamento e irradiação

Após 24 horas da semeadura, ao atingirem confluência de 70-80%, as células foram submetidas aos seguintes grupos experimentais:

Grupo 1: Controle não tratado

Grupo 2: Não tratado e irradiado

Grupo 3: Tratado com carbaril

Grupo 4: Tratado com carbaril e irradiado

Grupo 5: Tratado com veículo

Grupo 6: Tratado com veículo e irradiado

O esquema de tratamento consistiu na incubação de melanócitos com 100 µM de carbaril (Sigma-Aldrich, St Louis, USA) por 6, 24, 48 ou 72 horas (dependendo da análise a ser realizada) após exposição à dose única de 375mJ/cm2 de radiação solar com o uso de um simulador solar (SS2.5kW, Sciencetech Inc., Ontario, Canadá) com filtro AM 1.5G. Para esses ensaios, o meio de cultura foi substituído por PBS-A puro.

O perfil de emissão da lâmpada do simulador solar utilizando o filtro AM 1.5G, que permite passar as radiações UVB (280-320 nm), UVA (320-400 nm), luz visível (400-700 nm) e infra vermelho (700-1000 nm) (Figura 2), é equivalente à radiação solar global média que atinge a superfície da terra na região dos EUA (Figura 3).

Para ensaio de avaliação de estresse oxidativo com um agente antioxidante, foi utilizado o tratamento concomitante com o composto 6-Hidroxi-2,5,7,8-tetrametilcroman-2-ácido carboxílico 97% (Trolox, Sigma-Aldrich, St Louis, USA). O esquema de tratamento foi o mesmo descrito acima, com a adição do composto Trolox 100µM na solução de meio de cultura contendo carbaril 100µM ou apenas o veículo DMSO.

Figura 2 - Espectro de emissão empregado para a irradiação das culturas de melanócitos.

Figura 3 - Ilustração da posição solar equivalente ao filtro AM 1.5G utilizado nos ensaios de irradiação. Imagem adquirida do site *http://www.greenrhinoenergy.com/solar/radiation/spectra.php.*

3 Solubilização do carbaril

O inseticida carbaril é extremamente lipossolúvel; um complexo entre carbaril e hidroxipropil-β-ciclodextrina (HPβCD, Sigma, St Louis, USA) foi preparado para aumentar a solubilidade do inseticida em meio de cultura e realizar os ensaios *in vitro*. Para tanto, foi preparada uma solução de carbaril diluído em etanol (5mg/mL) e uma solução de HPβCD diluída em H₂O miliQ (5mg/mL). Em seguida, as duas soluções foram misturadas e submetidas à liofilização. Posteriormente a mistura liofilizada foi solubilizada em meio de cultura para melanócitos e filtrada em membrana de PVDF para esterilização. A solução do complexo carbaril/HPβCD foi armazenada a 4^oC e a sua estabilidade avaliada por Cromatografia Líquida de Alta Eficiência (CLAE) por até 20 dias desde sua preparação. O sistema empregado foi constituído de bomba Waters, modelo 510 (Milford, MA, USA), injetor manual Rheodyne 7125 (Contati, CA, USA) com *loop* de 50 μL e detector de fluorescência HP modelo 1046A (Santa Clara, CA, USA) ajustado para comprimento de onda de

excitação/ emissão em 282nm/ 330nm. A separação foi realizada em coluna Phenomenex (Torrance, CA, USA) Luna C8 5µm (150 x 4,6 mm), com fase móvel acetonitrila/água: 45/55 e fluxo de 1,0 mL/min (adapatado de Massey et al., 1995). Para a determinação da curva padrão, o carbaril foi diluído em etanol nas concentrações de 20µg/mL, 10µg/ml, 5µg/mL, 2,5µg/mL, e 1,25µg/mL.

Alternativamente, o DMSO foi utilizado como solvente do inseticida carbaril, na concentração máxima de 0,2% (v/v).

4 Avaliação da citotoxicidade por Azul de Tripan

Este método é baseado na exclusão das células coradas pelo Azul de Tripan (Sigma-Aldrich, St. Louis, MO, EUA), um corante que é incorporado pelas células não viáveis que apresentam membrana celular danificada, enquanto que as células viáveis apresentam membranas intactas e funcionais, e são capazes de expulsar o composto. As células foram semeadas em placas de 24 poços, 3x10⁴ células/poço, e após 24, 48 e 72 horas de tratamento, as células foram coletadas por tripsinização, ressuspendidas e incubadas com Azul de Tripan 0,4% em PBS e meio de cultura em uma proporção de 1:1 por três minutos. A morte celular foi avaliada por meio da contagem de células em câmara de Neubauer utilizando microscópio óptico.

5 Caracterização do mecanismo de morte celular

As células foram semeadas em placas de 6 poços, 20x10⁴ células/poço e, após 24 horas de tratamento, foram coletadas por tripsinização, ressuspendidas em tampão de ligação (10mM HEPES pH 7,4, 150mM NaCl,

5mM KCl, 1mM MgCl₂, 1,8mM CaCl₂) com 3% de Anexina-APC e incubadas por 20 minutos a temperatura ambiente, no escuro. Posteriormente, uma solução de lodeto de Propídeo (IP) (8µg/mL) foi adicionada à suspensão de células, que em seguida foi analisada por citometria de fluxo (FACSCanto, BD Biosciences, San Jose, CA, EUA) usando o software FlowJo. A Cisplatina (90µM) foi utilizada como controle positivo de indução de apoptose, e o DMSO (10%) foi utilizado como controle positivo de indução de necrose. Neste ensaio o fluoróforo Anexina-APC é incorporado por células em apoptose que apresentam externalização de fosfatidilserina, e o IP é um intercalante de DNA incorporado por células que apresentam dano na membrana celular. Assim, células apoptóticas são marcadas apenas por Anexina-APC e células necróticas são marcadas apenas por IP, enquanto que células positivas para ambos os corantes estão em processo de apoptose tardia e células não fluorescentes são consideradas viáveis.

6 Avaliação do ciclo celular por citometria de fluxo

As células foram semeadas em placas de 6 poços, 20x10⁴ células/poço e, após 48 horas de tratamento, foram coletadas por tripsinização, ressuspendidas em tampão de lise (Triton X-100 0,1%, Citrato trissódico 0,1%) com Ribonuclease-A 10mg/mL, e incubadas por 30 minutos a 37°C. Posteriormente, uma solução de IP (10µg/mL) foi adicionada à suspensão de células, que em seguida foi analisada por citometria de fluxo (FACSCanto, BD Biosciences, San Jose, CA, EUA) usando o software FlowJo. Esse método baseia-se na análise das fases do ciclo celular pela intensidade de

fluorescência do conteúdo nuclear resultante da intensidade de marcação por IP. Células no estágio G0/G1 têm intensidade de fluorescência 1X, pois têm apenas uma cópia de DNA; células no estágio G2/M apresentam duas cópias de DNA e, portanto, o dobro da fluorescência; células no estágio S estão em processo de síntese e apresentam intensidade intermediária de fluorescência.

7 Quantificação de 8-oxo-7,8-diidroguanina

As células foram semeadas em placas de 100mm, 10⁶ células/placa. Após 1 e 24 horas de tratamento, as células foram coletadas por tripsinização, fixadas em etanol 70% e armazenadas a -20°C. Posteriormente, as células foram ressuspendidas em PBS-A por 20 minutos para reidratação e, em seguida, incubadas com Ribonuclease-A 10mg/mL por 1 hora, seguida de incubação com HCI 1,5M por 10 minutos para permitir a exposição dos epítopos. Em seguida, realizou-se o blogueio de ligações inespecíficas com albumina sérica bovina (BSA) 3%, sob agitação por 30 minutos, e posteriormente, a incubação com o anticorpo primário anti-8-Hidroxiguanina (8oxo-dG) MAb (Clone 2E2 - R&D Systems Inc., Minneapolis, MN, EUA). Após uma hora e meia de incubação, as células foram novamente lavadas com PBS-A e incubadas com anticorpo secundário Fluorescein Anti-mouse IgG (FI-2000, Vector Laboratories, Burlingame, CA, EUA). Após nova lavagem com PBS-A, as células foram ressuspendidas em 100µL de PBS-A e submetidas a análise por citometria de fluxo (FACSCanto, BD Biosciences, San Jose, CA, EUA) usando o software FlowJo (Tree Star Inc., Ashland, OR, EUA).

8 Quantificação de dímeros de pirimidina do tipo ciclobutano (CPD)

Para este ensaio, as células foram semeadas em placas de 100mm, 10⁶ células/placa. Após 1 e 6 horas de tratamento, as células foram coletadas por tripsinização, fixadas em etanol 70% e armazenadas a -20°C. Posteriormente, as células foram ressuspendidas em PBS-A por 20 minutos para reidratação e, em seguida, incubadas com solução de 0,5% de Triton X-100 por 10 minutos para permeação das membranas celulares. Após lavagem com PBS-A, as células foram incubadas com HCI 1,5M por 30 minutos para permitir a exposição dos epítopos. Em seguida, realizou-se o bloqueio de ligações inespecíficas com BSA 3%, sob agitação por 30 minutos, e posteriormente, a incubação com o anticorpo primário fluorescente anti dímeros de timina (clone KTM53 – Kamiya Biomedical Company, Seatle, WA, EUA). Após 1 hora e meia de incubação, as células foram novamente lavadas com PBS-A e incubadas com anticorpo secundário Fluorescein Anti-mouse IgG (FI-2000, Vector Laboratories, Burlingame, CA, EUA). Após nova lavagem com PBS-A, as células foram ressuspendidas em 100µL de PBS-A e submetidas a análise por citometria de fluxo (FACSCanto, BD Biosciences, San Jose, CA, EUA) usando o software FlowJo (Tree Star Inc, Ashland, OR, EUA).

9 Análises de expressão proteica por Western Blot

9.1 Extração proteica

As células foram semeadas em placas de Petri de 100mm, 100x10⁴ células/placa, e após 24 horas de tratamento, foram coletadas com 50uL de tampão de lise RIPA (Tris 50mM pH 7,5, NaCl 150mM, NP-40 1%, EGTA 1mM,

SDS 0,05%, EDTA 1mM) com inibidores de protease (Cat. #11836153001, Roche, Basel, Suiça) e fosfatase (Cat. #78420, Roche, Basel, Suiça).

9.2 Fracionamento de proteínas em gel de eletroforese e conjugação com anticorpo

As amostras foram normalizadas de acordo com a quantidade de proteína total, por meio da quantificação pelo método de Bradford (1976), com o uso de Reagente de Bradford (Bio-Rad Laboratories Inc., Hercules, CA, EUA) e uma curva padrão de BSA. Em geral, utilizou-se 15-20 µg de proteína total para cada canal.

A eletroforese foi realizada com gel de bis-acrilamida/SDS de 10% para fracionamento das proteínas. Posteriormente, as proteínas foram transferidas para uma membrana de fluoreto de polivinilideno (PVDF) em sistema de transferência semi-úmido. As membranas foram incubadas com solução de bloqueio constituída por 5% de leite desnatado em pó em Tampão Tris Salino com 0,1% de Tween 20 (TBS-T), com agitação, à temperatura ambiente por uma hora. Em seguida, as membranas foram incubadas *overnight* (16 a 20 horas) com o anticorpo diluído na concentração indicada pelo fabricante em solução de bloqueio, com agitação, a 4°C. Os anticorpos utilizados foram, anti-MiTF (ab12039, Abcam, Cambridge, Reino Unido), anti-LC3B (#2775, Cell Signaling, Danvers, MA, EUA) e anti-Beclin-1 (#3495, Cell Signaling, Danvers, MA, EUA) e o controle interno de proteína constitutiva: anti- Vinculina (V9131, Sigma-Aldrich, St. Louis, MO, EUA). As membranas foram então lavadas três vezes em TBS-T e incubadas com o anticorpo secundário diluído em solução

de bloqueio por uma hora à temperatura ambiente, com agitação. Após a incubação, as membranas foram novamente lavadas três vezes em TBS-T e reveladas por quimioluminescência, utilizando-se o Kit ECL para detecção de proteínas (Amersham, GE Healthcare, Little Chalfont, Reino Unido). As membranas foram expostas a filme para contraste Hyperfilm (Amersham, GE Healthcare, Little Chalfont, Reino Unido) por até 20 minutos. Os filmes foram escaneados e as bandas foram quantificadas pelo software ImageJ (NIH, Bethesda, Maryland, EUA).

10 Ensaio de *microarray*

Após 6 horas de tratamento, o RNA foi extraído usando o kit Qiagen Rneasy (Qiagen, Hilden, Alemanha) de acordo com o protocolo do fabricante, incluindo a adição de DNase. O ensaio de *Microarray* foi realizado no National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, Carolina do Norte, USA. As amostras foram enviadas em gelo seco para o NIEHS pela transportadora World Courier. À chegada, as amostras de RNA foram descongeladas, quantificadas em espectrofotômetro NanoDrop (Thermo Scientific) e diluídas conforme necessário. Alíquotas foram armazenadas a -80° C. A qualidade do RNA foi avaliada por um analisador Bioanalyzer 2100 (Agilent technologies, Santa Clara, CA, EUA). As amostras de RNA foram convertidas em cDNA usando um kit de transcrição reversa High Cacpacity cDNA (Applied Biosystems, Foster City, USA).

10.1 Hibridização de cDNA em microarray

As amostras de cDNA foram hibridizadas em lâminas de arranjos de oligonucleotídeos Agilent Whole Human Genome 4x44 multiplex (#014850, Agilent Technologies, Santa Clara, CA, EUA) de acordo com o protocolo de análise de expressão gênica de cor única Agilent *microarray*. A marcação de cDNA com Cy3 foi realizada de acordo com o protocolo do fabricante, seguida de fragmentação e hibridização por 17 horas em uma estufa de hibridização rotatória. As lâminas foram então lavadas e escaneadas com um Agilent Microarray Scanner (G2565CA, Agilent Technologies, Santa Clara, CA, EUA). Os dados foram obtidos usando o software Agilent Feature Extraction (v9.5), usando os padrões de cor única para todos os parâmetros, realizando modelagem de erro e ajustando para ruído aditivo e multiplicativo.

10.2 Metodologia para análise de dados

Os dados resultantes foram processados e analisados usando o software Partek® Genomics Suite software, versão 6.6beta (Copyright © 2009, Partek Inc., St. Louis, MO, EUA). O teste estatístico One-way ANOVA (p<0.05, corrigido para *False Discovery Rate, FDR*) foi realizado para comparar os grupos tratados com carbaril e/ou radiação solar com o controle do veículo. O software Ingenuity Pathway Analysis (IPA, Qiagen, Hilden, Alemanha) que é um aplicativo online que permite a análise, integração e compreensão dos dados, foi utilizado para investigar vias relevantes para a transformação de melanócitos induzida pela radiação solar e pelo tratamento com carbaril,

especialmente nos grupos expostos a ambos os fatores. Para a análise de vias de sinalização, o *cut off* foi de nível de aumento/diminuição de pelo menos 1,5 vezes. A análise das vias de sinalização celular foram realizadas com quatro grupos, a saber: i) tratado com DMSO; ii) tratado com carbaril; iii) tratado com CMSO e irradiado.

10.3 Ensaio de validação por qRT-PCR

Para os ensaios de qRT-PCR foram utilizados probes TaqMan® gene expression assays e Gene Expression Master Mix (Applied Biosystems, Foster City, USA), de acordo com o protocolo do fabricante. As amostras de cDNA foram amplificadas em placas MicroAmp Optical 96-well, com volume de reação de 50μ L por poço, em 40 ciclos a 95 °C por 15 s e a 60 °C por 1 min. A fluorescência resultante foi detectada usando o software 7500 Real-Time PCR System (Applied Biosystems, Foster City, USA). O GAPDH (*glyceraldehyde-3-phosphate dehydrogenase gene*) foi utilizado como controle endógeno da reação. As amostras foram analisadas por meio da comparação dos valores de Ct (cycle threshold) dos genes de interesse com relação ao GAPDH, usando a fórmula $2^{\Delta\Delta Ct}$.

11 Análise estatística

Para verificar se houve significância estatística entre os grupos tratados e o grupo controle com relação aos diferentes parâmetros analisados, foi realizada a Análise de Variância (ANOVA), seguida do teste de Dunnett, para

verificar quais grupos diferem significativamente de um grupo controle, e o teste de Tukey para verificar quais grupos diferem entre si. Resultados foram considerados significativos quando p<0,05. O software utilizado foi o GraphPad Prism 5 (GraphPad, San Diego, California, EUA).

Para determinar a concentração inibitória do inseticida em melanócitos humanos, foi utilizado o software Statistica (Statsoft Inc., Tulsa, OK, EUA) e o cálculo foi realizado por meio da análise de regressão não linear com intervalo de confiança de 95%.

IV - RESULTADOS

1 Solubilização do carbaril

1.1 Análise do complexo carbaril/HPβCD em meio de cultura

Após complexação, liofilização, filtração e solubilização, a recuperação de carbaril em solução de meio de cultura, analisada por CLAE, variou de 60 a 80%, de modo que a concentração real de carbaril foi calculada para cada nova solução. A análise por CLAE comprovou a estabilidade da solução por até 20 dias desde sua preparação. Inicialmente, o carbaril foi complexado à HPβCD em uma proporção de 1:50. No entanto, nessa concentração, a HPβCD interferiu significativamente na viabilidade celular (dados preliminares não relatados). Novos testes foram realizados, e a menor proporção efetiva de carbaril e HPβCD – aquela em que o carbaril apresentava boa estabilidade e recuperação em solução – foi de 1:20.

1.2 Avaliação da HPβCD como veículo do inseticida carbaril

As ciclodextrinas são oligossacarídeos cíclicos com uma cavidade interior lipofílica e uma superfície externa hidrofílica, possuindo uma estrutura cônica que permite que moléculas lipossolúveis sejam encapsuladas, formando complexos de inclusão não covalentes e possibilitando a permeação por membranas celulares lipofílicas (Loftsson & Brewster, 2010). Tais moléculas são amplamente utilizadas como importante sistema de liberação de fármacos e cosméticos lipossolúveis com inúmeras finalidades, como aumento da solubilidade, biodisponibilidade e estabilidade de moléculas (Hougeir & Kircik, 2012; Tiwari et al., 2010). A hidroxipropil-β-ciclodextrina (HPβCD) possui o maior índice de solubilidade (>600mg/mL) quando comparada a outras moléculas da mesma família (Loftsson & Duchene, 2007). Pacioni et al. (2013) descreveram a caracterização estrutural do complexo de inclusão entre inseticidas carbamatos e β-ciclodextrina, concluindo que, no caso do carbaril, a inclusão ocorre pela porção aromática da molécula.

Propusemos neste projeto um complexo de inclusão entre carbaril e HPβCD, de modo que a concentração máxima de HPβCD fosse de 0,3% (2mM), com a finalidade de aumentar a solubilidade do inseticida em solução aquosa e, consequentemente, no meio de cultura. No entanto, a HPβCD não apresentou desempenho satisfatório como veículo para solubilização do carbaril. A HPβCD foi eficiente para solubilizar o inseticida em meio de cultura, não apresentou citotoxicidade avaliada pelos ensaios de viabilidade celular com Azul de Tripan, MTT e lodeto de Propídeo, e não induziu alterações morfológicas nos melanócitos tratados (Apêndice I). No entanto, notou-se que a

HPβCD interferiu nos ensaios de caracterização do tipo de morte celular (Figura 4), e em ensaios de Western Blot, principalmente na avaliação da expressão da proteína MiTF (Figura 5), de maneira que não foi possível distinguir qual o real efeito do composto teste e da HPβCD. Na Figura 4, é possível verificar que a HPβCD provocou diminuição nas taxas de apoptose nos melanócitos tratados apenas com o veículo por 24 horas. Curiosamente, Appelqvist et al. (2012) relataram que a exposição de fibroblastos humanos a altas doses de metil-β- ciclodextrina (MβCD; 0,4 e 0,5mM) por apenas uma hora, causaram depleção de colesterol de membrana lisossomal, mas não de membrana plasmática, levando a alteração na estabilidade de lisossomos e consequente aumento nas taxas de apoptose. Por se tratar de ensaio com um tipo celular diferente e com outra variação de molécula de ciclodextrina, podemos apenas inferir por comparação que a HPβCD não é um bom controle quando se pretende avaliar morte celular em modelos *in vitro*.

Figura 4: Caracterização do mecanismo de morte celular em melanócitos humanos primários. Células foram marcadas com Anexina-APC e IP e analisadas por citometria de fluxo após tratamento com diferentes concentrações de carbaril/HP β CD por 24 horas. Dados gerados em triplicata. Os grupos indicados com asterisco diferem significativamente do grupo controle não tratado (**p<0,01, *p<0,05).

Na Figura 5, observa-se que a HPβCD provocou aumento na expressão da proteína MiTF em todas as concentrações testadas da molécula. Um trabalho publicado por Jin et al. (2008) demonstrou que a MβCD inibiu a síntese de melanina em melanócitos humanos primários por meio da fosforilação de ERK (quinase regulada por sinal extracelular) e consequente inibição da expressão das proteínas tirosinase e MiTF. Naquele trabalho, a concentração de MβCD que inibiu a expressão de MiTF foi de 1mM, após seis horas de tratamento. Nas concentrações de 0,1 e 0,5mM, que são mais próximas às concentrações de HPβCD utilizadas em nossos ensaios de Western Blot, notou-se que, antagonicamente, houve um pequeno aumento na síntese de melanina com relação ao controle não tratado e, no entanto, não foram relatados dados a respeito da expressão de MiTF. Paralelamente, a HPβCD também é um ligante de colesterol de membrana (Hinzey et al., 2012); logo, a interação com a proteína MiTF através da ativação de ERK também pode ser extrapolada ao veículo utilizado em nosso estudo.

Assim, é provável que a interferência da HPβCD encontrada em nossos ensaios seja decorrente da depleção de colesterol de membrana celular, e consequente alteração de vias de sinalização intracelular, o que pode justificar a redução nas taxas de morte por apoptose e alteração de expressão proteica nos grupos tratados apenas com o veículo.

Figura 5: Análise da expressão da proteína MiTF (59Kda, detectada em 40, 55 e 70 Kda) em melanócitos primários humanos após 48 horas de tratamento com diferentes concentrações (mM) de carbaril/HP β CD. O gráfico indica a porcentagem de expressão proteica em relação ao controle não tratado. Para o controle interno de proteína constitutiva foi utilizada a α -Tubulina (50Kda).

1.3 Avaliação do dimetilsulfóxido como veículo do inseticida carbaril

Frente aos resultados encontrados com a HPβCD, optamos por utilizar como veículo o dimetilsulfóxido (DMSO), que é um composto que tem sido extensamente utilizado para solubilização de compostos lipossolúveis em culturas celulares (Dierickx, 1999, Luzy et al., 2012), na concentração final de até 0,5% (v/v). Na concentração de 0,1mM de carbaril, que foi a concentração escolhida para a avaliação dos efeitos do inseticida, utiliza-se apenas 0,07% (v/v) de DMSO.

Além disso, devido à alta solubilidade do carbaril em DMSO, é possível utilizar uma concentração mínima deste solvente no meio de cultura, que por sua vez não demonstrou citotoxicidade relevante, como apresentado no item "2.1 Ensaio de viabilidade celular por Azul de Tripan". Adicionalmente, pode-se afirmar que a HPβCD conferia condição protetora às células, pois nos ensaios de avaliação de citotoxicidade do inseticida carbaril, a viabilidade celular havia sido significativamente reduzida somente a partir da concentração de 0,2mM, após 48 horas de tratamento (Apêndice I), enquanto que com o veículo DMSO, a viabilidade celular foi reduzida a partir de 0,05mM (Figura 6).

2 Avaliação de citotoxicidade do carbaril

2.1 Ensaio de viabilidade celular por Azul de Tripan

A viabilidade celular foi apresentada na forma de porcentagem, calculada a partir do número de células viáveis, ou seja, células não marcadas pelo corante Azul de Tripan, em relação ao grupo-controle não tratado, que foi considerado como 100% de viabilidade (Figura 6). A partir da concentração de 0,05mM, após 48 horas de tratamento, o carbaril diluído em DMSO reduziu significativamente a viabilidade dos melanócitos de maneira dose- e tempo-dependentes. Em 24 horas de tratamento, a viabilidade celular foi significantemente reduzida a partir da concentração de 0,1mM, que permitiu aproximadamente 80% de células viáveis; por ser considerada de baixa citotoxicidade, essa concentração de carbaril foi utilizada para avaliação dos efeitos do inseticida em melanócitos. O grupo tratado apenas com DMSO 0,5% apresentou citotoxicidade após 72 horas de tratamento. Na concentração de 0,07% (controle relativo à concentração de 0,1mM de carbaril), o DMSO não interferiu na viabilidade celular, como pode ser observado no ensaio realizado com radiação solar (Figura 8).

Figura 6 – Porcentagem de melanócitos humanos primários viáveis tratados com diferentes concentrações de carbaril-DMSO por 24, 48 e 72 horas, analisados pelo ensaio do Azul de Tripan. Após 48 horas de tratamento, a partir da concentração de 0,05mM, o tratamento com carbaril reduziu significativamente a viabilidade celular. Valores estão expressos como média ± DP de quatro experimentos em triplicada. Os grupos indicados com asterisco diferem significativamente do grupo controle não tratado (*p<0,01).

2.2 Cálculo da IC₅₀

Na tabela 1 podemos observar a concentração inibitória de 50% (IC₅₀) do carbaril em melanócitos humanos primários tratados com o inseticida diluído em DMSO. As concentrações inibitórias foram calculadas por regressão não linear para os três tempos de exposição testados.

Tabela 1 – Concentrações (mM) inibitórias do inseticida carbaril solubilizado em DMSO para melanócitos humanos primários em diferentes tempos de exposição.

	IC ₅₀				
Tempo de tratamento	24h	48h	72h		
Concentração	0,339	0,251	0,218		

Valores calculados a partir de experimentos de viabilidade celular utilizando o ensaio do Azul de Tripan.

Em células HepG2, a concentração inibitória de carbaril diluído em DMSO, avaliada pelo ensaio do Vermelho Neutro, foi aproximadamente 0,6mM, após 24 horas de exposição (Dierickx, 1999). Tendo em vista que a IC₅₀ encontrada em nosso estudo é aproximadamente 10 vezes menor do que aquela encontrada para células de hepatoma humano, pode-se concluir que melanócitos são células relativamente mais suscetíveis à citotoxicidade do carbaril. Porém, não se pode deixar de considerar que foram utilizadas técnicas diferentes para avaliação de viabilidade celular entre os dois estudos, sendo que o ensaio do Vermelho Neutro avalia a integridade de membranas lisossomais, e é menos sensível para detectar efeitos citotóxicos em comparação ao ensaio do Azul de Tripan (Sakai et al., 1998).

2.3 Avaliação da morfologia celular

À microscopia, é possível observar que o tratamento com carbaril diluído em DMSO altera a morfologia dos melanócitos a partir da concentração de 0,2mM (Figura 7). A morfologia alterada é caracterizada pela redução no comprimento dos dendritos e perda do fenótipo tipicamente estrelado dos melanócitos. A porcentagem de viabilidade celular indicada no canto inferior direito das figuras foi calculada com base no número absoluto de células viáveis, determinado pelo ensaio de Azul de Tripan, considerando o número de células viáveis do controle não tratado como 100% de viabilidade.

Figura 7 – Morfologia dos melanócitos primários humanos em cultura após 24 horas de tratamento com DMSO 0,5% (controle de veículo relativo à concentração de 0,7mM de carbaril) e com carbaril diluído em DMSO em diferentes concentrações. A porcentagem de viabilidade celular foi calculada com base no número absoluto de células viáveis, determinado pelo ensaio de Azul de Tripan. Aumento de 400x.

3 Irradiação dos melanócitos

3.1 Espectro da radiação solar

Neste projeto, optamos por empregar a radiação solar total de modo a mimetizar de maneira mais fidedigna as condições dos trabalhadores envolvidos no estudo epidemiológico de Dennis et al. (2010), que deu respaldo à hipótese deste trabalho.

3.2 Citotoxicidade da radiação solar

Na Figura 8, observa-se que houve redução significativa da viabilidade dos melanócitos humanos a partir da dose de 1000mJ/cm² de radiação solar concomitante com o tratamento com carbaril na concentração de 100µM. Em um estudo piloto, a dose de 2000 mJ/cm² induziu citotoxicidade notável tanto por Azul de Tripan quanto pela análise da morfologia celular (dados preliminares não relatados). Assim, como o objetivo era encontrar uma dose de radiação que não fosse citotóxica, realizamos os experimentos com duas doses inferiores a 2000 mJ/cm² (500 e 1000 mJ/cm²). Os valores de citotoxicidade e as observações microscópicas (ausência de altrerações na morfologia e confluência celular), indicaram que a dose ideal para uso em ensaios de irradiação concomitante ao tratamento com carbaril seria a de 500 mJ/cm². No entanto, após o início dos ensaios subsequentes, fizemos uma nova medição e constatamos que o equipamento estava funcionando erroneamente com potência reduzida. Assim, corrigimos a dose de radiação solar para 375mJ/cm² para os ensaios de avaliação dos efeitos do carbaril e radiação solar.

Figura 8 – Porcentagem de melanócitos humanos viáveis após tratamento com diferentes concentrações de carbaril ou DMSO 0,07% e irradiados com diferentes doses de luz solar, analisados após 24 horas da irradiação por meio de ensaio do Azul de Tripan.

Cho et al. (2008) relataram que a dose de 5mJ/cm² de UVB de amplo espectro reduziu significativamente a viabilidade celular de melanócitos humanos primários, avaliada pelo ensaio do MTT. Considerando que a radiação UVB corresponde a aproximadamente 5% da radiação solar (IARC, 1992), a dose que reduziu a viabilidade celular naquele trabalho é 10 vezes menor do que a dose utilizada neste estudo, e essa diferença pode ser em decorrência da diferença no espectro de radiação, mas também da utilização de diferentes ensaios para avaliação da citotoxicidade e da variabilidade de fototipo cutâneo dos doadores. Devido a esses fatores, é difícil comparar os resultados de citotoxicidade com o de outros trabalhos disponíveis na literatura.

4 Ensaio de *microarray*

4.1 Qualidade das amostras

A integridade do RNA foi confirmada para todas as amostras, indicando que as mesmas estavam em condições ótimas para realizar as análises de *microarray* (dados não relatados).

4.2 Análise da expressão gênica

4.2.1 Perfil geral da expressão gênica

Após normalização dos dados pelo efeito do lote experimental e realização da análise estatística por ANOVA, encontramos 5934 genes significativamente alterados. A Figura 9 revela um *heatmap* gerado pelo software Partek que representa a expressão desse conjunto de genes para cada amostra, mostrando os genes subexpressos em azul e os superexpressos em amarelo. É evidente que a expressão gênica foi agrupada de acordo com o tratamento e, principalmente, que os grupos tratados com radiação UV (solar), os grupos tratados com carbaril e os grupos controles apresentaram expressão gênica semelhante entre si. Além disso, no grupo tratado com carbaril e radiação solar, um grupo de genes subexpressos e um grupo de genes superexpressos apresentam expressão diferencial em comparação com os demais grupos experimentais, realçados por quadrados pretos tracejados; os genes mais relevantes destes subgrupos estão descritos nas tabelas 2 e 3.

Figura 9: Agrupamento hierárquico dos 5934 genes significativamente alterados, representados por um *heatmap* de expressão gênica. Control UV – irradiado com 375mJ/cm² de radiação solar; DMSO UV – tratado com DMSO 0,07% e irradiado com 375mJ/cm² de radiação solar; Carb UV – tratado com carbaril 100µM e irradiado com 375mJ/cm² de radiação solar; Carb – tratado com carbaril 100µM; DMSO – tratado com DMSO 0,07%; e Control – nenhum tratamento. Os quadrados tracejados delimitam genes com expressão diferencial no grupo de tratamento combinado. Genes subexpressos estão identificados em azul e os superexpressos em amarelo. Dados gerados em triplicata.

4.2.2 Análise de componentes principais (PCA)

A PCA é um procedimento matemático que mapeia a variabilidade em um espaço tridimensional (3D) e essa análise foi realizada utilizando o software Partek. A Figura 10 revela uma representação 3D dos 5934 genes significantemente alterados nas diferentes amostras, sem considerar o nível de aumento/diminuição. É notável que as triplicatas experimentais para cada tratamento se agruparam de maneira muito satisfatória com base na variabilidade da expressão gênica, confirmando assim a consistência desse estudo. A Figura 11 revela um ângulo diferente de visualização do mesmo gráfico da Figura 10, evidenciando que em PC#1, que está localizado no eixo x e representa a variação máxima no conjunto de dados (32,2%), é possível notar que as amostras estão separadas em grupos tratados e não tratados com radiação UV. Ainda assim, é interessante notar que o grupo carbaril + UV (tratamento combinado) é bastante distinto dos controles da radiação UV e do grupo tratado apenas com carbaril. Da mesma maneira, na Figura 12, é evidente que em PC#2, que está localizado no eixo y e representa a segunda maior variabilidade no conjunto de dados (24,5%), há uma nítida separação entre grupos tratados ou não tratados com carbaril.

Figura 10: Análise de componentes principais da variabilidade para cada amostra no conjunto de dados, considerando a expressão de 5934 genes significantemente alterados induzidos pelos diferentes tratamentos. Control UV – irradiado com 375mJ/cm² de radiação solar; DMSO UV – tratado com DMSO 0,07% e irradiado com 375mJ/cm² de radiação solar; Carb UV – tratado com carbaril 100µM e irradiado com 375mJ/cm² de radiação solar; Carb – tratado com carbaril 100µM; DMSO – tratado com DMSO 0,07%; e Control – nenhum tratamento. Dados gerados em triplicata.

Figura 11: Análise de componentes principais da variabilidade para cada amostra no conjunto de dados, classificados de acordo com o tratamento com radiação solar. Control UV – irradiado com 375mJ/cm² de radiação solar; DMSO UV – tratado com DMSO 0,07% e irradiado com 375mJ/cm² de radiação solar; Carb UV – tratado com carbaril 100µM e irradiado com 375mJ/cm² de radiação solar; Carb – tratado com carbaril 100µM; DMSO – tratado com DMSO 0,07%; e Control – nenhum tratamento. Dados gerados em triplicata.

Figura 12: Análise de componentes principais da variabilidade para cada amostra no conjunto de dados, classificados de acordo com o tratamento com carbaril. Control UV – irradiado com 375mJ/cm² de radiação solar; DMSO UV – tratado com DMSO 0,07% e irradiado com 375mJ/cm² de radiação solar; Carb UV – tratado com carbaril 100µM e irradiado com 375mJ/cm² de radiação solar; Carb – tratado com carbaril 100µM; DMSO – tratado com DMSO 0,07%; e Control – nenhum tratamento. Dados gerados em triplicata.

4.2.3 Comparação entre número de genes alterados por tratamento

Usando o software Partek, restringimos o número de genes significantemente alterados com base em um *cut off* de nível de aumento/diminuição de pelo menos 1,5 vezes. Essa seleção de genes está representada por um Diagrama de Venn na Figura 13, o qual revela o número de genes significantemente alterados por tratamento. O tratamento apenas com carbaril e o tratamento com a radiação solar (UV) induziram 284 e 459 genes significantemente alterados, respectivamente. No grupo de tratamento combinado, encontramos um total de 1230 genes significantemente alterados, o que corresponde a 2,68 vezes mais genes em relação ao total dos dois tratamentos isolados, sugerindo um efeito sinergístico entre os dois fatores.

Figura 13: Diagrama de Venn representando o número de genes significantemente alterados por tratamento, com um *cut-off* de nível de aumento/diminuição de pelo menos 1,5 vezes. UV – tratado com DMSO 0,07% e irradiado com 375mJ/cm² de radiação solar; Carb UV – tratado com carbaril 100µM e irradiado com 375mJ/cm² de radiação solar; e Carb – tratado com carbaril 100µM.

4.2.4 Avaliação da dose de radiação solar

A dose de radiação solar de 375mJ/cm² usada para irradiar os melanócitos foi efetiva, uma vez que pudemos observar uma resposta de assinatura em todos os grupos irradiados, independentemente de tratamento químico concomitante, mas não nos grupos não irradiados. Essa resposta foi evidenciada pela superexpressão significativa dos genes p21 e PCNA, os quais são genes conhecidos da resposta celular à radiação UV (Fotedar et al., 2004). A proteína codificada pelo gene PCNA é necessária para o reparo do DNA por excisão de nucleotídeos que, por sua vez, é o principal mecanismo de reparo de lesões induzidas pela radiação, como as lesões do tipo CPDs (Wood, 1996). Em resposta a baixas doses de radiação UV, o gene p21 é induzido por p53 para interromper o ciclo celular, permitir o reparo do DNA e inibir o processo apoptótico e, na ocorrência de altos níveis de dano ao DNA, o gene p21 é subexpresso para permitir a indução da apoptose (Li et al., 2013). A expressão dos genes p21 e PCNA nos diferentes grupos de tratamento é representada na Figura 14 e a expressão desses genes é aparentemente maior no grupo de tratamento combinado com o carbaril. Além disso, embora efetiva, a dose de radiação solar foi considerada subtóxica, já que não induziu uma resposta a estresse oxidativo, o que está descrito em detalhe no item "4.2.6- b) Genes associados a estresse oxidativo".

Figura 14: Expressão de genes de assinatura da resposta à UV - p21 e PCNA - em diferentes condições de tratamento. DMSO UV – tratado com DMSO 0,07% e irradiado com 375mJ/cm² de radiação solar; Carb UV – tratado com carbaril 100 μ M e irradiado com 375mJ/cm² de radiação solar; Carb – tratado com carbaril 100 μ M; e DMSO – tratado com DMSO 0,07%. *p<0,0001.

4.2.5 Genes com expressão diferencial no grupo de tratamento combinado com carbaril e radiação solar

Considerando que o principal objetivo deste estudo foi o de avaliar os efeitos do tratamento com carbaril combinado com a radiação solar, compilamos uma lista de genes significativamente alterados com o maior nível de aumento/diminuição em comparação com os demais grupos experimentais, representando alterações gênicas específicas deste tratamento combinado. A Tabela 2 mostra os genes superexpressos no grupo de tratamento combinado com relação ao grupo controle do veículo DMSO, enquanto a Tabela 3 mostra os genes que apresentam subexpressão naquele grupo. Na tabela 2, destacase o gene X51602, que é um receptor do fator de crescimento endotelial vascular 1 (VEGFR-1), também conhecido como FLT-1 (*fms-related tyrosine kinase 1*), e foi descrito como sendo constitutivamente expresso apenas em

células de melanomas primários e metastáticos, estando relacionado com o processo de angiogênese (Lacal et al., 2000). Outro trabalho na literatura demonstrou que melanócitos transformados SV40T também expressam constitutivamente o gene FLT-1 (Graeven et al., 1999). Esses dados sugerem que a hiperexpressão do gene FLT-1 no grupo tratado com carbaril e radiação solar pode ser considerado um possível indicador de transformação melanocítica.

Paralelamente, ainda na Tabela 2, encontra-se o gene HDAC9 (histone deacetylase 9). A inativação de HDACs é um dos eventos iniciais da resposta celular adaptativa na presença de estresse oxidativo e inflamação, levando a modificações pós-traducionais que desencadeiam a sinalização redox (Escobar et al., 2012). Apesar de apresentar alto nível de expressão em relação aos demais grupos experimentais, existem outros probes desse mesmo gene que apresentam alteração mais significativa e que indicam subexepressão do mesmo, como pode ser verificado no Apêndice II. De qualquer maneira, a alteração significativa desse gene está de acordo com a resposta celular à indução de estresse oxidativo discutido em detalhe adiante, no item 4.2.6-b. Além disso, o gene HDAC9, que faz parte da classe II da família de desacetilase de histonas, tem sido descrito como repressor transcripcional da resposta imune em células T (Parra, 2014). Logo, a alteração da expressão desse gene pode também estar envolvida com a indução de resposta imune, processo que será discutido adiante no item 4.2.6d. Adicionalmente, há na Tabela 2 outros genes intimamente relacionados com a resposta imune principalmente de células T, como TARP (T cell receptor gamma alternate reading frame protein), IL8RB (chemokine C-X-C motif

receptor 2) e IL17A (interleucina 17A). Ainda nesse contexto imunológico, está o gene EPHA7 (*EPH receptor A7*), que é um receptor de tirosina quinase superexpresso em células de Langerhans e células dendríticas (de Saint-Vis et al., 2003).

A Tabela 2 apresenta também o gene IGFBP1 (*insulin-like growth factor binding protein 1*), que codifica para uma proteína ligante do fator de crescimento tipo insulina 1, associado ao crescimento de melanócitos *in vitro* (Edmondson et al., 1999). Adicionalmente, o gene GRIN3A (*glutamate receptor, ionotropic, N-methyl-D-aspartate 3A*), que também encontra-se hiperexpresso no grupo de tratamento combinado, codifica para um receptor de glutamato do tipo ionotrópico, que foi associado à regulação da morfologia de melanócitos, com desorganização de microfilamentos de actina e de tubulina (Hoogduijn et al., 2006). Essas alterações gênicas são indicadoras de alterações fenotípicas dos melanócitos que, no entanto, não foram observadas à microscopia óptica após tratamento com carbaril e radiação solar (dados não mostrados).

Gene	p-value	Nível de aumento/diminuição			Deseria
		Carb	Carb UV	UV	- Descrição
WDR65	0.046833	-1.02074	8.9471	-1.02755	Proteína associada a cilios e flagelos
HDAC9	0.023959	1.9063	6.45413	-1.03307	Desacetilase de histona classe II - regulação da resposta imune de células T
EPHA7	0.042393	1.06554	6.15766	-1.07738	Receptor de tirosina kinase, associado a células de Langerhans e dendríticas
IGFBP1	0.042021	2.22082	5.55142	1.63658	Fator de crescimento tipo insulina - crescimento de melanócitos
GRIN3A	0.014599	1.74255	5.3671	1.31668	Receptor de glutamato
TARP	0.003677	1.20023	4.79225	2.26727	Receptor de célula T
CLEC4G	0.000376	2.93942	4.55873	-1.02015	Resposta imune de células T
KCNA4	0.01928	1.05061	4.47648	1.02229	Canal de Potássio
X51602	0.02134	2.27232	4.36656	1.30577	VEGFR -Fator de crescimento endotelial vascular
IL8RB	0.016016	2.73161	4.16478	1.33933	Receptor de interleucina 8
FCRL5	0.007013	3.67061	4.01069	1.94457	Receptor de IgG
SCN11A	0.000602	-1.12682	3.91499	1.12479	Canal de sódio
IL17A	0.005159	2.535837	3.69199	1.27606	Interleucina 17

Tabela 2 - Genes com o maior nível de superexpressão no grupo de tratamento combinado com carbaril e radiação solar.

Na Tabela 3, que relaciona os genes subexpressos no grupo tratado com carbaril e radiação solar, destaca-se o gene UROC1 (*urocanate hydratase 1*) que codifica para a enzima urocanase. Essa enzima cataliza o catabolismo do isômero *trans* do ácido urocânico, que é um fotorreceptor cutâneo (Mohammad et al., 1999). Após exposição à radiação UV, o ácido *trans*urocânico isomeriza para ácido *cis*-urocânico, que apresenta atividade imunossupressora da resposta por células T, por meio da ligação com o receptor de serotonina 5-HT_{2A} (Walterscheid et al., 2006). A inibição do UROC1 pode estar associada a um estímulo ao acúmulo de ácido *trans*urocânico, conferindo maior fotoproteção e menor imunossupressão, embora a literatura sugira que essa enzima não esteja presente na pele e que nesse órgão o ácido urocânico seja metabolizado pela microflora local (Gibbs et al., 2008).

Gene	p-value	Nível de aumento/diminuição			Deseriaño
		Carb	Carb UV	UV	- Descrição
CTGF	0.009157	-4.23879	-6.61921	-2.76014	Fator de crescimento de tecido conjuntivo
SEMA3A	2.97E-05	-1.19795	-5.92609	-2.72386	Proteína com domínio Ig like
UROC1	0.025565	-3.16087	-5.63348	-3.84795	Urocanate hydratase – Associado a imunossupressão
KCNJ10	0.000689	-2.64184	-3.53368	1.20915	Canal de potássio
SCN9A	0.021658	-1.64992	-2.8652	-1.54279	Canal de Sódio

Tabela 3 - Genes com o maior nível de subexpressão no grupo de tratamento combinado com carbaril e radiação solar.

4.2.6 Análise de vias de sinalização celular

A análise com o software IPA nos permitiu estudar os genes possivelmente envolvidos em diversas vias de sinalização celular. Usando essa ferramenta, geramos algumas listas de genes significantemente alterados apresentadas na forma de *heatmaps* de nível de aumento/diminuição, classificados em diferentes tipos de respostas celulares. Genes subexpressos estão representados por tons de azul e genes superexpressos estão representados por tons de amarelo, com base na expressão relativa ao grupo tratado apenas com DMSO (controle do veículo).

a) Resposta a dano ao DNA e interrupção de ciclo celular

A Figura 15 apresenta uma seleção de genes relacionados a dano ao DNA e regulação de ciclo celular. É interessante notar que, para a maioria desses genes, o perfil da expressão gênica é semelhante entre os tratamentos, mas a intensidade é maior para o grupo de tratamento combinado (evidenciado por uma cor azul ou amarela mais intensa), quando comparada às exposições individuais ao carbaril e à radiação solar. Por exemplo, a expressão dos genes EXO1 (exonuclease-1) e PCNA (*Proliferating Cell Nuclear Antigen*) é inibida nos três grupos, mas a intensidade é maior no grupo de tratamento combinado. O gene EXO1 apresenta alta expressão na fase S do ciclo celular, onde participa diretamente na atividade de enzimas de raparo *mismatch* e a proteína codificada por esse gene está colocalizada com PCNA que, por sua vez, está associada à replicação celular (Nielsen et al., 2004). Igualmente, o gene de

reparo PCNA (descrito em detalhe no item "4.2.4 - Avaliação da dose de radiação solar"), está superexpresso principalmente no grupo de tratamento combinado.

A Figura 15 apresenta vários genes superexpressos que estão diretamente relacionados com o Tp53 e que estão mais intensamente superexpressos no grupo de tratamento combinado, como LRDD, MDM2, CASP2, TP53INP1, CASP3 e CASP8AP2. Curiosamente, seria esperado que o próprio gene Tp53 estivesse superexpresso já que este está diretamente relacionado à resposta a dano ao DNA (Waster & Ollinger, 2009). Porém, ele não foi alterado por nenhum dos tratamentos, possivelmente devido ao seu rápido *turnover* (Chernov et al., 1998). Além disso, um trabalho publicado por Marrot et al. (2005) demonstrou que melanócitos expostos à radiação solar apresentaram níveis muito baixos do gene p53, sendo a expressão desse gene até 3 vezes menor que em fibroblastos.

Adicionalmente, no grupo de tratamento combinado, houve uma superexpressão considerável de genes intimamente relacionados à quebra de dupla fita de DNA, como BRCA1 (*breast cancer 1, early onset*) e BRCA2 (*breast cancer 2, early onset*) (Roy et al., 2011), que também estavam superexpressos nos grupos tratados individualmente com carbaril ou com radiação solar, mas com menor intensidade. Ainda no grupo de tratamento combinado, a subexpressão de EDN1 (*endothelin-1*) é sugestiva de um aumento na instabilidade genômica e mutagênese, já que essa proteína foi descrita como indutora de reparo de lesões do tipo CPD (Kadekaro et al., 2005).

Por outro lado, há um grupo de genes nos quais um tratamento sobrepõe a expressão gênica do outro, como os genes de interrupção da proliferação celular induzida por dano ao DNA (*Growth arrest DNA damage-induced genes*, GADD45A/B), os quais foram subexpressos nos grupos tratados com carbaril e superexpressos pela radiação solar isolada. A subexpressão de GADD45B pelo tratamento com carbaril isolado ou combinado com a radiação solar pode estar associada a uma interrupção deficiente do ciclo celular e comprometimento do reparo do DNA (Higgs et al., 2010). A superexpressão de GADD45A em células de melanoma resulta em inibição da morte celular por apoptose, e a inibição desse gene por RNA de interferência reverte o processo apoptótico e aumenta a sensibilidade celular à quimioterapia após exposição à radiação UVB (Fayolle et al., 2008). Logo, é possível que a subexpressão de GADD45A, encontrada após o tratamento com carbaril isolado, possa levar a um aumento da ativação da via de apoptose.

A lista apresentada na Figura 15 também revela inúmeros genes relacionados ao controle do ciclo celular indicando um deseguilíbrio nesse processo, como MYC (*v-myc avian myelocytomatosis viral oncogene homolog*), CDKN1A (cyclin-dependent kinase inhibitor 1A, p21, Cip1), CCNE1 (cyclin E1), CDC25A (cell division cycle 25A), e os fatores de transcrição E2Fs - E2F2, E2F5, E2F7 e E2F8. Sabe-se que a subexpressão de MYC, encontrada principalmente combinado, de tratamento resulta no grupo em comprometimento da progressão do ciclo celular (Bretones et al., 2014). No grupo de tratamento combinado, os fatores de transcrição E2F2 e E2F7 estão significativamente hiperexpressos, e estão relacionados à transição do ciclo celular de G1 para S, enquanto que o E2F5 está subexpresso, e é responsável

pela transição de G0 para G1; além disso, o E2F7 e o E2F8 têm sido associados à resposta a dano ao DNA (Lammens et al., 2009). A hiperexpressão do fator de transcrição E2F8 parece ser um efeito exclusivo da radiação solar, já que encontra-se igualmente hiperexpresso nos grupos irradiados, mas a expressão é praticamente nula no grupo tratado apenas com carbaril. Os fatores de transcrição E2Fs são responsáveis pela hiperexpressão de USP37 (*ubiquitin specific peptidase 37*), que encontra-se mais acentuada no grupo de tratamento combinado e está associada à uma entrada mais rápida na fase S; a fosforilação da proteína USP37 pelo complexo CDK2/CCNE leva à atividade máxima dessa deubiquitinase (Huang et al., 2011). Adicionalmente, o gene CCNE1 também encontra-se acentuadamente hiperexpresso neste grupo experimental, possivelmente contribuindo para a transição da fase G1 para S. O gene FOS (FBJ murine osteosarcoma viral oncogene homolog), que está acentuadamente subexpresso nos grupos tratados com carbaril, é um protooncogene que foi descrito como regulador do ciclo celular através da ativação de ciclina D1, relacionada à transição das fases G1 para S; no entanto, a inibição de FOS não é suficiente para interromper o ciclo celular (Shaulian & Karin, 2001).

De modo geral, considerando os valores de nível de aumento/diminuição, houve um efeito aditivo, mas não sinérgico, entre o carbaril e a radiação solar com relação ao dano no DNA e controle do ciclo celular.

Figura 15: Genes relacionados a dano ao DNA e regulação do ciclo celular - heatmap representando o aumento/diminuição de expressão gênica em relação ao grupo controle do veículo DMSO. UV – tratado com DMSO 0,07% e irradiado com 375mJ/cm² de radiação solar; Carb UV – tratado com carbaril 100µM e irradiado com 375mJ/cm² de radiação solar; Carb – tratado com carbaril 100µM; e DMSO – tratado com DMSO 0,07%. Genes subexpressos estão identificados em azul e os superexpressos em amarelo. Dados gerados em triplicata.

b) Genes associados a estresse oxidativo

O heatmap na Figura 16 revela uma seleção de genes relacionados a

estresse oxidativo. Notavelmente, o estresse oxidativo é essencialmente um
efeito induzido pelo carbaril, uma vez que no grupo tratado apenas com radiação solar, a maioria desses genes estão subexpressos ou apresentam superexpressão relativamente baixa, enquanto que no grupo de tratamento combinado, a expressão é semelhante àquela do tratamento individual com carbaril. Essa observação é particularmente importante porque comprova que a dose de radiação solar usada para este estudo foi adequada, pois a utilização de uma dose maior poderia ter se tornado um fator de confusão na interpretação dos resultados do grupo de tratamento combinado. O gene COX6B2 (*cytochrome c oxidase subunit VIb polypeptide 2*) é uma exceção a esse padrão, já que ele também está altamente superexpressão seja ainda mais intensa no grupo de tratamento concomitante com o carbaril.

A maioria dos genes listados na Figura 15 codifica para *Heat Shock Proteins*, como HSP32 (HMOX1, *hemeoxygenase-1*), 40 (DNAJC3, DNAJB9, DNAJB4) e 70 (HSPA5 e HSPA1L), em adição a genes envolvidos com metabolismo de glutationa (GCLM, *glutamate-cysteine ligase modifier subunit*, e GPX5, *glutathione peroxidase 5*) e outros genes com atividade antioxidante. Um trabalho publicado por Jian et al. (2011) relatou que a expressão do gene HMOX1 protege os melanócitos de morte celular induzida por estresse oxidativo através da via Nrf2-ARE (*nuclear factor, erythroid 2-like 2 -Antioxidant response element*). Outro trabalho publicado por Marrot et al. (2007) relatou que a ativação da mesma via levou à hiperexpressão dos genes HMOX1 e GCLM em melanócitos humanos; curiosamente, naquele trabalho, a radiação UVA isolada foi mais eficiente em ativar a via Nrf2 que a radiação solar total. Posteriormente, um trabalho publicado por Kokot et al. (2009)

relatou que uma dose baixa de radiação UVB (10mJ/cm²) foi capaz de suprimir a via Nrf2, bem como a ativação do gene HMOX1 em melanócitos *in vitro*. Dessa forma, é possível que esse mecanismo tenha contribuído para a ausência de níveis detectáveis de resposta a estresse oxidativo no grupo tratado apenas com a radiação solar, enquanto que, no grupo de tratamento combinado com o carbaril, a radiação UVB não teria sido suficiente para suprimir a expressão de HMOX1. Adicionalmente, a proteína c-fos é capaz de regular negativamente a expressão gênica mediada por ARE de modo a equilibrar a expressão de enzimas antioxidantes (Jaiswal, 2004). Assim, a subexpressão do gene FOS nos grupos tratados com carbaril (Figura 15), é consistente com a ativação da via Nrf2 nesses grupos.

Assim como nesse estudo, um trabalho publicado por Delescluse et al. (2001) também relatou a hiperexpressão significativa de HSP70 induzida pelo inseticida carbaril em células linfoblastoides humanas a partir da concentração de 124µM, e esse aumento estava supostamente relacionado à perturbação no enovelamento de proteínas. Uma revisão publicada por Jonak et al. (2007) descreveu que a hiperexpressão de HSP70, que não é constitutivamente expressa em melanócitos, protege as células epidérmicas da morte induzida pela radiação UVB, o que sugere que as células tratadas com carbaril apresentem mecanismos de inibição de morte celular. A HSP40, por sua vez, foi relatada como sendo uma chaperona da HSP70, impedindo a degradação da HSP70 através da inibição de sua ubiquitinação e ainda conferindo resistência celular frente à citotoxicidade induzida por estresse oxidativo (Kim et al., 2008).

A GCLM é um dos elementos-chave para a síntese de glutationa, cuja função antioxidante é altamente dependente de reações catalisadas por glutationa peroxidases (Lu, 2013). Um trabalho de revisão publicado por Jung & Kwak (2010) demonstrou que o papel antioxidante das glutationa peroxidases está bem estabelecido, uma vez que essas proteínas agem diretamente na neutralização de EROs, e a deficiência das mesmas em camundongos *knockout* induz anormalidades de funções endoteliais e de cardiomiócitos decorrentes de altos níveis de estresse oxidativo. Logo, a hiperexpressão de GCLM e da peroxidase GPX5 nos grupos tratados com carbaril sugerem uma indução de estresse oxidativo após tratamento com carbaril.

Figura 16: Genes relacionados a estresse oxidativo - heatmap representando o aumento/diminuição de expressão gênica em relação ao grupo controle do veículo DMSO. UV – tratado com DMSO 0,07% e irradiado com 375mJ/cm² de radiação solar; Carb UV – tratado com carbaril 100µM e irradiado com 375mJ/cm² de radiação solar; Carb – tratado com carbaril 100µM; e DMSO – tratado com DMSO 0,07%. Genes subexpressos estão identificados em azul e os superexpressos em amarelo. Dados gerados em triplicata.

c) Genes associados a estresse de retículo endoplasmático e autofagia

A Figura 17 mostra um heatmap da expressão de genes relacionados a estresse de retículo endoplasmático (RE) e autofagia, que seguem um padrão semelhante ao dos genes relacionados a estresse oxidativo (Figura 16). Da mesma maneira, no grupo tratado apenas com radiação solar, esses genes estão subexpressos ou apresentam expressão mais baixa quando comparados com os grupos tratados com carbaril. De fato, essas vias podem estar fortemente relacionadas, uma vez que o estresse oxidativo pode exercer um papel importante na indução de estresse do RE e autofagia. Espécies reativas de oxigênio (EROs) podem ativar canais de cálcio do RE e chaperonas, liberando cálcio no citosol e estimulando a mitocôndria a produzir mais EROs e mais liberação de cálcio, resultando em níveis tóxicos de EROs; sob estresse, o RE desencadeia a via UPR (Unfolded Protein Response), resultando em inflamação, respostas antioxidativas e outras vias de estresse (Zhang, 2010). Além disso, o acúmulo de proteínas desenoveladas leva à ativação da via de autofagia e formação de autofagossomos no RE, resultando em aumento da degradação de material celular (Clarke et al., 2012).

Consistentemente, nesse *heatmap* estão listados um gene ativador de autofagia (ULK1, *unc-51 like autophagy activating kinase 1*), outro gene relacionado com ativação de autofagia (ATG16L1, *autophagy related 16-like 1*) e também um gene envolvido com maturação de autofagossomo (COPE, *coatomer protein complex subunit epsilon*). Adicionalmente, essa lista também apresenta genes relacionados com estresse de RE e com a via UPR, como

HSPA5, XBP1 (*X-box binding protein 1*), HERPUD1 (*HERPUD family member* 1) e ORMDL3 (*ORMDL sphingolipid biosynthesis regulator 3*).

Figura 17: Genes relacionados com estresse de retículo endoplasmático e autofagia *heatmap* representando o aumento/diminuição de expressão gênica em relação ao grupo controle do veículo DMSO. Control UV – irradiado com 375mJ/cm² de radiação solar; UV – tratado com DMSO 0,07% e irradiado com 375mJ/cm² de radiação solar; Carb UV – tratado com carbaril 100µM e irradiado com 375mJ/cm² de radiação solar; Carb – tratado com carbaril 100µM; e DMSO – tratado com DMSO 0,07%. Genes subexpressos estão identificados em azul e os superexpressos em amarelo. Dados gerados em triplicata.

d) Genes associados à resposta imune

A Figura 18 revela que vários genes relacionados com resposta imune foram alterados pelos diferentes tratamentos, incluindo interleucinas e supressores de citocinas. Embora não tenha sido possível identificar um padrão específico de expressão para esses genes, essa resposta é fundamentada no fato de que os melanócitos são células imunocompetentes que expressam constitutivamente receptores Toll-like (Tam and Stepien, 2011). Os genes mais significantemente expressos nessa lista foram os genes IL17A (*interleukin 17A*) e IL8RB superexpressos no grupo de tratamento combinado. A IL17 foi relacionada a várias doenças cutâneas e a superexpressão dessa interleucina pode provocar aumento da proliferação celular e diminuição da pigmentação em melanócitos (Wang et al., 2013). O gene IL8RB (*interleukin 8 receptor, beta*), também conhecido como CXCR2 (*chemokine, C-X-C motif, receptor 2*), é um receptor que induz a proliferação de melanócitos por meio da ligação a IL8 (*interleukin 8*) e quimiocina-CXC após ativação por TNFalpha (*tumor necrosis factor alpha*) (Norgauer et al., 2003).

Figura 18: Genes relacionados à resposta imune - *heatmap* representando o aumento/diminuição de expressão gênica em relação ao grupo controle do veículo DMSO. UV – tratado com DMSO 0,07% e irradiado com 375mJ/cm² de radiação solar; Carb UV – tratado com carbaril 100µM e irradiado com 375mJ/cm² de radiação solar; Carb – tratado com carbaril 100µM; e DMSO – tratado com DMSO 0,07%. Genes subexpressos estão identificados em azul e os superexpressos em amarelo. Dados gerados em triplicata.

e) Genes associados à diferenciação e atividade melanocítica

Com relação à atividade de melanócitos, o gene MITF é o mais importante a ser considerado. Esse fator de transcrição é o principal regulador da atividade melanocítica e é responsável por uma grande variedade de funções, como inibição de dano ao DNA, diferenciação e proliferação (Steingrímsson et al., 2004). Na Figura 19, é possível notar que o MITF está subexpresso em todos os grupos, mas esse efeito é mais acentuado no grupo de tratamento combinado. Esse achado está em acordo com a resposta a estresse oxidativo encontrada nos grupos tratados com carbaril, uma vez que o MITF já foi relatado como subexpresso após indução de EROs, levando a uma diminuição de enzimas envolvidas com a produção de melanina (Jimenez-Cervantes et al., 2001).

Além disso, essa seleção de genes contém reguladores de MITF, como WNT6 (*wingless-type MMTV integration site family, member 6*), WNT5B (*wingless-type MMTV integration site family, member 5B*), SOX8 (*sex determining region Y-box 8*), SOX10 (*sex determining region Y-box 10*) e PAX3 (*paired box 3*), os quais estão subexpressos especialmente no grupo de tratamento combinado. O gene MITF pertence à família MYC/MAX/MAD de fatores de transcrição, que são importantes reguladores de proliferação celular e diferenciação e representam uma rede complexa de ativação/inibição de genes-alvo, dependente da ausência/presença de diversos proteínas e cofatores (Steingrímsson et al., 2004). Assim como, o MITF, o gene MYC encontra-se subexpresso em todos os grupos, principalmente no grupo de tratamento combinado, enquanto que o gene MXD1 (*MAX dimerization protein*

1), integrante da mesma família, encontra-se superexpresso em todos os grupos, mas mais acentuadamente no grupo tratado com carbaril e radiação solar.

Curiosamente, essa lista também apresenta alguns reguladores de pluripotência embriogênica, isto é, os genes homeobox HOXA9 (*homeobox A9*), HOXB9 (*homeobox A10*) e POU5F1 (*POU domain, class 5, transcription factor 1*), sugerindo comprometimento da diferenciação celular. Por fim, o gene S100A10 (*S100 calcium binding protein A10*), subexpresso apenas no grupo de tratamento combinado, é parte da família S100, a qual é frequentemente encontrada alterada em doenças cutâneas e é utilizada como marcador diagnóstico para melanoma cutâneo (Ordóñez, 2014).

Figura 19: Genes relacionados a diferenciação e atividade de melanócitos - heatmap representando o aumento/diminuição de expressão gênica em relação ao grupo controle do veículo DMSO. UV – tratado com DMSO 0,07% e irradiado com 375mJ/cm² de radiação solar; Carb UV – tratado com carbaril 100µM e irradiado com 375mJ/cm² de radiação solar; Carb – tratado com carbaril 100µM; e DMSO – tratado com DMSO 0,07%. Genes subexpressos estão identificados em azul e os superexpressos em amarelo. Dados gerados em triplicata.

f) Genes associados ao metabolismo de xenobióticos

A Figura 20 mostra uma lista de genes alterados envolvidos com metabolismo de xenobióticos. Nossos resultados demonstram que o gene CYP1A1 está subexpresso nos grupos tratados com carbaril. Esse achado é contrário ao que se havia antecipado, já que vários trabalhos relataram que o carbaril induz a expressão de CYP1A1 em diferentes condições experimentais (Delescluse et al., 2001; Ledirac et al., 2007). Em contrapartida, esse gene encontra-se superexpresso no grupo tratado com a radiação solar, o que está de acordo com dados da literatura (Katiyar et al., 2000). É possível que nossos achados acerca da expressão de CYP1A1 nos grupos tratados com carbaril sejam decorrentes de um *feedback* negativo autorregulatório, evento que é aumentado na presença de EROs, limitando assim os níveis tóxicos de CYP1A1 intracelular (Morel et al., 1999).

Por outro lado, o gene CYP2B6 estava superexpresso em todos os grupos de tratamentos, mas sua expressão foi consideravelmente maior no grupo de tratamento combinado e pouco expressivo no grupo tratado apenas com radiação solar. A oxidação por enzimas CYP é uma via importante de metabolismo do inseticida carbaril, gerando produtos de hidroxilação; a enzima CYP2B6 metaboliza o carbaril, produzindo carbaril metilol, enquanto a CYP1A1 produz 4- e 5-hidroxicarbaril (Hodgson and Rose, 2005; Tang et al, 2002). Adicionalmente, a glutationa foi relatada como redutora da citotoxicidade do carbaril *in vitro* e também pode estar envolvida no metabolismo do carbaril, provavelmente através da eliminação de EROs (Dierickx, 1999).

Finalmente, encontramos alterações em vários genes de sulfotransferases, os quais codificam enzimas de desintoxicação de fase 2 e foram encontrados superexpressos pelo tratamento com carbaril, ainda mais acentuadamente no grupo de tratamento combinado.

Figura 20: Genes relacionados ao metabolismo de xenobióticos - heatmap representando o aumento/diminuição de expressão gênica em relação ao grupo controle do veículo DMSO. UV – tratado com DMSO 0,07% e irradiado com 375mJ/cm² de radiação solar; Carb UV – tratado com carbaril 100µM e irradiado com 375mJ/cm² de radiação solar; Carb – tratado com carbaril 100µM; e DMSO – tratado com DMSO 0,07%. Genes subexpressos estão identificados em azul e os superexpressos em amarelo. Dados gerados em triplicata.

4.2.7 Validação da expressão gênica por qRT-PCR

A fim de validar os dados de microarray, realizamos PCR quantitativo em

tempo real quantitativo (qRT-PCR) para genes que foram considerados críticos

para a avaliação dos efeitos do carbaril e da radiação solar. O qRT-PCR é comumente usado para este fim por apresentar maior sensibilidade quantitativa da expressão gênica (Provenzano & Mocellin, 2007). A Figura 21 mostra a expressão relativa dos genes CDKN1A (p21), CCNE1, GADD45A, GADD45B, EXO1, BRCA1, BRCA2, S100A10, MITF, MDM2, PCNA, CYP1A1 e HMOX1.

De modo geral, os dados do microarray foram consistentes com os resultados da gRT-PCR para todos os genes, com exceção de S100A10, MITF e CYP1A1. Após análise estatística, foi possível confirmar um efeito aditivo entre o carbaril e a radiação solar com relação aos genes CCNE1 e GADD45B, e um efeito aparentemente sinergístico com relação à expressão dos genes BRCA1, BRCA2, CDKN1A e MDM2. A hiperexpressão dos genes PCNA, GADD45A e EXO1 parece ser um efeito exclusivo da radiação solar, já que não diferença estatística entre a expressão no grupo de tratamento combinado e no grupo exposto à radiação solar isolada. Da mesma maneira, a subexpressão de MITF e a hiperexpressão de HMOX1 são exclusivos ao tratamento com carbaril, uma vez que não há alteração significativa da expressão entre o grupo de tratamento combinado e o grupo tratado apenas com o inseticida. Assim, foi confirmada uma resposta mais acentuada no grupo de tratamento combinado carbaril + radiação solar com relação a alguns genes de dano ao DNA e regulação do ciclo celular, e que a radiação solar não induziu resposta detectável a estresse oxidativo.

Com relação à diferenciação, os resultados foram menos expressivos no ensaio de qRT-PCR que no ensaio de *microarray*. A expressão do gene

S100A10 avaliada pelo ensaio de validação foi nula em todos os grupos de tratamento em relação ao controle (Figura 21).

Com relação ao metabolismo de xenobióticos, os resultados foram inconsistentes, já que o perfil de expressão do gene CYP1A1 não foi reproduzido pelo ensaio de qRT-PCR. As discrepâncias entre os dois ensaios ocorre principalmente porque o ensaio de *microarray* não é preciso com relação à quantificação da expressão, e também pela ocorrência de artefatos nas lâminas de cDNA que podem provocar resultados falso-positivos ou falso-negativos.

Figura 21: Validação da expressão gênica por qRT-PCR - comparação entre resultados dos ensaios de *microarray* e PCR quantitativo em tempo real. Dados gerados em triplicata experimental, analisados por ANOVA seguida de teste de Tukey, comparados ao grupo controle DMSO (*p<0,05, **p<0,001). Grupos identificados pela mesma letra não diferem significativamente. UV – tratado com DMSO 0,07% e irradiado com 375mJ/cm² de radiação solar; Carb UV – tratado com carbaril 100µM e irradiado com 375mJ/cm² de radiação solar; Carb – tratado com carbaril 100µM; e DMSO – tratado com DMSO 0,07%.

5 Análise da regulação do ciclo celular

O ensaio de microarray revelou alteração em diversos genes responsáveis pela regulação do ciclo celular nos diferentes tratamentos. A Figura 22 mostra que no grupo tratado com carbaril e com radiação solar, houve uma redução significativa no número de células na fase G0/G1 e um aumento significativo no número de células na fase S, enquanto que o número de células na fase G2 permaneceu inalterado, demonstrando que as células neste grupo experimental parecem ter interrompido o ciclo celular na fase S. No grupo tratado apenas com carbaril há também um aumento de células na fase S que, embora menos significativo, não difere significativamente do grupo de tratamento combinado. A hiperexpressão de MDM2 encontrada nos ensaios de expressão gênica é consistente com os resultados de parada de ciclo celular principalmente no grupo combinado, uma vez que esse gene induz à parada de ciclo celular e checkpoint na fase S frente a estímulos genotóxicos (Deb et al., 2014). Adicionalmente, a análise da proteína Ciclina B1 por Western Blot revelou aumento da expressão proteica nos grupos tratados com carbaril (Figura 23). Tipicamente, a ciclina B1 apresenta pico de expressão na transição entre as fases G2 e M, e apresenta aumento linear durante a fase S do ciclo celular (Hwang et al., 1995). Em 1997, Katula et al. descreveram que em células tumorais as ciclinas são capazes de ativar os promotores de outras ciclinas, provocando uma expressão extemporânea das mesmas; por exemplo, a hiperexpressão de ciclina E pode levar a um aumento da expressão da ciclina B1 na transição entre as fases G1 e S, e essa expressão precoce de ciclinas mitóticas pode perturbar a progressão do ciclo celular, contribuindo para o processo de transformação. Mais recentemente, Moore et al. (2014)

demonstraram que o complexo cdk1-ciclina B1 possui capacidade de promoção da fase S quando é translocado do citoplasma para o núcleo celular. Assim, a expressão de ciclina B1 nos melanócitos tratados com carbaril é consistente com o aumento no número de células na fase S e pode ser indicativa de uma desregulação do ciclo celular.

Figura 22: Avaliação de ciclo celular por citometria de fluxo - melanócitos humanos após 48 horas de tratamento. Dados gerados em triplicata experimental, analisados por ANOVA seguida de teste de Tukey, comparados ao grupo controle DMSO (*p<0,05, **p<0,0001). DMSO UV – tratado com DMSO 0,07% e irradiado com 375mJ/cm² de radiação solar; Carb UV – tratado com carbaril 100µM e irradiado com 375mJ/cm² de radiação solar; Carb – tratado com carbaril 100µM; e DMSO – tratado com DMSO 0,07%.

Figura 23 - Análise da expressão relativa da proteína Ciclina B1 (55 Kda) em melanócitos primários humanos após 24 horas de tratamento. O gráfico indica a porcentagem de expressão proteica em relação ao controle não tratado e não irradiado. Para o controle interno de proteína constitutiva foi utilizada a Vinculina (116Kda). Dados correspondem a uma duplicata experimental e foram comparados ao grupo controle DMSO. DMSO UV – tratado com DMSO 0,07% e irradiado com 375mJ/cm² de radiação solar; Carb UV – tratado com carbaril 100μM; DMSO – tratado com DMSO 0,07%; e Ctrl NT – nenhum tratamento.

6 Curva de crescimento celular

A Figura 24 mostra a curva de crescimento dos melanócitos humanos tratados com carbaril e/ou radiação solar analisada pelo ensaio do Azul de Tripan. É possível observar que em todos os grupos experimentais há um crescimento celular linear ao longo do tempo com exceção dos grupos tratados com carbaril, onde nota-se que o número total de células se mantém constante durante todo o período de tratamento. A diminuição na taxa de proliferação

celular foi significativa, porém não há diferença estatística entre o grupo tratado apenas com carbaril ou tratado com carbaril associado à radiação solar. Podese inferir que o aumento do número de células na fase S nos grupos tratados com carbaril não está relacionado a um aumento na taxa de proliferação celular, confirmando que o inseticida provoca parada de ciclo celular.

Figura 24: Curva de crescimento celular - contagem celular realizada após 24, 48 e 72 horas de tratamento. Dados gerados em triplicata, analisados por ANOVA seguida de teste de Tukey, comparados ao grupo controle DMSO. DMSO UV – tratado com DMSO 0,07% e irradiado com 375mJ/cm² de radiação solar; Carb UV – tratado com carbaril 100µM e irradiado com 375mJ/cm² de radiação solar; Carb – tratado com carbaril 100µM; e DMSO – tratado com DMSO 0,07%.

7 Análise dos mecanismos de morte celular e autofagia

A fim de analisar se há diferenças no mecanismo de morte celular entre os diferentes tratamentos, realizamos um ensaio de detecção de fosfatidilserina (marcação por Anexina) por citometria de fluxo. Nas Figuras 25 e 26, podemos notar que houve redução significativa no número de células marcadas somente por Anexina e marcadas duplamente por Anexina e PI. Os resultados sugerem que há uma diminuição nas taxas de apoptose e apoptose tardia nos grupos tratados com carbaril, mas não no grupo tratado apenas com a radiação solar, onde houve um aumento no número de células em necrose.

Figura 25: Avaliação do mecanismo de morte celular por citometria de fluxo - melanócitos humanos tratados por 24 horas de tratamento. Dados gerados em triplicata experimental, analisados por ANOVA seguida de teste de Tukey, comparados ao grupo controle DMSO (*p<0,05, **P<0,001). DMSO UV – tratado com DMSO 0,07% e irradiado com 375mJ/cm² de radiação solar; Carb UV – tratado com carbaril 100µM e irradiado com 375mJ/cm² de radiação solar; Carb – tratado com carbaril 100µM; DMSO – tratado com DMSO 0,07%; e Ctrl – nenhum tratamento.

Figura 26 - Representação por Dot Plots da análise do mecanismo de morte celular por citometria de fluxo: os quatro gráficos à esquerda mostram a caracterização fenotípica da população de células, selecionadas de acordo com o tamanho (parâmetro FSC-A) versus a complexidade celular (parâmetro SSC-A). Os quatro gráficos à direita apresentam a porcentagem de células viáveis (Anexina-/IP-) no quadrante inferior esquerdo, células apoptóticas (Anexina+/IP-) no quadrante superior esquerdo, células em apoptose tardia (Anexina+/IP+) no quadrante superior direito e células necróticas no quadrante inferior direito (Anexina-/IP-). DMSO UV – tratado com DMSO 0,07% e irradiado com 375mJ/cm² de radiação solar; Carb UV – tratado com carbaril 100µM; e DMSO – tratado com DMSO 0,07%.

A ausência de níveis significativos de morte celular por apoptose no grupo tratado apenas com radiação solar está de acordo com dados publicados por Marrot et al. (2005) que demonstraram que melanócitos humanos caucasianos apresentam morte celular limitada, principalmente por apoptose, mesmo quando expostos a altas doses de radiação solar (1200mJ/cm² de UVB e 11000 mJ/cm² de UVA; Marrot et al., 2005). A inibição da apoptose nos grupos tratados com carbaril é surpreendente, considerando a ausência de aumento de morte celular por necrose, interrupção do ciclo celular na fase S e inibição da proliferação. Logo, optou-se por investigar se as células nesses

grupos teriam adotado a autofagia como mecanismo de sobrevivência. Sabe-se que espécies reativas de oxigênio podem regular a morte celular tanto por apoptose quanto por autofagia, dependendo do local onde ocorrem e do nível de estresse oxidativo, envolvendo a modulação de fatores de transcrição como Nrf2, NFKB e p53 (Kaminskyy & Zhivotovsky, 2014). Além disso, é importante lembrar que uma das respostas encontradas no ensaio de *microarray* foi a alteração dos genes ULK1, ATG16L1 e COPE associados a autofagia nos grupos tratados com carbaril (Figura 17).

Assim, investigamos a expressão das proteínas relacionadas à autofagia Beclin-1 e LC3B por Western Blot, após 24 horas de tratamento. Na Figura 27 podemos observar que a proteína LC3B encontra-se nitidamente aumentada nos grupos tratados com carbaril, sugerindo que a via de autofagia tenha sido ativada pelo tratamento com o inseticida. Embora esse aumento não tenha sido estatisticamente significativo, o mesmo é consistente principalmente com a inibição do mecanismo de morte celular por apoptose. De fato, há uma íntima relação entre os processos apoptótico e autofágico, em que caspases exercem um papel de interruptor na ativação de uma dessas duas vias de sinalização e consequente inibição da outra (Wu et al., 2014). Além disso, a autofagia pode ser ativada em resposta a dano ao DNA e estresse oxidativo, contribuindo para a estabilidade genômica por meio da eliminação de micronuclei e partes danificadas de DNA (Vessoni et al., 2013). A proteína LC3B, também conhecida como Atg8, é um importante marcador de autofagia, por estar envolvida na etapa final de formação de autofagossomos (Liu et al., 2013). A proteína Beclin-1, por sua vez, não encontra-se alterada pelos diferentes

tratamentos (Figura 28). Essa proteína é um reconhecido regulador da via autofágica, e dependendo de seus ligantes, pode estar associada à ativação ou inibição da autofagia (Sahni et al., 2014). Se de fato for comprovado que há indução de autofagia nos grupos tratados com carbaril, é possível que em 6 horas de tratamento sua expressão já tenha retornado a níveis basais nesses grupos, já que a Beclin-1 atua nas fases mais iniciais da ativação do processo autofágico (Cao & Klionsky, 2007). Ensaios complementares são necessários para investigar a ativação da via autofágica nos grupos tratados com o inseticida carbaril.

Figura 27 - Análise da expressão relativa da proteína LC3B-II (14, 16Kda) em melanócitos primários humanos após 24 horas de tratamento. O gráfico indica a porcentagem de expressão proteica em relação ao controle não tratado e não irradiado. Para o controle interno de proteína constitutiva foi utilizada a Vinculina (116Kda). Dados correspondem a uma triplicata experimental, analisados por ANOVA seguida de teste de Tukey, comparados ao grupo controle DMSO. DMSO UV – tratado com DMSO 0,07% e irradiado com 375mJ/cm² de radiação solar; Carb UV – tratado com carbaril 100µM e irradiado com DMSO 0,07%; e Ctrl NT – nenhum tratamento.

Figura 28 - Análise da expressão da proteína Beclin-1 (60Kda) em melanócitos primários humanos após 24 horas de tratamento. O gráfico indica a porcentagem de expressão proteica em relação ao controle não tratado e não irradiado. Para o controle interno de proteína constitutiva foi utilizada a Vinculina (116Kda). Dados correspondem a uma unicata experimental. DMSO UV – tratado com DMSO 0,07% e irradiado com 375mJ/cm² de radiação solar; Carb UV – tratado com carbaril 100µM e irradiado com 375mJ/cm² de radiação solar; Carb – tratado com carbaril 100µM; DMSO – tratado com DMSO 0,07%; e Ctrl NT – nenhum tratamento.

8 Avaliação de estresse oxidativo por tratamento concomitante com antioxidante

Para verificar a indução de estresse oxidativo encontrada nos ensaios de *microarray* e qRT-PCR, utilizamos o agente antioxidante Trolox, na concentração de 100µM (Alberto et al., 2013; Kim et al., 2014), concomitantemente com o tratamento com carbaril, a fim de avaliar se o Trolox poderia reverter a expressão dos genes HMOX e MITF. Ao final dos tratamentos, foram realizados ensaios de qRT-PCR para reavaliar a expressão

gênica. A Figura 29 mostra que o tratamento com Trolox não reduziu significativamente a expressão dos genes HMOX e MITF em nenhum dos tratamentos. Embora as barras de desvio padrão possam ter comprometido a análise estatística, observamos que o perfil de expressão desses genes foi o mesmo encontrado em todas as replicatas experimentais. O Trolox é um importante sequestrante de radicais hidroxila, alcóxi e peróxido, principalmente em meio aquoso (Alberto et al., 2013). É possível que a ação antioxidante do composto Trolox não tenha sido específica para as EROs produzidas pelos tratamentos, e portanto não foi suficiente para reverter o quadro de estresse oxidativo.

Figura 29: Análise da expressão gênica por qRT-PCR dos genes HMOX1 e MITF - melanócitos humanos tratados com carbaril (100uM), radiação solar (375 mJ/cm²) e Trolox (100uM), concomitante ou isoladamente, ou apenas tratados com o veículo DMSO (0,07%). Dados gerados em quadruplicata experimental, analisados por ANOVA seguida de teste de Tukey e comparados ao grupo controle DMSO (*p-value<0,001).

9 Ensaio de quantificação de CPDs por citometria de fluxo

O ensaio de detecção de CPDs é uma ferramenta importante para avaliar a genotoxicidade em células epiteliais, já que são lesões altamente mutagênicas e que são tipicamente induzidas pela radiação UVB (Marrot et al., 2010). Após 1 hora de tratamento, há um aumento na guantidade de CPDs no grupo de tratamento combinado com carbaril e radiação solar e, após 6 horas de tratamento, há uma equivalência entre o grupo de tratamento combinado e o grupo de radiação solar isolada, sugerindo que as lesões se formam mais rapidamente no primeiro grupo (Figura 30). Greinert et al. (2000) descreveram que em queratinócitos irradiados com 20mJ/cm² de UVB (dose próxima da utilizada nesse experimento, se considerarmos que a radiação UVB corresponde a 5% da radiação solar) foram detectadas lesões do tipo CPD imediatamente após a radiação e, após 6 horas da irradiação, houve reparo de aproximadamente 40% das lesões; naquele trabalho, os níveis mais baixos de CPDs foram detectados após 50 horas da irradiação. Logo, consideramos razoável a detecção das lesões após 1 e 6 horas de tratamento, a fim de avaliar o efeito do carbaril e da radiação solar na indução das lesões. Apesar de serem lesões tipicamente induzidas pela radiação UVB, é interessante o aumento significativo de CPDs no grupo tratado com carbaril e radiação solar após 1 hora de tratamento, indicando que o inseticida facilita a formação dos dímeros no DNA.

Figura 30 - Quantificação de dímeros de pirimidina (CPDs): mediana da absorbância da fluorescência analisada por citometria de fluxo após 1 e 6 horas de tratamento. Dados correspondem a uma triplicata experimental, analisados por ANOVA seguida de teste de Tukey e comparados ao grupo controle DMSO. DMSO UV – tratado com DMSO 0,07% e irradiado com 375mJ/cm² de radiação solar; Carb UV – tratado com carbaril 100µM e irradiado com 375mJ/cm² de radiação solar; Carb – tratado com carbaril 100µM; DMSO – tratado com DMSO 0,07%; e Ctrl NT – nenhum tratamento.

11 Ensaio de quantificação de 8-oxo-dG por citometria de fluxo

Na Figura 31 podemos observar que, após 1 hora de tratamento, não há diferenças na detecção de lesões 8-oxo-dG e, após 24 horas, há um aumento não significativo na quantidade de lesões do tipo 8-oxo-dG no grupo de tratamento concomitante com carbaril e radiação solar, o que é consistente com a indução de estresse oxidativo neste grupo experimental. A escolha dos tempos de tratamento de 1 e 24 horas para detecção das lesões oxidativas foram baseadas em trabalhos na literatura que utilizaram o mesmo esquema de irradiação seguida por tratamento químico de células em cultura (Zhang et al., 2004; Zhou et al., 2012). Apesar de serem lesões tipicamente induzidas pela radiação UVA, as mesmas não foram detectadas no grupo tratado apenas com radiação solar.

Figura 31 - Quantificação de 8-oxo-dG: mediana da absorbância da fluorescência analisada por citometria de fluxo após 1 e 24 horas de tratamento. Dados correspondem a uma triplicata experimental, analisados por ANOVA seguida de teste de Tukey e comparados ao grupo controle DMSO. DMSO UV – tratado com DMSO 0,07% e irradiado com 375mJ/cm² de radiação solar; Carb UV – tratado com carbaril 100µM e irradiado com 375mJ/cm² de radiação solar; Carb – tratado com carbaril 100µM; DMSO – tratado com DMSO 0,07%; e Ctrl NT – nenhum tratamento.

V - DISCUSSÃO E CONCLUSÕES

Os ensaios realizados com o carbaril solubilizado em HPβCD indicaram que esta formulação não deve ser empregada em ensaios de avaliação de toxicidade *in vitro*, uma vez que este excipiente altera as membranas celulares interferindo em diversas vias de sinalização celular.

A hipótese de que a indução de enzimas CYP deveria ser um importante mecanismo de ação levando à bioativação do inseticida carbaril não pôde ser confirmada. São necessários ensaios que incluam o tratamento dos melanócitos com agentes indutores ou inibidores dessas enzimas de biotransformação para avaliar se há alteração de parâmetros de estresse oxidativo e dano ao DNA.

A dose de radiação solar utilizada neste estudo foi considerada subtóxica, já que não induziu resposta a estresse oxidativo, mas ainda assim

foi suficiente para induzir hiperexpressão de genes e lesões clássicos da radiação UV, e acentuou as respostas induzidas pelo inseticida carbaril, como por exemplo, o aumento significativo na expressão dos genes BRCA1 e BRCA2. O carbaril, por sua vez, apresentou resposta a estresse oxidativo, parada de ciclo celular e inibição da apoptose quando administrado isoladamente ou em associação com a radiação solar, e talvez seja capaz de induzir lesões ao DNA de melanócitos humanos mesmo sem outros fatores coadjuvantes.

Neste trabalho, foi apresentada a hipótese de que pode haver um efeito sinergístico entre o carbaril e a radiação solar. Nas doses e concentrações utilizadas, foi encontrado um efeito possivelmente sinergístico com relação à expressão gênica de BRCA1, BRCA2, CDKN1A e MDM2, e também com relação ao número total de genes significativamente alterados no ensaio de *microarray*. Com relação à expressão dos genes CCNE1 e GADD45B, foi encontrado um efeito que parece ser apenas aditivo. No entanto, com relação aos demais parâmetros analisados, os efeitos do tratamento com carbaril não foram significativamente exacerbados pela radiação solar, ou vice-versa. Logo, não foi possível confirmar se há uma reação de fotossensibilização dos melanócitos nos grupos de tratamento combinado.

De modo geral, os dados obtidos nos diferentes parâmetros analisados são coerentes entre si e sugerem que o tratamento com carbaril induza estresse oxidativo e consequente dano ao DNA em melanócitos humanos tratados por 6 horas, indicando que essa exposição pode estar relacionada à melanomagênese. A indução de estresse oxidativo foi evidenciada pelo aumento da expressão de importantes genes antioxidantes, como o HMOX1 e

genes relacionados ao metabolismo da glutationa, que são sugestivos da ativação da via antioxidante Nrf2. Esses resultados estão de acordo com dados da literatura que demonstraram a atividade oxidante do carbaril (Delescluse et al., 2010).

A detecção de lesões do tipo CPD e lesões oxidativas 8-oxo-dG avaliadas por citometria de fluxo são de extrema importância no contexto da avaliação da genotoxicidade do carbaril. As lesões do tipo CPD, mais especificamente dímeros de timina, foram aumentadas no grupo de tratamento com carbaril associado à radiação solar após 1 hora de tratamento, indicando que as lesões são formadas mais rapidamente que no grupo tratado apenas com a radiação solar. Nos grupos tratados com carbaril, houve um aparente aumento de lesões do tipo 8-oxo-dG que, apesar de não ter sido estatisticamente significativo, é consistente com a indução de estresse oxidativo pelo inseticida. Esses dados sugerem que o carbaril provoca lesões ao DNA que são potencialmente mutagênicas, o que é um forte indicador de seu potencial genotóxico.

A avaliação do ciclo celular por citometria de fluxo e por ensaio de curva de crescimento celular revela que o carbaril induz parada de ciclo celular na fase S. Esse achado parece estar intimamente relacionado com a ativação do sistema de reparo de DNA e está de acordo com os dados de expressão gênica relacionados à regulação do ciclo celular detectados pelo ensaio de *microarray*, como a superexpressão de MDM2, p21, BRCA1/2 e ciclina E, e alteração da expressão de fatores de transcrição E2Fs. O tratamento com carbaril inibiu a morte celular por apoptose e parece induzir o processo de autofagia, indicado pelo aumento na expressão da proteína LC3B, o qual

também é consistente com os dados gerados pelo *microarray*, onde foram encontrados diversos genes envolvidos com a maturação de autofagossomos e estresse de RE.

Os resultados apresentados indicam fortemente que o carbaril é um agente indutor de estresse oxidativo, potencialmente genotóxico e iniciador da carcinogênese. De fato, as EROs podem estar envolvidas em todas as etapas da carcinogênese, incluindo a etapa da iniciação, que requer a indução de dano ao DNA não reparado e consequente fixação de uma mutação (Valko et al., 2006). É importante ressaltar que as EROs podem também causar lesões no DNA do tipo quebra de fita dupla e lesões de DNA agrupadas geradas oxidativamente (OCDLs, *oxidatively generated DNA lesions*), as quais são lesões mais complexas e representam grande desafio para o sistema de reparo celular (Kryston et al., 2011). Essas lesões não foram analisadas neste trabalho, mas seriam consistentes com a parada de ciclo celular e indução de autofagia, e também com a indução de genes de reparo, como BRCA1 e BRCA2.

A proposta deste estudo foi de investigar os efeitos de exposição aguda ao carbaril e à radiação solar, já que ensaios *in vitro* apresentam limitações com relação ao tempo de manutenção em cultura, especialmente com o uso de células primárias. Sabe-se que no contexto dos trabalhadores agrícolas, a exposição ao inseticida e ao sol pode ocorrer com frequência e doses muito maiores que as utlizadas nesse estudo. Considerando os resultados apresentados, a exposição crônica a esses dois fatores é potencialmente genotóxica e carcinogênica. Conforme discutido anteriormente, a radiação UV pode agir tanto como um agente iniciador como promotor da carcinogênese.

Logo, é provável que a exposição de trabalhadores agrícolas a esse inseticida e, comumente, à radiação solar esteja potencialmente associada ao aumento da incidência de melanoma cutâneo. Novos estudos deverão investigar a indução da transformação de melanócitos pelo carbaril após exposição prolongada e determinar o risco de desenvolvimento de melanoma cutâneo associado a esse praguicida.

VI - REFERÊNCIAS BIBLIOGRÁFICAS

- Abel, E.L., Angel, J.M., Kiguchi, K., DiGiovanni, J. (2009). Multi-stage chemical carcinogenesis in mouse skin: Fundamentals and applications. *Nat protoc* **4(9)**, 1350-62.
- Alberto, M.E., Russo, N., Grand, A., Galano, A. (2013). A physicochemical examination of the free radical scavenging activity of Trolox: mechanism, kinetics and influence of the environment. *Phys Chem Chem Phys* **15(13)**, 4642-50.
- Ahmed, F.E., Hart, R.W., Lewis, N.J. (1977). Pesticide induced DNA damage and its repair in cultured human cells. *Mutat Res* **42**, 161-74.
- Appelqvist, H., Sandin, L., Björnström, K., Saftig, P., Garner, B., Ollinger, K., Kågedal, K. (2012). Sensitivity to lysosome-dependent cell death is directly regulated by lysosomal cholesterol content. *PLoS One* 7(11), e50262.
- Atillasoy, E.S., Seykora, J.T., Soballe, P.W., Elenitsas, R., Nesbit, M., Elder, D.E., Montone, K.T., Sauter, E., Herlyn, M. (1998). UVB induces atypical melanocytic lesions and melanoma in human skin. *Am J Pathol* **152(5)**, 1779-86.
- Baron, J.M., Wiederholt, T., Heise, R., Merk, H.F., Bickers, D.R. (2008). Expression and function of cytochrome P450-dependent enzymes in human skin cells. *Curr Med Chem* **15(22)**, 2258-64.
- Baron, J.M., Shazik, C. (2009). Research in practice: the second barrier of the human skin. *J Dtsch Dermatol Ges* **8**, 155-8.

- Becker, J.C., Houben, R., Schrama, D., Voigt, H., Ugurel, S., Reisfeld, R.A. (2009). Mouse models for melanoma: a personal perspective. *Exp Dermatol* **19**, 157-64.
- Benjamin, C.L., Ananthaswamy, H.N. (2007). p53 and the pathogenesis of skin cancer. *Toxicol Appl Pharmacol* **224(3)**, 241–8.
- Bergstrom, M.A., Ott, H., Carlsson, A., Neis, M., Zwadlo-Klarwasser, G., Jonsson, C.A.M., Merk, H.F., Karlberg, A.T., Baron, J.M. (2007). A skinlike cytochrome P450 cocktail activates prohaptens to contact allergenic metabolites. *J Invest Dermatol* **127**, 1145-53.
- Bercu J.P., Jolly, R.A., Flagella, K.M, Baker, T.K, Romero, P., Stevens, J.L. (2014). Toxicogenomics and cancer risk assessment: a framework for key event analysis and dose-response assessment for nongenotoxic carcinogens. *Regul Toxicol Pharmacol* **58(3)**, 369-81.
- Berking, C., Takemoto, R., Satyamoorthy, K., Shirakawa, T., Eskandarpour, M., Hansson, J., VanBelle, P.A., Elder, D.E., Herlyn, M. (2004). Induction of melanoma phenotypes in human skin by growth factors and ultraviolet B. *Cancer Res* 64(3), 807-11.
- Bigot-Lasserre, D., Chuzel, F., Debruyne, E.L.M., Bars, R., Carmichael, N.G. (2003). Tumorigenic potential of carbaryl in the heterozygous p53 knockout mouse model. *Food Chem Toxicol* **14**, 99-106.
- Bittner, M., Meltzer, P., Chen, Y. (2000) Molecular classification of cutaneous malignant melanoma by gene expression profiling. *Nature* **406**, 536-40.
- Brash, DE. (2014). UV Signature Mutations. *Photochem Photobiol.* Epub ahead of print.

- Bretones, G., Delgado, M.D., León, J. (2014). Myc and cell cycle control. Biochim Biophys Acta. [Epub ahead of print]
- Brouwer, D.H., Aitken, R.J., Oppl, R., Cherrie, J.W. (2005). Concepts of skin protection: considerations for the evaluation and terminology of the performance of skin protective equipment. *J Occup Environ Hyg* **2(9)**, 425-34.
- Brown, K., Balmain, A. (1995). Transgenic mice and squamous multistage skin carcinogenesis. *Cancer Metastasis Rev* **14(2)**, 113-24.
- Burke, K.E., Wei, H. (2009). Synergistic damage by UVA radiation and pollutants. *Toxicol Ind Health* **25**, 219-24.
- Cao, Y., Klionsky, D.J. (2007). Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. *Cell Research* **17**, 839–849.
- Carpenter, W.S., Lee, B.C., Gunderson, P.D., Stueland, D.T. (2002). Assessment of personal protective equipment use among midwestern farmers. *Am J Ind Med* **42**, 236-47.
- Cheli, Y., Ohanna, M., Ballotti, R., Bertolotto, C. (2009). Fifteen-year quest for microphthalmia-associated transcription factor target genes. *Pigment Cell Melanoma Res* 23(1), 27-40.
- Chernov, M.V., Ramana, C.V., Adler, V.V., Stark, G.R. (1998). Stabilization and activation of p53 are regulated independently by different phosphorylation events. *Proc Natl Acad Sci USA* **95(5)**, 2284-9.
- Cho, T.H., Lee, J.W., Lee, M.H. (2008). Evaluating the cytotoxic doses of narrowband and broadband UVB in human keratinocytes, melanocytes, and fibroblasts. *Photodermatol Photoimmunol Photomed* **24(3)**, 110-4.

- Clarke, R., Cook, K.L., Hu, R., Facey, C.O., Tavassoly, I., Schwartz, J.L., Baumann, W.T., Tyson, J.J., Xuan, J., Wang, Y., Wärri, A., Shajahan, A.N. (2012). Endoplasmic reticulum stress, the unfolded protein response, autophagy, and the integrated regulation of breast cancer cell fate. *Cancer Res* **72(6)**, 1321-31.
- Cui, Y., Paules, R.S. (2010). Use of transcriptomics in understanding mechanisms of drug-induced toxicity. *Pharmacogenomics* **11(4)**, 573-85.
- de Gruijl, F.R. (2000). Photocarcinogenesis: UVA vs UVB. *Methods Enzymol* **319**, 359-66.
- de Gruijl, F.R., Forbes, P.D. (1995). UV-induced skin cancer in a hairless mouse model. *Bioessays* **17(7)**, 651-60.
- de Saint-Vis, B., Bouchet, C., Gautier, G., Valladeau, J., Caux, C., Garrone, P. (2003). Human dendritic cells express neuronal Eph receptor tyrosine kinases: role of EphA2 in regulating adhesion to fibronectin. *Blood* **102(13)**, 4431-40.
- De Santis, C.E., Lin, C.C., Mariotto, A.B., Siegel, R.L., Stein, K.D., Kramer, J.L., Alteri, R., Robbins, A.S., Jemal, A. (2014). Cancer treatment and survivorship statistics, 2014. *CA Cancer J Clin* 64(4), 252-71.
- De Souza, C.F., Xander, P., Monteiro, A.C., Silva, A.G. dos S., da Silva, D.C. P., Mai, S., Bernardo, V., Lopes, J.D., Jasiulionis, M.G. (2012). Mining Gene Expression Signature for the Detection of Pre-Malignant Melanocytes and Early Melanomas with Risk for Metastasis. PLoS ONE, 7(9), e44800. doi:10.1371/journal.pone.0044800
- Deb, S.P., Singh, S., Deb, S. (2014). MDM2 Overexpression, Activation of Signaling Networks, and Cell Proliferation. *Subcell Biochem* **85**, 215-34

- Delescluse, C., Ledirac, N., Li, R., Piechocki, M.P., Hines, R.N., Gidrol, X., Rahmani, R. (2001). Induction of cytochrome P450 1A1 gene expression, oxidative stress, and genotoxicity by carbaryl and thiabendazole in transfected human HepG2 and lymphoblastoid cells. *Biochem Pharmacol* 61, 399-407.
- Dennis, L.K., Lynch, C.F., Sandler, D.P., Alavanja, M.C.R. (2010). Pesticide use and cutaneous melanoma in pesticide applicators in the agricultural heath study. *Environ Health Perspect* **118**, 812–7.
- Dierickx, P.J. (1999). CYP1/2 Activation and Glutathione-dependent Cytotoxicity of Four Pesticides in Hep G2 and Fa32 Cells. *Toxicol In Vitro* **13(4-5)**, 779-83.
- DiGiovanni, J. (1992). Multistage carcinogenesis in mouse skin. *Pharmacol Ther* **54(1)**, 63-128.
- D'Orazio, J.A., Jarrett, S., Marsch, A., Lagrew, J., Cleary, L. (2013). Melanoma
 Epidemiology, Genetics and Risk Factors, Recent Advances in the Biology, Therapy and Management of Melanoma, Dr. Lester Davids (Ed.), ISBN: 978-953-51-0976-1, InTech, DOI: 10.5772/55172. Available from: http://www.intechopen.com/books/recent-advances-in-the-biology-therapy-and-management-of-melanoma/melanoma-epidemiology-genetics-and-risk-factors
- Edmondson, S.R., Russo, V.C., McFarlane, A.C., Wraight, C.J., Werther, G.A. (1999). Interactions between growth hormone, insulin-like growth factor I, and basic fibroblast growth factor in melanocyte growth. *J Clin Endocrinol Metab* **84(5)**, 1638-44.

- Escobar, J., Pereda, J., López-Rodas, G., Sastre, J. (2012). Redox signaling and histone acetylation in acute pancreatitis. *Free Radic Biol Med* **52(5)**, 819-37.
- Fayolle, C., Pourchet, J., Caron de Fromentel, C., Puisieux, A., Doré, J.F., Voeltzel, T. (2008). Gadd45a activation protects melanoma cells from ultraviolet B-induced apoptosis. *J Invest Dermatol* **128(1)**, 196-202.
- Fielden, M.R., Adai, A., Dunn, R.T., Olaharski, A., Searfoss, G., Sina, J., Aubrecht, J., Boitier, E., Nioi, P., Auerbach, S., Jacobson-Kram, D., Raghavan, N., Yang, Y., Kincaid, A., Sherlock, J., Chen, S.J., Car, B. (2011). Development and evaluation of a genomic signature for the prediction and mechanistic assessment of nongenotoxic hepatocarcinogens in the rat. *Toxicol Sci* 124(1), 54-74.
- Fotedar, R., Bendjennat, M., Fotedar, A. (2004). Role of p21WAF1 in the cellular response to UV. *Cell Cycle* **3(2)**, 134-7.
- Freedman, J.A., Tyler, D.S., Nevins, J.R., Augustine, C.K. (2011). Use of gene expression and pathway signatures to characterize the complexity of human melanoma. *Am J Pathol* **178(6)**, 2513-22.
- French, J., Storer, R.D., Donehower, L.A. (2001). The nature of the heterozygous *Trp*53 knockout model for identication of mutagenic carcinogens. *Toxicol Pathol* **29**, 24-9.
- Fried, L., Arbiser, J.L. (2008). The reactive oxygen-driven tumor: relevance to melanoma. *Pigment Cell Melanoma Res* **21**, 117-22.
- Gandini, S., Sera, F., Cattaruzza, M.S., Pasquini, P., Picconi, O., Boyle, P.,
 Melchi, C.F. (2005). Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. *Eur J Cancer* **41(1)**, 45-60.
- Gerstenblith, M.R., Shi, J., Landi, M.T. (2010). Genome-wide association studies of pigmentation and skin cancer: a review and meta-analysis. *Pigment Cell Melanoma Res* **23(5)**, 587-606.
- Gibbs, N.K., Tye, J., Norval, M. (2008). Recent advances in urocanic acid photochemistry, photobiology and photoimmunology. *Photochem Photobiol Sci* **7(6)**, 655-67
- Gonzalez, M.C., Marteau, C., Franchi, J., Migliore-Samour, D. (2001). Cytochrome P450 4A11 expression in human keratinocytes: effects of ultraviolet irradiation. *Brit J Dermatol* **145**, 749-57.
- Graeven, U., Fiedler, W., Karpinski, S., Ergün, S., Kilic, N., Rodeck, U., Schmiegel, W., Hossfeld, D.K. (1999). Melanoma-associated expression of vascular endothelial growth factor and its receptors FLT-1 and KDR. J Cancer Res Clin Oncol 125(11), 621-9.
- Greinert, R., Boguhn, O., Harder, D., Breitbart, E.W., Mitchell, D.L., Volkmer, B. (2000). The dose dependence of cyclobutane dimer induction and repair in UVB-irradiated human keratinocytes. *Photochem Photobiol* 72(5), 701-8.
- Gunasekara, A.S., Rubin, A.L., Goh, K.S., Spurlock, F.C., Tjeerdema, R.S. (2008). Environmental fate and toxicology of carbaryl. *Rev Environ Contam Toxicol* **196**, 95-121.
- Haapajärvi, T., Pitkänen, K., Laiho, M. (1999). Human melanoma cell line UV responses show independency of p53 function. *Cell Growth Differ* **10(3)**, 163-71.
- Hoashi, T., Watabe, H., Muller, J., Yamaguchi, Y., Vieira, W.D., Hearing, V.J. (2005). MART-1 is required for the function of the melanosomal matrix

protein PMEL17/GP100 and the maturation of melanosomes. *J Biol Chem* **280(14)**, 14006-16.

- Higgs, M.R., Lerat, H., Pawlotsky, J.M. (2010). Downregulation of Gadd45beta expression by hepatitis C virus leads to defective cell cycle arrest. *Cancer Res* **70(12)**, 4901-11
- Hinzey, A.H., Kline, M.A., Kotha, S.R., Sliman, S.M., Butler, E.S., Shelton, A.B., Gurney, T.R., Parinandi, N.L. (2012). Choice of cyclodextrin for cellular cholesterol depletion for vascular endothelial cell lipid raft studies: cell membrane alterations, cytoskeletal reorganization and cytotoxicity. Indian *J Biochem Biophys* **49(5)**, 329-41.
- Hodgson, E., Rose, R.L. (2005). Human metabolism and metabolic interactions of deployment-related chemicals. *Drug Metab Rev* **37(1)**, 1-39.
- Hoek, K., Rimm, D.L., Williams, K.R., Zhao, H., Ariyan, S., Lin, A., Kluger, H.M.,
 Berger, A.J., Cheng, E., Trombetta, E.S., Wu, T., Niinobe, M.,
 Yoshikawa, K., Hannigan, G.E., Halaban, R. (2004). Expression profiling
 reveals novel pathways in the transformation of melanocytes to
 melanomas. *Cancer Res* 64(15), 5270-82.
- Hoogduijn, M.J., Hitchcock, I.S., Smit, N.P., Gillbro, J.M., Schallreuter, K.U., Genever, P.G. (2006). Glutamate receptors on human melanocytes regulate the expression of MiTF. *Pigment Cell Res* **19(1)**, 58-67.
- Hougeir, F.G., Kircik, L. (2012). A review of delivery systems in cosmetics. *Dermatol Ther* **25(3)**, 234-7.
- Huang, X., Summers, M.K., Pham, V., Lill, J.R., Liu, J., Lee, G., Kirkpatrick, D.S., Jackson, P.K., Fang, G., Dixit, V.M. (2011). Deubiquitinase USP37

is activated by CDK2 to antagonize APC(CDH1) and promote S phase entry. *Mol Cell* **42(4)**, 511-23.

- Husain, Z., Pathak, M.A., Flotte, T., Wick, M.M. (1991). Role of ultraviolet radiation in the induction of melanocytic tumors in hairless mice following 7,12-dimethylbenz(a)anthracene application and ultraviolet irradiation. *Cancer Res* 51(18), 4964-70.
- Hussein, M.R., Haemel, A.K., Wood, G.S. (2003). Apoptosis and melanoma: molecular mechanisms. *J Pathol* **199(3)**, 275-88.
- Hwang, A., Maity, A., McKenna, W.G., Muschel, R.J. (1995). Cell cycledependent regulation of the cyclin B1 promoter. *J Biol Chem* 270(47), 28419-24.
- IARC, 1992. Solar and Ultraviolet Radiation. Monographs on the evaluation of carcinogenic risk to humans, Vol. 55. International Agency for Research on Cancer, Lyon.
- Irwin, R.D., Boorman, G.A., Cunningham, M.L., Heinloth, A.N., Malarkey, D.E., Paules, R.S. (2004). Application of toxicogenomics to toxicology: basic concepts in the analysis of *microarray* data. *Toxicol Pathol* **32(1)**, 72-83.
- Iversen, O.H. (1994). A course of very small doses of DMBA, each of them allegedly with no promoting potency, acts with clear synergistic effect as a strong promoter of DMBA-initiated mouse skin carcinogenesis. A comparison of the tumorigenic and carcinogenic effects of DMBA (7,12dimethylbenz-alpha-anthracene) and TPA (12-O-tetradecanoyl-phorbol-13-acetate) used as initiators and promoters in classical two-stage experimental protocols. *APMIS Suppl* **41**, 1-38.

- Jaiswal, A.K. (2004). Nrf2 signaling in coordinated activation of antioxidant gene expression. *Free Radic Biol Med* **36(10)**, 1199-207.
- Jian, Z., Li, K., Liu, L., Zhang, Y., Zhou, Z., Li, C., Gao, T. (2011). Heme oxygenase-1 protects human melanocytes from H2O2-induced oxidative stress via the Nrf2-ARE pathway. J Invest Dermatol 131(7), 1420-7.
- Jiménez-Cervantes, C., Martínez-Esparza, M., Pérez, C., Daum, N., Solano, F., García-Borrón, J.C. (2001). Inhibition of melanogenesis in response to oxidative stress: transient downregulation of melanocyte differentiation markers and possible involvement of microphthalmia transcription factor. *J Cell Sci* **114(12)**, 2335-44.
- Jin, S.H., Lee, Y.Y., Kang, H.Y. (2008). Methyl-beta-cyclodextrin, a specific cholesterol-binding agent, inhibits melanogenesis in human melanocytes through activation of ERK. *Arch Dermatol Res* **300(8)**, 451-4.
- Jonak, C., Klosner, G., Trautinger, F. (2009). Significance of heat shock proteins in the skin upon UV exposure. *Front Biosci (Landmark Ed)* **14**, 4758-68.
- Jung, K.A., Kwak, M.K. (2010). The Nrf2 system as a potential target for the development of indirect antioxidants. *Molecules* **15(10)**, 7266-91.
- Kadekaro, A.L., Kavanagh, R., Kanto, H., Terzieva, S., Hauser, J., Kobayashi, N., Schwemberger, S., Cornelius, J., Babcock, G., Shertzer, H.G., Scott, G., Abdel-Malek, Z.A. (2005). alpha-Melanocortin and endothelin-1 activate antiapoptotic pathways and reduce DNA damage in human melanocytes. *Cancer Res* 65(10), 4292-9.
- Kadekaro, A.L., Chen, J., Yang, J., Chen, S., Jameson, J., Swope, V.B., Cheng, T., Kadakia, M., Abdel-Malek, Z. (2012). Alpha-melanocyte-stimulating

hormone suppresses oxidative stress through a p53-mediated signaling pathway in human melanocyte. *Mol Cancer Res* **10(6)**, 778-86.

- Kaminskyy, V.O., Zhivotovsky, B. (2014). Free radicals in cross talk between autophagy and apoptosis. *Antioxid Redox Signal* **21(1)**, 86-102.
- Katiyar, S.K., Matsui, M.S., Mukhtar, H. (2000). Ultraviolet-B exposure of human skin induces cytochromes P450 1A1 and 1B1. *J Invest Dermatol* **114**, 328-33.
- Katula, K.S., Wright, K.L., Paul, H., Surman, D.R, Nuckolls, F.J., Smith, J.W., Ting, J.P., Yates, J., Cogswell, J.P. (1997). Cyclin-dependent kinase activation and S-phase induction of the cyclin B1 gene are linked through the CCAAT elements. *Cell Growth Differ* 8(7), 811-20.
- Kaufmann, W.K., Nevis, K.R., Qu, P., Ibrahim, J.G., Zhou, T., Zhou, Y., Simpson, D.A., Helms-Deaton, J., Cordeiro-Stone, M., Moore, D.T., Thomas, N.E., Hao, H., Liu, Z., Shields, J.M., Scott, G.A., Sharpless, N.E. (2008). Defective cell cycle checkpoint functions in melanoma are associated with altered patterns of gene expression. *J Invest Dermatol* **128(1)**, 175-87.
- Kim, S.A., Chang, S., Yoon, J.H., Ahn, S.G. (2008). TAT-Hsp40 inhibits oxidative stress-mediated cytotoxicity via the inhibition of Hsp70 ubiquitination. *FEBS Lett* **582(5)**, 734-40.
- Klein, A.M., Brash, D.E., Jones, P.H., Simons, B.D. (2010). Stochastic fate of p53-mutant epidermal progenitor cells is tilted toward proliferation by UV
 B during preneoplasia. *Proc Natl Acad Sci USA* 107(1), 270-5.

- Kim, J., Choi, H., Cho, E.G., Lee, T.R. (2014). FoxO3a is an antimelanogenic factor that mediates antioxidant-induced depigmentation. *J Invest Dermatol* **134(5)**, 1378-88.
- Kokot, A., Metze, D., Mouchet, N., Galibert, M.D., Schiller, M., Luger, T.A., Böhm, M. (2009). Alpha-melanocyte-stimulating hormone counteracts the suppressive effect of UVB on Nrf2 and Nrf-dependent gene expression in human skin. *Endocrinology* **150(7)**, 3197-206.
- Kowalczuk, C.I., Priestner, M.C., Pearson, A.J., Saunders, R.D., Bouffler, S.D. (2006). Wavelength dependence of cellular responses in human melanocytes and melanoma cells following exposure to ultraviolet radiation. *Int J Radiat Biol* 82(11), 781-92.
- Kryston, T.B., Georgiev, A.B., Pissis, P., Georgakilas, A.G. (2011). Role of oxidative stress and DNA damage in human carcinogenesis. *Mutat Res* 711(1-2), 193-201.
- Lacal, P.M., Failla, C.M., Pagani, E., Odorisio, T., Schietroma, C., Falcinelli, S., Zambruno, G., D'Atri, S. (2000). Human melanoma cells secrete and respond to placenta growth factor and vascular endothelial growth factor. *J Invest Dermatol* **115(6)**, 1000-7.
- Lammens, T., Li, J., Leone, G., De Veylder, L. (2009). Atypical E2Fs: new players in the E2F transcription factor family. *Trends Cell Biol* **19(3)**, 111-8.
- Latonen, L., Laiho, M. (2005). Cellular UV damage responses--functions of tumor suppressor p53. *Biochim Biophys Acta* **1755(2)**, 71-89.
- Ledirac, N., Delescluse, C., de Sousa, G., Pralavorio, M., Lesca, P., Amichot, M., Bergé, J.B., Rahmani, R. (1997). Carbaryl induces CYP1A1 gene

expression in HepG2 and HaCaT cells but is not a ligand of the human hepatic Ah receptor. *Toxicol Appl Pharmacol* **144(1)**, 177-82.

- Ley, R.D. (2002). Animal models of ultraviolet radiation (UVR)-induced cutaneous melanoma. *Front Biosci* **7**, d1531-4. (ABSTRACT)
- Li, H., Zhang, X.P., Liu, F. (2013). Coordination between p21 and DDB2 in the cellular response to UV radiation. *PLoS One* **8(11)**, e80111.
- Liu, F., Fu, Y., Meyskens, F.L.Jr (2009). MiTF regulates cellular response to reactive oxygen species through transcriptional regulation of APE-1/Ref1. J Invest Dermatol 129(2), 422-31.
- Liu, F., Guo, L. (2012). Toxicogenomics in the evolution of toxicology. *J Pharmacogenom Pharmacoproteomics* **3(4)**, e123.
- Liu, H., He, Z., Simon, H.U. (2013). Targeting autophagy as a potential therapeutic approach for melanoma therapy. Semin Cancer Biol 23(5), 352-60.
- Loftsson, T., Brewster, M.E. (2010). Pharmaceutical applications of cyclodextrins: basic science and product development. *J Pharm Pharmacol* **62(11)**, 1607-21.
- Loftsson, T., Duchêne, D. (2007). Cyclodextrins and their pharmaceutical applications. *Int J Pharm* **329(1-2)**, 1-11.
- Lu, S.C. (2013). Glutathione synthesis. *Biochim Biophys Acta* **1830(5)**, 3143-53.
- Luzy, A.P., Orsini, N., Linget, J.M., Bouvier, G. (2012). Evaluation of the GADD45α-GFP GreenScreen HC assay for rapid and reliable *in vitro* early genotoxicity screening. *J Appl Toxicol* **33(11)**, 1303-15.

- Mahajan, R., Blair, A., Coble, J., Lynch, C.F., Hoppin, J.A., Sandler, D.P., Alavanja, M.C.R. (2007). Carbaryl exposure and incident cancer in the Agricultural Health Study. *Int J Cancer* **121**, 1799-1805.
- Marks, R. (1995). The epidemiology of non-melanoma skin cancer: who, why and what can we do about it. *J Dermatol* **22**, 853–7.
- Marrot, L., Belaidi, J.P., Chaubo, C., Meunier, J.R., Perez, P., Agapakis-Causse, C. (1998). An *in vitro* strategy to evaluate the phototoxicity. *Eur J Dermatol* **8(6)**, 403-12.
- Marrot, L., Belaïdi, J.P., Jones, C., Perez, P., Meunier, J.R. (2005). Molecular responses to stress induced in normal human caucasian melanocytes in culture by exposure to simulated solar UV. *Photochem Photobiol* 81(2), 367-75.
- Marrot, L., Jones, C., Perez, P., Meunier, J.R. (2007). The significance of Nrf2 pathway in (photo)-oxidative stress response in melanocytes and keratinocytes of the human epidermis. *Pigment Cell Melanoma Res* **21(1)**, 79-88.
- Marrot, L., Meunier, J.R. (2008). Skin DNA photodamage and its biological consequences. *J Am Acad Dermatol* **58**(5Suppl2), S139-48.
- Marrot, L., Planel, E., Ginestet, A.C., Belaïdi, J.P., Jones, C., Meunier, J.R. (2010). *In vitro* tools for photobiological testing: molecular responses to simulated solar UV of keratinocytes growing as monolayers or as part of reconstructed skin. *Photochem Photobiol Sci* 9(4), 448-58.
- Marston, C.P., Pereira, C., Ferguson, J., Fischer, K., Hedstrom, O., Dashwood, W-M., Baird, W.M. (2001). Effect of a complex environmental mixture from coal tar containing polycyclic aromatic hydrocarbons (PAH) on the

tumor initiation, PAH-DNA binding and metabolic activation of carcinogenic PAH in mouse epidermis. *Carcinogenesis* **22(7)**, 1077-86.

- Massey, K.A., Van Engelen, D.L., Warner, I.M. (1995). Determination of carbaryl as its primary metabolite, 1-naphthol, by reverse-phase highperformance liquid chromatography with fluorometric detection. *Talanta* 42(10), 1457-63.
- Mathijs, K., Brauers, K.J., Jennen, D.G., Lizarraga, D., Kleinjans, J.C., van Delft, J.H. (2010). Gene expression profiling in primary mouse hepatocytes discriminates true from false-positive genotoxic compounds. *Mutagenesis* 25(6), 561-8.
- Matsumura, Y., Ananthaswamy, H.N. (2002). Molecular mechanisms of photocarcinogenesis. *Front Biosci* **7**, d765–83.
- Mohammad, T., Morrison, H., HogenEsch, H. (1999). Urocanic acid photochemistry and photobiology. *Photochem Photobiol* **69(2)**, 115-35.
- Molognoni, F., Cruz, A.T., Meliso, F.M., Morais, A.S., Souza, C.F., Xander, P.,
 Bischof, J.M., Costa, F.F., Soares, M.B., Liang, G., Jones, P.A.,
 Jasiulionis, M.G. (2011). Epigenetic reprogramming as a key contributor
 to melanocyte malignant transformation. *Epigenetics* 6(4), 450-64.
- Moore, J.D., Kirk, J.A., Hunt, T. (2014). Unmasking the S-phase-promoting potential of cyclin B1. *Science* **300(5621)**, 987-90.
- Morel, Y., Mermod, N., Barouki, R. (1999). An autoregulatory loop controlling CYP1A1 gene expression: role of H(2)O(2) and NFI. *Mol Cell Biol* **19(10)**, 6825-32.

- Morris, R.J. (2000). Keratinocyte stem cells: targets for cutaneous carcinogens. *J Clin Invest* **106(1)**, 3-8.
- Nair, S., Kekatpure, V.D., Judson, B.J., Rifkind, A.B., Granstein, R.D., Boyle, J.O., Subbaramaiah, K., Guttenplan, J.B., Dannenberg, A.J. (2009). UVR
 Exposure Sensitizes Keratinocytes to DNA Adduct Formation. *Cancer Prev Res* 2(10), 895-902.
- Nielsen, F.C., Jäger, A.C., Lützen, A., Bundgaard, J.R., Rasmussen, L.J. (2004). Characterization of human exonuclease 1 in complex with mismatch repair proteins, subcellular localization and association with PCNA. *Oncogene* **23(7)**, 1457-68.
- Noonan, F.P., Recio J.A., Takayama, H., Duray, P., Anver, M.R., Rush, W.L., De Fabo, E.C., Merlino, G. (2001). Neonatal sunburn and melanoma in mice. *Nature* **413(6853)**, 271-2.
- Noonan, F.P., Dudek, J., Merlino, G., de Fabo, E.C. (2003). Animal models of melanoma: an HGF/SF transgenic mouse model may facilitate experimental access to uv initiating events. *Pigment Cell Res* **16**, 16-25.
- Noonan, F.P., Zaidi, M.R., Wolnicka-Glubisz, A., Anver, M.R., Bahn, J., Wielgus, A., Cadet, J., Douki, T., Mouret, S., Tucker, M.A., Popratiloff, A., Merlino, G., De Fabo, E.C. (2012). Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment. *Nat Commun* 3:884.
- Norgauer, J., Dichmann, S., Peters, F., Mockenhaupt, M., Schraufsttter, I., Herouy, Y. (2003). Tumor necrosis factor alpha induces upregulation of CXC-chemokine receptor type II expression and magnifies the

proliferative activity of CXC-chemokines in human melanocytes. *Eur J Dermatol* **13(2)**, 124-9.

- Nuwaysir, E.F., Bittner, M., Trent, J., Barrett, J.C., Afshari, C.A. (1999). Microarrays and toxicology: the advent of toxicogenomics. *Mol Carcinog* **24(3)**, 153-9.
- Ordóñez, N.G. (2014). Value of melanocytic-associated immunohistochemical markers in the diagnosis of malignant melanoma: a review and update. *Hum Pathol* **45(2)**, 191-205.
- Pacioni, N.L., Pierini, A.B., Veglia, A.V. (2013). Structural characterization of Nmethylcarbamate: β-cyclodextrin complexes by experimental methods and molecular dynamics simulations. *Spectrochim Acta A Mol Biomol Spectrosc* **103**, 319-24.
- Parra, M. (2014). Class IIa HDACs new insights into their functions in physiology and pathology. *FEBS J* [Epub ahead of print]
- Paules, R., Aubrecht, J., Corvi, R., Garthoff, B., Kleinjans, J.C. (2011). Moving
 Forward in Human Cancer Risk Assessment. *Environ Health Perspect* **119**, 739–43.
- Perry, M.J., Marbella, A., Layde, P.M. (2002). Compliance with required pesticide-specific protective equipment use. *Am J Ind Med* **41**, 70-3.
- Pitot III, H.C., Dragan, Y.P. (2001). Chemical carcinogenesis. In Casarett & Doull's Toxicology the Basic Science of Poisons (C.D. Klaassen, ed), pp. 241-319. McGraw-Hill, New York.

- Provenzano, M., Mocellin, S. (2007). Complementary techniques: validation of gene expression data by quantitative real time PCR. Adv Exp Med Biol, 593, 66-73.
- Ridley, A.J., Whiteside, J.R., McMillan, T.J., Allinson, S.L. (2009). Cellular and sub-cellular responses to UVA in relation to carcinogenesis. *Int J Radiat Biol* 85(3), 177-95.
- Rothhammer, T., Bosserhoff, A.K. (2006). Epigenetic events in malignant melanoma. *Pigment Cell Res* **20(2)**, 92-111.
- Roy, R., Chun, J., Powell, S.N. (2011). BRCA1 and BRCA2: different roles in a common pathway of genome protection. *Nat Rev Cancer* **12(1)**, 68-78.
- Rubin, K.M., Lawrence, D.P. (2009). Your patient with melanoma: staging, prognosis, and treatment. *Oncology (Williston Park)* **23(8)**, 13-21.
- Sahni, S., Merlot, A.M., Krishan, S., Jansson, P.J., Richardson, D.R. (2014). Gene of the month: BECN1. *J Clin Pathol* **67(8)**, 656-60.
- Sakai, M., Imai, T., Ohtake, H., Otagiri, M. (1998). Cytotoxicity of absorption enhancers in Caco-2 cell monolayers. *J Pharm Pharmacol* 50(10),1101-8.
- Shackelford, R.E., Innes, C.L., Sieber, S.O., Heinloth, A.N., Leadon, S.A., Paules, R.S. (2001). The Ataxia telangiectasia gene product is required for oxidative stress-induced G1 and G2 checkpoint function in human fibroblasts. *J Biol Chem* 276(24), 21951-9.
- Shaulian, E., Karin, M. (2001). AP-1 in cell proliferation and survival. *Oncogene* **20(19)**, 2390-400.

- Shukla, Y., Antony, M., Mehrotra, N.K. (1992). Carcinogenic and cocarcinogenic studies with carbaryl following topical exposure in mice. *Cancer Lett* 62, 133-40.
- Steingrímsson, E., Copeland, N.G., Jenkins, N.A. (2004). Melanocytes and the microphthalmia transcription factor network. *Annu Rev Genet* 38, 365-411.
- Strickland, F.M., Muller, H.K., Stephens, L.C., Bucana, C.D., Donawho, C.K., Sun, Y., Pelley, R.P. (2000). Induction of primary cutaneous melanomas in C3H mice by combined treatment with ultraviolet radiation, ethanol and aloe emodin. *Photochem Photobiol* **72(3)**, 407-14.
- Strickland, F.M., Pathak, S., Multani, A.S., Pelley, R.P., Donawho, C.K. (2003).
 Molecular characterization of new melanoma cell lines from C3H mice induced by ethanol plus ultraviolet radiation. *Cancer Res* 63, 3503-10.
- Tadokoro, T., Yamaguchi, Y., Batzer, J., Coelho, S.G., Zmudzka, B.Z., Miller, S.A., Wolber, R., Beer, J.Z., Hearing, V.J. (2005). Mechanisms of skin tanning in different racial/ethnic groups in response to ultraviolet radiation. *J Invest Dermatol* **124**, 1326 –32.
- Tam, I., Stępień, K. (2011). Secretion of proinflammatory cytokines by normal human melanocytes in response to lipopolysaccharide. Acta Biochim Pol 58(4), 507-11.
- Tang, J., Cao, Y., Rose, R.L., Hodgson, E. (2002). In vitro metabolism of carbaryl by human cytochrome P450 and its inhibition by chlorpyrifos. Chem Biol Interact 141(3), 229-41.
- Tiwari, G., Tiwari, R., Rai, A.K. (2010). Cyclodextrins in delivery systems: Applications. *J Pharm Bioallied Sci* **2(2)**, 72–9.

- Tos-Luty, S., Tokarska-Rodak, M., Latuszynska, J., Przebirowska, D. (2001). Dermal absorption and distribution of ¹⁴C carbaryl in Wistar rats. *Ann Agric Environ Med* **8**, 47–50.
- USEPA (2004). Interim Reregistration Eligibility Decision (IRED) for Carbaryl. Revised: 10/22/04, List A, Case 0080.
- USEPA (2006). Chemicals evaluated for carcinogenic potential. Office of Pesticide Programs, Health Effects Division. Science Information Management Branch.
- Valéry, C., Grob, J.J., Verrando, P. (2001). Identification by cDNA microarray technology of genes modulated by artificial ultraviolet radiation in normal human melanocytes: relation to melanocarcinogenesis. *J Invest Dermatol* **117(6)**, 1471-82.
- Valko, M., Rhodes, C.J., Moncol, J., Izakovic, M., Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. *Chem Biol Interact* **160(1)**, 1-40.
- Vessoni, A.T., Filippi-Chiela, E.C., Menck, C.F., Lenz, G. (2013). Autophagy and genomic integrity. *Cell Death Differ* **20(11)**, 1444-54.
- Von Thaler, A.K., Kamenisch, Y., Berneburg, M. (2010). The role of ultraviolet radiation in melanomagenesis. *Exp Dermatol* **19**, 81-8.
- Walterscheid, J.P., Nghiem, D.X., Kazimi, N., Nutt, L.K., McConkey, D.J., Norval, M., Ullrich, S.E. (2006). Cis-urocanic acid, a sunlight-induced immunosuppressive factor, activates immune suppression via the 5-HT2A receptor. *Proc Natl Acad Sci USA* **103(46)**, 17420-5.
- Wang, C.Q., Akalu, Y.T., Suarez-Farinas, M., Gonzalez, J., Mitsui, H., Lowes, M.A., Orlow, S.J., Manga, P., Krueger, J.G. (2013). IL-17 and TNF

synergistically modulate cytokine expression while suppressing melanogenesis: potential relevance to psoriasis. *J Invest Dermatol* **133(12)**, 2741-52.

- Wang, Y., Gao, D., Atencio, D.P., Perez, E., Saladi, R., Moore, J., Guevara, D., Rosenstein, B.S., Lebwohl, M., Wei, H. (2005). Combined subcarcinogenic benzo[a]pyrene and UVA synergistically caused high tumor incidence and mutations in H-ras gene, but not p53, in SKH-1 hairless mouse skin. *Int J Cancer* **116**, 193-9.
- Wäster, P.K., Ollinger, K.M. (2009). Redox-dependent translocation of p53 to mitochondria or nucleus in human melanocytes after UVA- and UVB-induced apoptosis. *J Invest Dermatol* **129(7)**, 1769-81.
- Waters, M.D., Fostel, J.M. (2004). Toxicogenomics and systems toxicology: aims and prospects. *Nat Rev Genet* **5(12)**, 936-48.
- Wittgen, H.G., van Kempen, L.C. (2007). Reactive oxygen species in melanoma and its therapeutic implications. *Melanoma Res* **17(6)**, 400-9.
- Wood, R.D. (1996). DNA repair in eukaryotes. Annu Rev Biochem 65, 135-67.
- Wu, H., Che, X., Zheng, Q., Wu, A., Pan, K., Shao, A., Wu, Q., Zhang, J., Hong,
 Y. (2014). Caspases: a molecular switch node in the crosstalk between autophagy and apoptosis. *Int J Biol Sci* 10(9), 1072-83.
- Yamaguchi, Y., Coelho, S.G., Zmudzka, B.Z., Takahashi, K., Beer, J.Z., Hearing, V.J., Miller, S.A. (2008). Cyclobutane pyrimidine dimer formation and p53 production in human skin after repeated UV irradiation. *Exp Dermatol* **17**, 916–24.

- Yuspa, S.H., Hennings, H., Saffiotti, U. (1976). Cutaneous chemical carcinogenesis: past, present and future. J Invest Dermatol 67(1), 199-208.
- Yuspa, S.H., Hennings, H., Lichti, U. (1981). Initiator and promoter induced specific changes in epidermal function and biological potential. J Supramol Struct Cell Biochem 17(3), 245-57.
- Zaidi, M.R., Day, C.P., Merlino, G. (2008). From UVs to metastases: modeling melanoma initiation and progression in the mouse. J Invest Dermatol 128, 2381-91.
- Zhang, Y., Ma, W.Y., Kaji, A., Bode, A.M., Dong, Z. (2002). Requirement of ATM in UVA-induced signaling and apoptosis. *J Biol Chem* 277(5), 3124-31.
- Zhang, X., Wu, R.S., Fu, W., Xu, L., Lam, P.K. (2004). Production of reactive oxygen species and 8-hydroxy-2'deoxyguanosine in KB cells co-exposed to benzo[a]pyrene and UV-A radiation. *Chemosphere* **55(10)**, 1303-8.
- Zhang, K. (2010). Integration of ER stress, oxidative stress and the inflammatory response in health and disease. Int J Clin Exp Med 3(1), 33-40.
- Zhou, B.R., Yin, H.B., Xu, Y., Wu, D., Zhang, Z.H., Yin, Z.Q., Permatasari, F., Luo, D. (2012). Baicalin protects human skin fibroblasts from ultraviolet A radiation-induced oxidative damage and apoptosis. *Free Radic Res* 46(12), 1458-71.
- Zhu, S.H., Wu, H.L., Xia, A.L., Han, Q.J., Zhang, Y., Yu, R.Q. (2008). Quantitative analysis of hydrolysis of carbaryl in tap water and river by

excitation-emission matrix fluorescence coupled with second-order calibration. *Talanta* **74(5)**, 1579-85.

Ziegler, A., Jonason, A.S., Leffell, D.J., Simon, J.A., Sharma, H.W., Kimmelman, J., Remington, L., Jacks, T., Brash, D.E. (1994). Sunburn and p53 in the onset of skin cancer. *Nature* **372(6508)**, 773-6.

APÊNDICE I - Avaliação da citotoxicidade de carbaril diluído em HPβCD

1 Avaliação da citotoxicidade pelo ensaio do Azul de Tripan

A partir da concentração de 0,2mM, após 48 horas de tratamento o carbaril reduziu significativamente a viabilidade dos melanócitos de maneira concentração- e tempo-dependentes em relação ao controle não tratado (Fig. 1-A1). Quando a contagem de células é apresentada na forma de porcentagem de células viáveis, a menor concentração de carbaril que reduz significativamente a viabilidade celular após 48 horas de tratamento é de 0,4mM (Fig. 2-A1). Como é perceptível na figura 1-A1, a diminuição no número absoluto de células viáveis de maneira concentração- e tempo-dependentes não é inversamente proporcional ao número absoluto de células não viáveis. De fato, é possível notar que o aumento no número absoluto de células não viáveis de tratamento no número absoluto de células não viáveis.

Quando somamos o número de células viáveis e não viáveis, temos o número total de células que proliferaram e assim podemos definir o perfil de proliferação celular em função do tratamento. Na figura 3-A1, observa-se o perfil de proliferação dos melanócitos tratados com carbaril- HPβCD. A menor concentração a reduzir significativamente a taxa de proliferação é a de 0,2mM, após 48 horas de tratamento, o que está de acordo com os resultados apresentados na figura 1-A1. Nas concentrações inferiores, as células se mantêm proliferativas, a despeito da citotoxicidade do carbaril. Posteriormente, verificamos se este evento realmente ocorre por inibição da proliferação celular ou se trata de um resultado mascarado pela morte celular seguida de rápida

126

fragmentação, evento que não permite a retenção do corante e, consequentemente, não permite a contabilização exata de células não viáveis.

Figura 1-A1 – Viabilidade celular analisada pelo ensaio do Azul de Tripan. Contagem de melanócitos humanos primários (*pool*) tratados com diferentes concentrações de carbaril/HP β CD por 24, 48 e 72 horas. Após 48 horas de tratamento, a partir da concentração de 0,2mM, o tratamento com carbaril reduziu significativamente a viabilidade celular. O grupo tratado apenas com HP β CD apresentou aumento significativo de viabilidade após 72 horas de tratamento. Valores estão expressos como média ± DP de quatro experimentos em duplicata. Os grupos indicados com asterisco diferem significativamente do grupo controle não tratado (*p<0,01).

Figura 2-A1 - Viabilidade celular analisada pelo ensaio do Azul de Tripan. Porcentagem de melanócitos humanos primários (*pool*) viáveis, tratados com diferentes concentrações de carbaril- HP β CD por 24, 48 e 72 horas. Após 24 horas de tratamento, a partir da concentração de 0,4mM, o tratamento com carbaril reduziu significativamente a viabilidade celular. O grupo tratado apenas com HP β CD (2mM) não apresentou redução de viabilidade. Valores estão expressos como média ± DP de quatro experimentos em duplicata. Os grupos indicados com asterisco diferem significativamente do grupo controle não tratado (*p<0,05; **p<0,01).

Figura 3-A1 – Viabilidade celular analisada pelo ensaio do Azul de Tripan. Perfil de proliferação celular de melanócitos humanos primários (*pool*) em função do tempo de exposição ao carbaril- HP β CD. O número total de células para cada condição foi obtido através da soma de células viáveis e não viáveis. A menor concentração de carbaril que reduziu significativamente a taxa de proliferação foi de 0,2mM, após 48 horas de tratamento. Valores estão expressos como média de quatro experimentos em duplicata. Os grupos indicados com asterisco diferem significativamente do grupo controle não tratado (*p<0,01).

2 Avaliação da citotoxicidade por Incorporação de lodeto de Propídio

Na figura 4-A1, nota-se que, após 24 horas de tratamento, o carbaril reduz significativamente a viabilidade celular a partir da concentração de 0,4mM. Este resultado é condizente com os achados dos ensaios de Azul de Tripan quando apresentados também na forma de porcentagem de células viáveis (Fig. 2-A1).

Figura 4-A1 - Viabilidade celular analisada por citometria de fluxo. Porcentagem de melanócitos humanos primários (*pool*) viáveis, tratados com diferentes concentrações de carbaril- HP β CD por 24, 48 e 72 horas, marcados por lodeto de Propídeo. Após 24 horas de tratamento, a partir da concentração de 0,4mM, o tratamento com carbaril reduziu significativamente a viabilidade celular. O grupo tratado apenas com HP β CD (2mM) não apresentou alteração de viabilidade. Valores estão expressos como média \pm DP de dois experimentos em duplicata. Os grupos indicados com asterisco diferem significativamente do grupo controle não tratado (*p<0,01).

3 Cálculo da IC₅₀

Na tabela 1-A1 podemos observar as concentrações inibitórias de 5%, 10%, 20% e 50% (IC_{05} , IC_{10} , IC_{20} e IC_{50} , respectivamente) de carbaril- HP β CD em melanócitos primários humanos. As concentrações inibitórias foram calculadas por regressão não linear com base nos valores absolutos de células

viáveis determinadas pelo ensaio do Azul de Tripan (Fig. 1-A1) para os três tempos de exposição testados.

	24b	18h	72h
	2411	4011	7211
IC ₀₅	0,05	0,02	0,02
IC ₁₀	0,1	0,05	0,05
IC ₂₀	0,2	0,1	0,1
IC ₅₀	0,4	0,3	0,3

Tabela 1-A1 – Concentrações (mM) inibitórias do inseticida carbaril diluído em HPβCD em melanócitos humanos primários em diferentes tempos de exposição.

Em células HepG2, a concentração inibitória de carbaril diluído em DMSO, avaliada pelo ensaio do Vermelho Neutro, foi aproximadamente 0,6mM, após 24 horas de exposição (Dierickx, 1999). Tendo em vista que a IC₅₀ encontrada em nosso estudo é aproximadamente 10 vezes menor do que aquela encontrada para células de hepatoma humano, pode-se concluir que melanócitos são células relativamente mais suscetíveis à citotoxicidade do carbaril. Porém, não se pode deixar de considerar que a HPβCD provavelmente aumenta a biodisponibilidade do composto para as células (Hovgaard & Brondsted, 1995) em comparação ao DMSO. Além disso, foram utilizadas técnicas diferentes para avaliação de viabilidade celular entre os dois estudos, sendo que o ensaio do Vermelho Neutro avalia a integridade de membranas lisossomais, e é menos sensível para detectar efeitos citotóxicos em comparação ao ensaio do Azul de Tripan (Sakai et al., 1998).

130

Dierickx, P.J. (1999). CYP1/2 Activation and Glutathione-dependent Cytotoxicity of Four Pesticides in Hep G2 and Fa32 Cells. Toxicol In Vitro 13(4-5), 779-83.

Hovgaard, L., Brøndsted, H. (1995). Drug delivery studies in Caco-2 monolayers. IV. Absorption enhancer effects of cyclodextrins. Pharm Res 12(9), 1328-32.

Sakai, M., Imai, T., Ohtake, H., Otagiri, M. (1998). Cytotoxicity of absorption enhancers in Caco-2 cell monolayers. J Pharm Pharmacol 50(10),1101-8.

4 Avaliação da morfologia celular

Å microscopia óptica, é possível observar que o tratamento com carbaril-HPβCD altera a morfologia dos melanócitos a partir da concentração de 0,2mM, a despeito da alta viabilidade celular (Fig.5-A1). A morfologia alterada é basicamente caracterizada pela retração dos dendritos e perda do fenótipo tipicamente estrelado dos melanócitos. Melanócitos tratados apenas com o veículo não apresentaram diferenças em relação ao fenótipo celular do controle não-tratado. O mesmo perfil de alteração morfológica é observado após 48 e 72 horas de tratamento (dados não relatados). A porcentagem de viabilidade celular indicada no canto inferior direito das figuras foi calculada com base apenas no número absoluto de células viáveis, determinado pelo ensaio de Azul de Tripan, considerando o número de células viáveis do controle não tratado como 100%.

Figura 5-A1 – Morfologia dos melanócitos primários humanos (*pool*) em cultura após 24 horas de tratamento com HP β CD (2mM) e com carbaril-HP β CD em diferentes concentrações. Aumento de 200x.

APÊNDICE II - Descrição dos genes significativamente alterados, representados pelo Diagrama de Venn

Diagrama de Venn representando o número de genes significantemente alterados por tratamento, com um *cut-off* de aumento/diminuição de pelo menos 1,5 vezes. DMSO UV – tratado com DMSO 0,07% e irradiado com 375mJ/cm² de radiação solar; Carb UV – tratado com carbaril 100µM e irradiado com 375mJ/cm² de radiação solar; e Carb – tratado com carbaril 100µM.

GeneName	p-value (Treatment group)	p-value (Carb vs. DMSO)	Fold-Change (Carb vs. DMSO)	p-value (Carb UV vs. DMSO)	Fold-Change (Carb UV vs. DMSO)	p-value (DMSO UV vs. DMSO)	Fold-Change (DMSO UV vs. DMSO)
AA865794	0.007668	0.148178	1.50718	0.003614	2.60349	0.061896	1.7272
AATK	0.003346	0.000888975	-1.47953	0.000563	-1.51471	0.1245	-1.15901
AB011119	0.015172	0.113727	1.75708	0.003423	3.32273	0.716578	-1.13067
ABTB2	3.31E-05	0.000726601	-1.34022	5.55E-06	-1.65049	0.008897	-1.2249
ADAMTS12	0.001868	0.0168753	-1.54176	0.000327	-2.17167	0.52544	-1.10751
ADAMTS8	0.005835	0.284498	1.2921	0.001684	2.51107	0.300862	-1.28059
ADAMTS9	0.013525	0.341503	-1.42465	0.002279	-3.96843	0.055839	-2.1307
ADARB2	9.03E-06	0.000538294	-1.36393	1.79E-06	-1.7698	0.201869	-1.09381
ADCYAP1	0.008237	0.0222987	2.16042	0.003482	2.90064	0.188709	1.50592
ADD2	0.005208	0.00255648	2.53728	0.003475	2.43474	0.742669	1.08595
ADK	7.91E-07	0.57477	-1.03178	5.13E-07	-1.68978	1.46E-05	-1.46101
ADRA1D	0.014401	0.00611632	2.07678	0.002417	2.32137	0.201854	1.34618
AF074994	0.00803	0.00440375	1.98074	0.002958	2.06649	0.059472	1.50196
AF116603	0.001823	0.466115	-1.16522	0.00044	2.64645	0.727655	1.07511
AF361491	0.005616	0.08197	1.77276	0.001232	3.54928	0.630244	1.16066
AGXT2L1	7.08E-05	0.00130392	-1.55285	4.65E-05	-1.92246	0.967674	-1.00438
AI038106	0.006733	0.0250516	-1.63028	0.002272	-2.0899	0.350258	-1.20399
AI085037	0.000751	0.0162138	-1.30024	0.000132	-1.67975	0.007545	-1.35155
AI276956	0.033593	0.0546461	1.66055	0.00277	2.44322	0.006164	2.20274
AK000995	0.006364	0.0278616	1.48453	0.002907	1.8008	0.793081	-1.04328
AK022020	3.28E-06	4.11E-05	1.36803	1.53E-06	1.54621	0.442312	-1.04049
AK022204	0.000837	0.849983	1.0511	0.001185	2.97083	0.09151	-1.60489

Tabela 1-A2 - Genes do grupo A do Diagrama de Venn

AK023447	0.00356	0.0204329	-1.57844	0.000216	-2.43958	0.40645	-1.15848
AK024680	0.000407	0.00496315	-1.36873	0.0003	-1.58228	0.074066	-1.19593
AK025082	0.000185	0.113984	1.4565	0.002614	2.30319	0.002505	-2.31509
AK026140	1.08E-06	0.000156974	-1.46722	3.84E-05	-1.56445	0.881964	-1.0108
AK026477	0.036201	0.533643	1.18318	0.0032	2.62102	0.611288	1.14678
AK026826	0.0028	0.812742	-1.04956	0.000801	-2.42975	0.055987	-1.52589
AK090830	0.012806	0.875955	1.04903	0.00157	3.3867	0.810254	1.07645
AK092418	0.007909	0.00771711	1.79639	0.001491	2.1183	0.021465	1.62363
AK093002	0.024361	0.0323848	1.7565	0.001507	2.5904	0.110301	1.49415
AK093202	0.000225	0.0213376	-1.39063	0.002439	-1.60975	0.12615	1.22735
AK093713	6.29E-05	0.227092	-1.12894	1.36E-05	-1.95561	0.033889	-1.25616
AK094334	0.004938	0.324407	1,17067	0.001947	1.83096	0.389663	-1.14667
AK094603	5.08F-05	0 133562	1 33301	7 57E-05	-2 85462	0.029805	-1 553
AK094874	0.001169	0.133502	1 2138	0.000519	1 86917	0.331947	-1 1442
AK097908	0.001103	0.00227726	3 75106	4 89F-05	8 24755	0.051641	2 09689
AK098514	0.001434	0.00227720	1 23631	0.001648	3 15811	0.051041	1 0902
AK050514	0.013331	0.470785	1.25051	0.001048	2 022/15	0.11124	2 02618
AK125757	0.002275	0.52050	1.20519	0.002429	-5.95245	0.011124	-2.92010
AK124544	0.032937	0.0022045	-1.51455	0.002713	-1.0492	0.159427	-1.22004
AK124950	0.003714	0.0207739	-1.495	0.000827	-2.02466	0.003428	-1.36336
AL390181	0.0006	0.00597762	-1.29657	0.000149	-1.52891	0.000751	-1.41805
AL526449	0.0152	0.00409391	1.48403	0.003011	1.51203	0.002948	1.51398
ALDH3B1	0.00543	0.442951	1.236/1	0.002278	-2.8094	0.095761	-1.62266
ALK	3.92E-06	0.000433845	-1.35128	1.80E-06	-1.71381	0.009972	-1.21129
ALS2CL	1.05E-05	0.0198305	-1.15929	6.80E-06	-1.51489	0.001079	-1.26527
AMID	0.00052	0.00174368	1.29726	3.28E-05	1.51806	0.331627	1.06794
ANKRD57	0.000456	0.137326	1.13583	0.000183	1.53023	0.016735	1.24878
ANKRD6	1.43E-05	0.00146148	-1.26492	7.12E-06	-1.53743	0.000205	-1.35045
ANTXR2	0.002852	0.731772	1.09742	0.00056	-3.42792	0.040517	-1.83713
ANXA3	0.002024	0.0394793	-1.35058	0.002325	-1.64944	0.984902	-1.00252
AP3B2	0.000297	0.452861	-1.08825	0.001244	1.57967	0.204593	-1.15746
AP4S1	0.001159	0.018853	-1.24469	7.56E-05	-1.60617	0.017438	-1.24892
APOL5	0.001516	0.147273	-1.22734	0.00037	-1.90968	0.934552	-1.01115
ΑΡΧΙ	1 00F-06	3 92F-05	-1 37601	2 56F-07	-1 68573	0.001425	-1 23181
AR	0.000246	0 267972	-1 16312	0.00013	-2 05286	0.002331	-1 64897
	2 70F-05	0.207572	1.10312	9.00E-05	-1 55883	0.001622	-1 36582
	2.70E-03	0.0122647	1 27019	2.595.06	1 6022	0.001022	1 22204
	0.001424	0.00122047	1.0560	0.001622	2 99250	0.004130	2 27854
	0.001424	0.830109	1.0509	0.001022	-2.00333	0.00022	1 46115
	0.001233	0.754265	1.00152	0.001223	-2.10407	0.0039	-1.40115
ARHGEF3	0.015388	0.00661308	-1.49373	0.000912	-1.70754	0.072311	-1.27285
ARL13B	0.025341	0.0194929	1.33601	0.001516	1.55114	0.133588	1.18882
ARL15	0.003951	0.890801	-1.0358	0.001418	-2.81127	0.077748	-1.62216
ARNT2	1.17E-06	0.000187663	-1.32455	2.97E-07	-1.71491	3.91E-05	-1.39697
ARSJ	0.004895	0.358765	-1.12044	0.002235	-1.58563	0.157217	-1.19698
ASAH3	0.005905	0.00528782	2.11877	0.003697	2.21172	0.279325	1.28448
ASB4	0.009058	0.00917524	1.80481	0.00324	2.00924	0.028752	1.60476
ATG10	1.54E-05	0.436307	1.06071	3.25E-05	-1.60124	0.000249	-1.45559
ATOH8	0.000958	0.00354938	-1.47141	0.001236	-1.5661	0.854669	1.0202
ATXN1	4.23E-05	0.347899	1.20603	0.00021	-2.72783	0.003313	-2.01451
ATXN7L4	7.92E-06	0.0195266	-1.14454	1.71E-06	-1.54145	0.204489	-1.06956
AUTS2	0.005239	0.149888	-1.32145	0.001001	-2.18619	0.005153	-1.85558
AVPI1	8.40E-07	4.22E-06	-1.4647	2.19E-07	-1.6568	0.005438	-1.17731
AW268902	0.000321	0.840176	-1.03918	0.002732	-2.0152	0.001531	-2.13932
AW389821	0.00131	0.0348254	-1.28362	0.000912	-1.58195	0.009037	-1.38583
AY010113	0.007789	0.0127801	2,24049	0.002686	2.82874	0.348713	1,30889
AY203961	0.008646	0.00602801	1 5302	0.001032	1 73283	0 346723	1 13339
ΔV358780	0.000040	0.00002001	1.07709	0.001032	2 27516	0 186151	1 5/051
Δ7GP1	5 /75 05	0.010075	1 59773	6 20F 0F	2 17277	0.100131	1 01107
	J.4/E-05	0.0030127	1.30772	0.202-05	1.50070	0.955552	1.01107
A_23_P10091	0.000197	0.0284016	-1.23591	7.000131	-1.59979	0.062162	-1.19111
A_23_P202100	0.000303	0.00638693	1.258/3	7.69E-05	1.5057	0.007033	1.25417
A_23_P204225	8.77E-05	0.716328	1.02566	1.49E-05	-1.60753	0.022483	-1.19511
A_24_P106166	3.02E-06	0.00778389	-1.20434	5.41E-07	-1.75251	4.74E-05	-1.43354
A_24_P114463	0.000807	0.914759	1.0286	0.000145	4.09283	0.003962	2.50172
A_24_P120381	0.039808	0.0530426	1.48013	0.002929	1.97339	0.045024	1.50506
A_24_P356304	0.03124	0.0207066	2.08286	0.002309	2.88973	0.378331	1.28675
A_24_P417757	0.017151	0.0178086	1.36345	0.002585	1.53424	0.210271	1.16133
A_24_P477610	0.004752	0.00907007	1.91679	0.001085	2.44623	0.105929	1.44211

A_24_P50696	0.00231	0.060363	1.59618	0.003496	2.26422	0.249023	-1.31427
A_24_P743424	0.004211	0.00768868	1.90727	0.002647	2.14397	0.807439	1.05163
A 24 P783810	0.008629	0.00550296	3.07353	0.003181	3.39366	0.500746	1.25969
A 24 P831034	9.72E-06	0.00128922	2.08777	5.98E-05	2.89364	0.425785	1.15647
A 24 P863363	0.00862	0.00273352	2.72683	0.000556	3.46499	0.005159	2.48627
A 24 P887805	1.00E-05	0.00145609	1,43045	1.04E-05	1.87831	0.206064	1,12361
A 24 P890956	0 029299	0.0139877	1 81323	0.002796	2 17169	0 120984	1 41283
A_24_1030330	0.02020	0.013367	1.01525	0.002/30	8 52037	0.557852	1 / 2775
A_24_1017300	0.020217	0.052302	2 6/280	0.003471	2 82002	0.337632	1.42775
A_24_P920247	0.003920	0.0051405	1 2.04369	0.00331	2.03095	0.040347	-1.05795
A_24_P925554	0.004920	0.0003922	2.06222	0.00318	3.19265	0.40265	-1.51517
A_24_P925559	0.014795	0.0056128	3.00322	0.00297	3.43099	0.102281	1.80102
A_24_P931175	0.01301	0.00386544	2.31421	0.002778	2.41452	0.069097	1.59911
A_24_P937506	0.048/1/	0.0440014	-1.88916	0.002983	-2.85429	0.043824	-1.89036
A_24_P944597	0.004039	0.012014	2.32996	0.002359	2.99943	0.664317	1.13577
A_32_P113646	0.015636	0.0453075	1.32654	0.002711	1.60946	0.624169	1.06568
A_32_P156476	0.007388	0.00631824	2.07948	0.00273	2.30089	0.057759	1.59226
A_32_P183451	0.004056	0.0269139	1.7192	0.001496	2.41022	0.687136	1.09279
A_32_P193771	0.012314	0.00621163	1.53146	0.001279	1.71244	0.081467	1.27738
A_32_P28528	0.006479	0.00763747	2.06863	0.002155	2.41904	0.42653	1.2056
A_32_P4608	0.009099	0.0205955	-1.27131	0.000642	-1.5095	0.259098	-1.1126
A_32_P56726	0.004393	0.0109782	2.25556	0.001424	3.04973	0.122593	1.56785
A 32 P66266	0.022171	0.264077	1.38898	0.001827	3.05284	0.437006	1.25293
A 32 P731227	0.007551	0.031719	1.83044	0.003379	2.47411	0.477829	1.19993
A 32 P85880	0.002147	0.00323317	1.42975	0.0011	1.51565	0.89455	-1.01329
BATE2	0 00047	0.00992208	-1 37144	3 52F-05	-1 93212	0 133483	-1 18082
BBC3	8 32E-05	0.0559873	1 1/1995	5.93E-06	1 6573	0.000404	1 37678
DDCJ	0.021-05	0.0333873	1.14555	0.002264	1.0075	0.000404	1.57078
	0.001980	0.416451	-1.11509	0.003204	-1.00945	0.002932	-1.021
BC007917	0.000242	0.07889	-1.4081	0.000423	2.01801	0.097393	-1.43257
BC019715	0.017284	0.758693	1.0433	0.002469	1.67243	0.837719	1.02863
BC022417	1.99E-09	0.235364	1.04468	2.92E-08	-1.55154	1.00E-07	-1.481/8
BC028846	0.008221	0.036034	-2.05235	0.003192	-3.06106	0.873917	-1.05062
BC030813	0.000839	0.26616	-1.14157	0.000537	1.70023	0.437039	1.09557
BC032026	0.0049	0.0163876	2.01737	0.002737	2.57396	0.687515	1.10929
BC038719	0.028102	0.0291745	-2.4412	0.002893	-3.83137	0.258453	-1.53362
BC062308	0.00138	0.0964788	-1.19021	0.000592	-1.56198	0.002685	-1.43872
BC066346	0.022725	0.0215435	-2.37801	0.003107	-3.35199	0.303517	-1.42281
BCAS3	3.72E-05	0.779023	-1.01949	5.14E-05	-1.50987	0.000593	-1.36424
BCL11B	0.003674	0.0111244	2.32831	0.001167	3.29644	0.475208	1.23103
BE881987	0.003984	0.00224605	1.64401	0.00151	1.69125	0.018897	1.41728
BF718543	0.002857	0.00318817	1.87197	0.001137	2.06397	0.569713	1.10492
BG216229	0.000107	0.000398908	-1.48758	5.50E-06	-1.87991	0.023299	-1.23715
BG502322	0.001443	0.472217	-1.13188	0.001371	-1.99564	0.027013	-1.52234
BG542103	0.02113	0.025946	-1.78714	0.003587	-2.28184	0.033373	-1.73185
BG993059	2.03E-06	0.00216455	-1.6154	0.002236	-1.61185	0.957728	-1.0067
BM129308	2 03E-05	0.00325689	-1 42575	0.000195	-1 66733	0 344628	-1 09999
BRCA2	0.03698	0 241141	1 18104	0.002307	1 68139	0.081999	1 29191
BRD3	0.001697	0.211111	1.10101	0.00029	1.50838	0.134622	1 1398/
BILIGAAA5	0.001037	0.0118061	1 52201	0.00023	1.00000	0.134022	1.15504
BU1726020	0.002032	0.0110301 0 1/17	1 3622/	0.00003	2 80425	0.021279	-1 02672
B0720025	0.001433	0.0245011	2 10527	0.00021	2.00425	0.037730	1 19/02
BX030703	1 275 05	0.00243011	1 24042	7.010.07	1 69075	0.401202	1.10455
DX100230	1.3/E-05	0.000184754	-1.54942	7.016-07	-1.08975	0.000431	-1.31124
BX110245	0.029430	0.361108	-1.22818	0.002895	-2.24021	0.026219	-1.73079
BX119718	0.010381	0.150313	1.93997	0.000597	7.31182	0.181286	1.84416
BX33/332	0.000958	0.0103406	-1.61875	0.000364	-2.17642	0.331/98	-1.1/401
C10orf59	0.000256	0.726382	-1.03101	5.50E-05	-1.67918	0.010326	-1.29551
C10orf82	0.001318	0.00369975	2.83711	0.00209	3.10713	0.891768	1.04117
C11orf44	0.007148	0.00887163	1.8902	0.003368	2.10373	0.697443	1.08469
C12orf27	0.025501	0.0400023	2.12564	0.003022	3.36177	0.414539	1.31887
C12orf34	7.16E-05	0.0300848	1.209	6.52E-05	1.58509	0.001857	1.35861
C14orf144	0.013825	0.238774	-1.30411	0.002892	-2.22143	0.383911	-1.21357
C14orf49	3.06E-05	0.00109733	-1.38795	0.000174	-1.5084	0.699194	1.03089
C14orf58	0.000631	0.00180456	-1.92127	0.000269	-2.29958	0.656892	-1.07746
C15orf20	1.57E-05	0.000315148	-1.47628	1.98E-05	-1.69702	0.000229	-1.49865
C15orf50	0.000324	0.0016248	2.24428	0.000172	2.91669	0.136072	1.37618
C16orf45	2.49E-08	0.370522	-1.03276	4.98E-08	-1.51393	3.32E-07	-1.41756
C16orf55	0.001086	0.00374514	1.55519	5.48E-05	2.11518	0.002912	1.58174
				-			

C17orf41	0.001448	0.8553	1.02201	0.001399	1.62	0.004478	1.50317
C1orf86	0.000881	0.000292949	1.43266	6.47E-05	1.53232	0.027089	1.19695
C1orf87	0.02571	0.0355175	1.5713	0.001523	2.17873	0.033707	1.57993
C1orf88	0.00343	0.0146458	1.34485	0.001948	1.50705	0.002423	1.48829
C20orf100	0.000409	0.00284214	-1.3888	0.000341	-1.54408	0.000758	-1.48207
C20orf172	3.03E-05	0.161892	1.11724	1.47E-05	1.68117	0.000248	1.46486
C21orf105	0.005878	0.167068	-1.54949	0.00047	-4.11597	0.022439	-2.18079
C21orf82	0.000863	0.051496	-1.27974	0.000459	-1.72227	0.39372	-1.10618
C22orf15	0.002265	0.104647	-1.22022	0.003125	-1.51845	0.317234	1.1256
C3orf26	9.35E-05	0.464223	-1.05853	3.32E-05	-1.62057	0.000457	-1.43164
C6orf117	0.001456	0.00190863	-1.60842	0.001494	-1.63495	0.912632	-1.01355
C6orf128	0.012737	0.0453495	1.47191	0.003262	1.88452	0.680863	1.07568
C6orf142	1 80F-06	0.0279812	-1 13634	7 96F-07	-1 60766	0.000112	-1 33342
C6orf167	0.000197	0.0184936	1 23995	6 24E-05	1.60578	0.002235	1 3573
Chorf32	0.000302	0.00101050	-1 79943	0.002592	-2 01894	0.376197	1 18591
C6orf85	3 36F-07	0.00012441	-1 06435	1 30F-06	-1 52147	2 23F-05	-1 37252
C001105	0.000860	0.00232305	1 22257	5.885.05	1 75077	0.024216	1 26097
C00	0.000803	0.00928247	1.33237	0.001541	2 17668	0.024310	1 28501
C9011155	2 175 06	0.010518	1.70140	2 965 07	1 65741	0.113079	1.30301
C901140	5.1/E-00	9.942-00	1.4472	5.60E-07	2 22707	0.002032	2.22044
C90H93	0.004996	0.0605173	-1.89417	0.002113	-3.32/9/	0.005227	-2.85695
CA12	1.26E-05	0.00613514	-1.2/50/	3.69E-05	-1.59152	0.039181	-1.1847
CALIVIL4	8.03E-06	0.207853	1.06816	2.11E-06	1.52048	0.050552	1.11361
CAMK4	5.31E-05	0.295281	-1.0904	1.14E-05	-1.76225	0.012/15	-1.26028
CAMIA1	0.03188	0.0112621	1.50789	0.00333	1.65068	0.02822	1.4085
CASP2	0.000295	0.117426	1.15773	0.000178	1.58907	0.008517	1.31352
CASP8AP2	0.001191	0.0488398	1.18454	0.000129	1.5335	0.304934	1.08633
CB123670	8.10E-06	0.00315577	-1.27284	7.10E-06	-1.63676	0.773688	1.01948
CBX1	0.029552	0.0152463	1.41085	0.003152	1.56504	0.070746	1.273
CCDC114	0.004011	0.00129055	2.36976	0.001082	2.41899	0.256487	1.27928
CCDC117	0.000232	0.000745864	1.36936	4.73E-05	1.5421	0.051657	1.1635
CCDC91	2.75E-07	0.8376	1.01113	5.89E-07	-1.65605	9.59E-06	-1.46996
CCDC91	0.000195	0.924567	-1.00854	0.000243	-1.57219	0.001383	-1.4385
CCDC91	0.001218	0.927683	1.00918	0.000769	-1.55312	0.004742	-1.40589
CCL20	0.000832	0.104959	-1.28245	0.00116	-1.82321	0.981329	-1.0034
CCNE2	0.006575	0.443214	1.20249	0.003575	2.31555	0.008581	2.07399
CD97	7.68E-06	0.00015763	-1.44453	5.24E-05	-1.51519	0.355815	-1.06747
CDC25A	0.000566	0.303021	-1.1286	0.001722	1.57002	0.002804	1.52324
CDC25A	1.87E-06	0.00366726	1.22975	2.25E-07	1.82235	5.88E-05	1.41497
CDCA5	4.91E-05	0.397312	1.05792	1.23E-05	1.57782	0.000368	1.36911
CDH2	0.000239	0.00755276	-1.37609	6.65E-05	-1.80977	0.006455	-1.38774
CDK6	5.17E-05	0.250957	-1.12671	0.000224	-1.6716	0.002613	-1.45363
CDKL5	2.05E-05	0.606811	-1.03766	8.50E-05	-1.50016	0.000119	-1.47806
CDKN1A	5.16E-06	0.868115	1.01099	8.04E-06	1.61302	8.49E-05	1.45286
CENPE	0.000293	0.00340079	-1.33204	7.06E-05	-1.59413	0.001043	-1.40269
CENTA2	0.005004	0.217052	-1.23766	0.001727	-1.92787	0.771155	-1.04989
CENTD1	8 62F-05	0.0328343	-1 26421	0.000176	-1 68095	0.001498	-1 4884
СНСНДЗ	0.000921	0.00372705	-1 38044	0.000508	-1 52654	0.020082	-1 27215
CHN1	4.02F-05	0.000356442	-1,30217	1.58F-06	-1.59563	0.004638	-1.20483
CLDN9	0.001254	0.00141042	2.10749	0.000693	2.26701	0.202235	1.27617
	0.001234	0.00141042	1 35304	0.002645	1 69206	0.019471	1.27017
CLECAG	0.002250	0.000735	2 939/2	0,0002045	4 55872	0.946915	-1 02015
	0.000370	0.00313032	-1 /8209	0.000225	-1 7102/	0.082468	-1.02013
	0.007743	0.0105214	1 02203	0.002023	1 55516	0.002408	1 26456
	0.002907	0.031338	2 2657	0.00114	2 46075	0.011332	1.30450
	0.000185	0.00133012	-2.5057	1.555.06	-2.40075	0.052021	1.3032
	2.51E-U/	0.00583883	-1.23968	1.55E-U0	-1.75022	0.001197	-1.31107
	0.030888	0.0162099	-1.4929	0.002097	-1.75024	0.089298	-1.30354
COL23A1	0.011658	0.01/9174	1.60425	0.002825	1.90592	0.604932	1.09596
COLTAN	0.000606	0.0167543	-1.28634	0.00023	-1.59933	0.002778	-1.40487
COLSA3	0.001257	0.0488819	-1.38394	0.000508	-2.00958	0.869276	1.02524
COMMD10	0.002613	0.931145	1.00845	0.000465	-1.57396	0.075647	-1.20364
COPE	0.004325	0.022351	1.43804	0.001793	1.73863	0.661382	-1.06423
CORO2A	3.59E-09	5.89E-07	-1.45052	1.87E-09	-1.86429	0.000283	-1.21751
COX19	1.27E-05	0.00296334	1.31355	9.58E-05	1.52236	0.677009	-1.03185
COX19	0.000187	0.00393084	1.35378	0.000304	1.53174	0.910115	-1.00986
COX6B2	0.03573	0.0204509	1.81422	0.002198	2.37585	0.014868	1.88526
CPA3	0.001039	0.0102092	1.65408	0.000977	2.04662	0.464914	1.13294

CPEB2	0.006172	0.00223793	-1.48882	0.000476	-1.62946	0.008536	-1.3814
CR590623	3.66E-06	0.577509	1.03574	1.42E-05	-1.53712	0.000169	-1.38992
CR606969	3.97E-06	0.000128816	1,45507	6.25E-05	1.50126	0.126333	1,11775
CR622072	2 40F-05	0.826209	-1 05537	7 30F-05	-4 12043	0.047833	-1 69755
	0.000441	0.0877576	-1 17024	9 20E-05	-1 62597	0.047769	-1 20494
	6.67E-05	0.00309064	1 21552	5.202.05	1 50018	6 13F-05	1 37415
	0.072-03	0.00303004	4 22970	0.002026	6 61021	0.152-05	2 76014
	0.009137	0.0111207	-4.23079	0.002020	-0.01921	0.030828	-2.70014
	9.89E-07	3.02E-00	-1.48878	9.45E-07	-1.57254	0.829300	1.01098
CUGBP2	0.008/13	0.02/0521	-1.33641	0.003706	-1.51243	0.002842	-1.53/91
CX3CL1	0.000962	0.00245329	-1.53455	0.000299	-1.75647	0.980514	1.0028
CXADR	0.001901	0.00172876	-1.80355	0.001838	-1.79453	0.959845	-1.00759
CXorf43	0.012921	0.0511388	-1.36168	0.001312	-1.8103	0.100049	-1.28912
CYP2B6	0.00296	0.00363426	2.25608	0.001306	2.56349	0.314954	1.26733
DA199974	0.000271	0.560505	1.04391	9.04E-05	1.51187	0.037258	1.18306
DCLRE1B	9.14E-06	0.0121111	1.17268	9.62E-07	1.63571	4.57E-05	1.39753
DCN	0.009703	0.00242649	-1.61678	0.000804	-1.74761	0.010281	-1.46521
DDX10	0.000909	0.207854	-1.10847	9.57E-05	-1.55682	0.002536	-1.34158
DDX58	0.000262	0.0100482	-1.3367	2.49E-05	-1.87553	0.001126	-1.49804
DEFB129	0.060426	0.0159007	2 56494	0.003687	3 34323	0.056503	2 03132
DGCB8	0.002187	0.0133007	1 30716	0.000166	1 6521	0.087675	1 18956
	0.002187	0.0141177	1 217	0.000100	1 64175	0.007075	1.10000
	0.002708	0.17227	2 70 420	0.003241	1.04175	0.080708	-1.29455
DKFZp564N2472	0.005971	0.00123855	2.79426	0.001231	2.79656	0.082647	1.58978
DKFZp761E198	0.020856	0.113495	1.22261	0.001278	1.6356	0.069724	1.26418
DLG7	0.000364	0.000924958	-1.33799	4.67E-05	-1.51148	0.016484	-1.20433
DPF3	6.33E-05	0.0483502	-1.29432	4.42E-05	-2.07663	0.029632	-1.33598
DSCR1L1	2.79E-05	0.176881	-1.10718	1.72E-05	-1.62849	0.000872	-1.36605
DST	0.020599	0.0646823	-1.37921	0.002773	-1.80893	0.363677	-1.16097
DTNA	1.13E-06	0.940407	-1.00499	8.50E-07	-1.82475	7.41E-05	-1.46774
DYM	0.000249	0.160692	-1.14514	0.000128	-1.65191	0.004395	-1.37313
DYX1C1	0.000597	0.297086	-1.08883	4.56E-05	-1.62305	0.002281	-1.35135
E2F7	6.57E-06	0.2074	1.06923	1.63E-06	1.54606	0.007391	1.17538
E2F8	0.000803	0.770969	-1.0488	0.003131	1.80268	0.003108	1.80384
EB386378	0.007269	0.0377585	1.24582	0.000802	1.5195	0.830406	1.02082
EDG7	0.005578	0.0901426	-1.5127	0.002758	-2.3226	0.873244	1.03728
EB87 EHBD1	0.001644	0.613663	-1 07377	0.00346	-1 64588	0.001847	-1 7258
EIMO1	0.001044	0.013003	1 2006	0.00340	-1.04300	0.001047	1 00228
	0.000382	0.137382	1 22621	0.000113	1 70500	0.009094	1 12/20
	7.425.05	0.15529	-1.25051	0.000855	-1.79599	0.018501	-1.45450
EINST00000251847	7.42E-05	0.000252571	-1.35518	2.39E-06	-1.6422	0.001089	-1.28838
ENS100000256367	0.002178	0.114/01	1.40549	0.002178	2.17485	0.235988	1.28359
ENST00000258772	0.013583	0.0123338	1.58087	0.00157	1.88273	0.105997	1.31274
ENST00000264899	0.000291	0.00592153	-1.3411	0.000139	-1.62028	0.245942	-1.11326
ENST00000295199	0.001616	0.116132	1.26181	0.000905	1.82339	0.587587	1.07953
ENST00000297423	0.001767	0.254636	-1.20335	0.002582	-1.79714	0.002209	-1.82117
ENST00000303521	0.001763	0.298286	-1.33453	0.001317	-3.01852	0.003635	-2.60108
ENST00000309024	0.014935	0.016516	1.7153	0.002675	2.07601	0.570509	1.11967
ENST00000316772	0.007107	0.0538726	1.75667	0.002343	2.75385	0.694607	1.11186
ENST00000326678	3.26E-06	0.000311434	1.29897	4.31E-07	1.67305	0.000101	1.34684
ENST00000327926	0.00436	0.00551807	2.23477	0.003606	2.36113	0.426246	1.2168
ENST00000332107	0.013849	0.0213129	1.27694	0.000704	1.51792	0.011496	1.31682
ENST00000333392	0.001143	0.00173408	1.4477	0.00018	1.63497	0.082847	1.1908
ENST00000337025	0.008556	0.0143425	2 53712	0.002404	3 47637	0 347455	1 37475
ENST00000355520	8.000000 8.40F-07	0 204054	1.09/99	1 14F-05	-1.62252	0.000165	-1 43836
ENST000003535520	0.000414	0.00110525	1.00405	0.00212	1 75200	0.000103	1.43030
ENST00000359554	0.000414	0.00119555	-1.90205	0.00312	-1.75500	0.403123	1.14120
ENST00000359743	0.000221	0.00947596	1.30695	0.000214	1.57350	0.218/8	-1.11925
	0.007905	0.00440125	1.87536	0.002185	2.00909	0.012393	1.6962
ENS10000370708	0.018812	0.0279888	1.41876	0.002979	1.68107	0.114601	1.26895
ENST00000371189	1.02E-05	0.214581	1.16743	7.23E-05	-2.00821	0.001549	-1.61771
ENST00000371847	6.07E-06	0.122551	-1.09361	1.07E-06	-1.6263	0.000122	-1.34996
ENST00000372415	0.000133	0.0246752	-1.15224	7.69E-06	-1.50905	0.000877	-1.27438
ENST00000372922	0.001912	0.126132	-1.49235	0.001742	-2.65308	0.010866	-2.0814
ENST00000374860	0.001025	0.00247482	-1.98224	0.0032	-1.93272	0.258166	1.23747
ENST00000375256	0.002232	0.00827513	1.47086	0.000143	1.95158	0.003582	1.55464
ENST00000379748	0.000631	0.910298	1.01639	0.000865	-1.86238	0.011202	-1.52662
ENST0000381050	0.005527	0.00523406	-2.32023	0.00328	-2.47066	0.755192	-1.08208
ENST00000381475	0.004504	0.00650486	-1.34438	0.000189	-1.61131	0.001444	-1.44801
ENST00000382591	0.013697	0.00834534	-1.50553	0.003059	-1.61568	0.447464	-1.10733

ENST0000382838	0.012053	0.0062415	1,74662	0.002245	1,91867	0.003907	1.82296
FPR4112	0.021269	0.0209352	-1 53841	0.003454	-1 80142	0.034102	-1 47352
	0.001203	0.0203332	1.00272	0.002172	1 5/101	0.060204	1 2767
	0.000322	0.0511000	1.00272	0.003173	1.54151	0.000304	1.00105
ESPLI	0.006843	0.0511613	-1.2/984	0.001604	-1.58664	0.986671	-1.00195
ESR1	0.017538	0.00531376	1.94267	0.001227	2.27464	0.009399	1.82925
EXOC4	9.86E-07	0.514448	1.03881	1.08E-05	-1.50431	1.41E-05	-1.48792
EXOC6	7.08E-07	0.481771	-1.03512	9.33E-07	-1.54464	8.06E-06	-1.42303
FAM13C1	0.016514	0.897768	1.03854	0.002899	2.92537	0.945439	1.02034
FAM29A	0.003526	0.00329283	1.39038	0.000644	1.5098	0.019338	1.27552
FAM49A	0.000186	0 254599	1 11906	0.000145	-1 67096	0.053286	-1 22322
	0.000100	0.00015861	1.11300	8 275 05	1 52801	0.053200	1 17121
TAM03D	0.000328	0.00013801	-1.40403	8.37L-03	-1.52691	0.031333	-1.1/121
FAIVI83F	0.000229	0.0106118	-1.38629	0.000431	-1.68052	0.411232	1.09637
FANCB	0.00093	0.5297	1.06211	0.000125	1.67714	0.004657	1.38096
FANCC	0.000651	0.186565	1.25246	0.003424	1.79315	0.016522	-1.56422
FBLIM1	0.001994	0.00232035	-1.49767	0.00063	-1.61772	0.332199	-1.11191
FBN1	4.55E-05	0.589484	-1.03873	6.17E-05	-1.5091	0.000343	-1.40271
FBXL2	9.65E-05	0.508231	-1.05534	8.18E-05	-1.58393	0.00635	-1.29771
FBXI 7	0.000209	0 63884	-1.05609	0.000574	-1 69138	0.002074	-1 55763
	1.046.05	0.05004	1.03003	2 845 06	1.6/107	0.002074	1.00052
	1.94L-03	0.000240032	-1.37391	3.84L-00	-1.04197	0.188274	-1.09032
FCRL5	0.007013	0.00235936	3.67061	0.001473	4.01069	0.07324	1.94457
FGF13	0.000175	0.985741	-1.00256	0.00043	-1.96108	0.002787	-1.6908
FGF18	0.002433	0.3014	-1.18942	0.003041	1.81153	0.220136	1.23096
FGL2	0.009832	0.00505547	2.65039	0.002518	2.9535	0.186421	1.49051
FHOD3	1.16E-07	0.001554	-1.24418	5.09E-08	-1.89877	1.86E-05	-1.4418
FLI1	0.000272	0.00238695	-1.54853	2.01E-05	-2.16367	0.018508	-1.36443
FL 112688	8 27F-07	0.850855	-1.01066	8 90F-06	-1 50005	8 99F-05	-1 37447
FU122000	0.272.07	0.030035	1.01000	0.001171	1.90009	0.352 03	1.37447
FLJ13230	0.022387	0.120880	1.20971	0.001171	1.85078	0.215/1/	1.20958
FLJ20152	4.18E-05	0.0231984	-1.26279	1.22E-05	-1.89304	0.07795	-1.18876
FLJ20152	0.010501	0.421081	-1.15004	0.003211	-1.85105	0.549643	-1.10883
FLJ20273	0.00147	0.161263	-1.28431	0.000244	-2.36804	0.006635	-1.73146
FLJ20366	0.000683	0.0147384	-1.60917	0.00014	-2.50107	0.538691	-1.11159
FLJ22536	0.000174	0.000806077	-1.41708	8.50E-06	-1.78489	0.071277	-1.16804
FLJ22659	0.009219	0.455785	-1.10614	0.002767	-1.63382	0.519321	1.09078
FL126850	0.001081	0.00915667	1 46714	0.000581	1 77183	0.652892	-1 05865
	0.001001	0.00515007	1.40714	0.000501	1.77105	0.002002	1.05005
FLJ30033	0.000734	0.370033	-1.00964	0.00237	-1.55000	0.002292	-1.50142
FLJ30679	0.031925	0.0887851	1.94069	0.003118	3.74136	0.244345	1.5501
FLJ31196	0.016344	0.060328	1.7871	0.001813	3.05155	0.096406	1.65717
FLJ32682	0.006721	0.430465	1.11964	0.000555	1.9056	0.444478	1.11574
FMR1NB	0.010438	0.405541	-1.21866	0.003402	-2.30362	0.857783	1.04289
FN1	0.002546	0.00257561	-1.47573	0.001103	-1.54907	0.004634	-1.42797
FN1	0.005438	0.00196779	-1.71234	0.003111	-1.65439	0.073015	-1.30776
ENDC1	0.00064	0.000370485	-1,49895	0.000281	-1.51944	0.062294	-1,18534
ENDC3B	/ 19F-06	0.846557	1 01183	5 18F-06	_1 58571	2 11E-05	_1 /0188
EOVA2	4.152 00	0.040337	1 51406	0.001762	1 65010	0.02520	1.43100
TUXAS	0.004973	0.00037008	-1.31400	0.001702	-1.03818	0.92339	-1.01210
FRIVID5	0.000788	0.0304783	-1.21535	0.000131	-1.5519	0.054059	-1.18509
FUT8	0.000185	0.882426	-1.02111	0.000724	-1.8635	0.001523	-1.75814
FXYD2	0.010605	0.0166629	1.91338	0.000951	2.75835	0.052963	1.65054
FZD8	0.007133	0.137939	1.20712	0.002751	1.55982	0.006636	1.47388
G6PC2	0.000909	0.00582625	2.06866	0.00046	2.816	0.181864	1.36057
GABRG1	0.004455	0.0108742	2.69994	0.003555	3.29593	0.862639	-1.06008
GAL3ST2	0.002454	0.00334361	2.48536	0.00331	2.48883	0.502693	1.18827
GALNTL4	7.17F-05	0.482536	1.07888	0.002165	-1.50247	0.001739	-1.52168
GIMAP2	0.01525	0.450361	-1.13686	0.002475	-1.871/2	0 991202	1 00185
GINSA	0.00026	0.430301	1.10500	0.002473	1 5124	0.001904	1.00105
	0.000936	0.299891	1.10522	0.000743	1.5134	0.001804	1.44503
GJB2	0.000154	0.00243614	-1.5341	0.003458	-1.50149	0.712588	1.04316
GLI2	0.010988	0.0141679	-1.58583	0.001045	-1.9945	0.054127	-1.40957
GNG2	0.000945	0.207092	-1.12119	0.000105	-1.62534	0.002666	-1.38194
GPA33	0.0113	0.00550958	2.54054	0.001293	3.16614	0.094241	1.65179
GPR12	0.006488	0.0045686	2.32797	0.001936	2.60985	0.1315	1.48189
GPR135	0.001412	0.00334487	1,62265	0.000259	1,9696	0.010364	1.49612
GPR18	0 000711	0.0243654	-1.98955	0.002327	-2 79511	0.088139	1 64225
GPX5	0.000711	0.015094	2 12676	0.0002327	2./09911	0 550201	1 1 2 0 0 4
CDD10	0.000213	7 205 05	2.13070	5.000349	2.43004	1.00000	1.12094
GRB10	8.14E-09	7.36E-05	-1.23508	5.05E-09	-1.68261	1.0/E-U6	-1.363/4
GRB10	4.39E-07	0.0827933	-1.0925	1.06E-06	-1.52527	5.93E-05	-1.32568
GRIN3A	0.014599	0.211827	1.74255	0.001792	5.3671	0.52585	1.31668
GRPR	0.000126	0.959464	-1.00862	0.002481	-1.87874	0.00246	-1.8802

GTPBP5	0.00283	0.00624033	1.42675	0.000452	1.67014	0.026214	1.31288
GULP1	0.019294	0.139168	-1.3351	0.001242	-2.14997	0.144923	-1.32906
GZMM	0.00553	0.0111946	1,91049	0.00238	2,29086	0.436247	1,19024
H11348	0.005733	0.00440221	1 52708	0.000694	1 72964	0 14407	1 20825
HAB1	0.005426	0.00752758	1 55183	0.000557	1 89179	0 269953	1 1717
HCN2	0.003420	0.00732730	1 1/022	0.000337	1.00175	0.205555	1 021/2
	0.010347	0.092764	1.14022	0.002445	2.05204	0.043330	2 1 4 4 5
HDAC9	0.001865	0.983764	-1.00603	0.002819	-2.95394	0.021785	-2.14451
HDC	0.005706	0.00855565	1.72491	0.001226	2.07522	0.054907	1.44681
HEL308	0.000801	0.000735885	1.39395	4.81E-05	1.57782	0.024336	1.20966
HILS1	2.47E-08	0.00370411	-1.25605	1.99E-06	-1.71614	0.051357	-1.14724
HKDC1	0.041144	0.12708	1.56685	0.003594	2.68669	0.651572	1.13526
HMCN1	0.000635	0.434467	1.09469	0.003296	-1.50519	0.002206	-1.54275
HMGA2	0.000114	0.0616692	-1.18634	0.000193	-1.54973	0.064198	-1.18411
HOXC13	0.000561	0.0243497	-1.52012	0.00131	-1.96916	0.12506	-1.30768
HSPB3	0.003026	0.0096026	-1.4564	0.003229	-1.56527	0.632141	1.06187
HSPC072	0.050343	0.0200732	1.91772	0.00332	2.42877	0.069501	1.6232
ID3	0.009847	0.0414233	-1.25873	0.001556	-1.5069	0.856524	-1.01879
IFIT1	0.016704	0.00875121	-2 26286	0.001064	-3.06061	0.030321	-1 81553
IGE2BD2	0.010704	0.00073121	-1 30/15	0.001004	-1 66918	0.084326	-1 28919
	0.018349	0.072098	2 5 2 5 6	0.00233	-1.00918	0.084320	1 55466
IGFBP3	0.008928	0.00272095	2.5250	0.003397	2.45115	0.098505	1.55400
IGHA1	0.009822	0.0353307	1.88939	0.003414	2.65287	0.583723	1.16312
IL15	1.84E-06	0.00456526	-1.27727	5.59E-07	-1.96423	0.014434	-1.22268
IL17A	0.005159	0.0139369	2.5358	0.001649	3.69199	0.465714	1.27606
IL1RAP	8.71E-05	0.0356984	-1.14512	1.06E-05	-1.51239	0.000614	-1.30129
IL28B	0.001097	0.0024124	-2.50417	0.001281	-2.72476	0.010111	-2.07802
IL6R	1.72E-06	2.03E-05	1.48473	6.87E-06	1.55419	0.053292	-1.13356
IL8RB	0.016016	0.0235949	2.73161	0.003154	4.16478	0.465703	1.33933
IMMP2L	3.25E-05	0.723005	1.02626	3.81E-05	-1.57087	0.00081	-1.37291
ING5	0.003087	0.0462922	1.25049	0.000477	1.6118	0.002135	1.47957
ING5	0.001216	0.00891393	1 44649	0.000248	1 83658	0.849745	1 02319
IDE1	0.001210	0.00051333	1 10025	0.000240	1.53050	0.040740	1.02313
	0.000774	0.235215	1.10923	0.0002	2.4750	0.000083	1.40130
IIGAZ	0.023979	0.110315	-1.53213	0.00367	-2.4758	0.704304	-1.10294
KCNAZ	0.000569	0.00218039	1.70502	0.000235	2.03371	0.323805	1.15192
KCNA4	0.01928	0.906789	1.05061	0.003448	4.47648	0.958297	1.02229
KCNH2	0.012925	0.00955994	2.2304	0.002562	2.68657	0.18931	1.43703
KCNH4	0.006812	0.0213545	2.11212	0.002843	2.87452	0.423106	1.26414
KCNJ10	0.000689	0.00378445	-2.64184	0.000559	-3.53368	0.497385	1.20915
KCNJ14	0.00079	0.130801	1.16605	0.000211	1.64129	0.112591	1.17605
KCNK13	0.000163	0.0105624	-1.2849	3.16E-05	-1.7067	0.142878	-1.13875
KCNK17	0.007528	0.00156901	-2.43314	0.002558	-2.29331	0.064758	-1.56019
KCNMB4	0.014554	0.0347907	-1.32706	0.00062	-1.7264	0.014388	-1.40488
KCNN2	3 37F-05	0 0191946	-1 16263	9.63E-06	-1 50125	0.000368	-1 31389
KHDRBS3	1 38E-06	0.00191910	-1 22193	2 13E-07	-1 70192	1.68E-05	-1 /1768
KIN 00802	0.022024	0.00101000	1.22155	0.002147	1.70132	0.124744	1 1962/
KIAA0092	0.032024	0.0340009	1 1 1 9 9 7 4	0.002147	1.90027	0.134744	1.10024
KIAA1324L	0.000795	0.324188	-1.18854	0.002728	-1.88037	0.019254	-1.57441
KIAA1328	4.19E-05	0.355886	1.18366	0.001258	-2.08637	0.00227	-1.9694
KIAA1727	0.005712	0.00595314	-1.64555	0.001145	-1.88431	0.289064	-1.18023
KIAA1729	0.016054	0.0306915	-1.31843	0.003676	-1.50077	0.879712	1.01761
KIAA1914	0.000194	0.13244	-1.34633	5.04E-05	-3.09736	0.033946	-1.55403
KIF13A	2.72E-06	6.31E-06	-1.34785	8.11E-08	-1.56793	8.56E-05	-1.25544
KIF18A	0.002377	0.00147296	-1.49623	0.000241	-1.65887	0.062961	-1.22312
KIF20A	0.00978	0.00534341	-1.44995	0.000888	-1.61653	0.028991	-1.31197
KIF6	8.08E-05	0.0861585	-1.1888	2.65E-05	-1.83634	0.044677	-1.23044
KIR2DS2	0.003687	0.0225731	-2.02866	0.003469	-2.6671	0.567732	-1.17223
KLC2	0.002923	0.0334204	1.32164	0.003316	1.52811	0.400317	1.10656
KLF6	0.001964	0.00381138	-1.9629	0.002077	-2,09015	0.233869	-1.26672
KI F7	4 28F-05	0.000897696	-1,49094	4.67F-06	-2.04295	0.156246	-1 14794
KLE8	0.000629	0.000007000	-1 17627	0.000576	_1 51201	0.041726	-1 22601
	0.000028	0.0342365	1 20027	0.000376	1 95225	0.041720	-1.22001
	0.001097	0.0002111	-1.30837	0.000400	-1.85230	0.199900	-1.19212
KLK4	0.004624	0.00608912	2.42465	0.00325	2.65533	0.45328	1.22957
KRT38	0.001075	0.00131343	2.99869	0.001168	3.05116	0.141596	1.51432
LAMB3	9.55E-07	0.000210807	-1.38514	4.18E-06	-1.63747	0.206249	-1.08678
LAX1	0.002651	0.0773352	1.68762	0.00324	2.69842	0.35615	-1.29689
LBX2	0.014967	0.00718394	1.70897	0.003658	1.81571	0.272313	1.21014
LCAT	0.00196	0.148845	1.1705	0.000932	1.56002	0.906435	1.01233
LCOR	0.004973	0.0181548	1.32168	0.000878	1.56542	0.920242	1.01049

LFNG	0.000595	0.0226682	-1.26902	0.000169	-1.63097	0.027902	-1.25603
LILRA1	0.035406	0.0222239	1.51642	0.003172	1.79194	0.253171	1.20981
LM07	0.003392	0.637082	-1.07623	0.001211	-1.89453	0.006655	-1.64366
LOC145757	0.000337	0.00240234	-1.62137	0.002974	-1.59757	0.902682	1.01589
LOC147710	0.007765	0.252137	1.75315	0.000546	8.8206	0.465662	1.42138
LOC157562	0.004651	0.0148974	1.36669	0.00032	1,72946	0.441508	1.0915
100157627	0.003606	0.0505906	2,11667	0.003558	3,48077	0.774141	-1.10663
100286334	0.000189	0 125803	-1 1292	6.49E-05	-1 55427	0.000478	-1 41935
100390705	0.000103	0.00625287	-2.06542	0.492.05	-2 889/17	0.679213	-1 09739
100200047	0.001708	0.00023287	1 269542	0.000400	-2.00947 6.000E	0.079213	-1.03733
100399947	0.019875	0.004473	1.20034	0.003097	2 28005	0.004542	2.04042
100402089	0.005226	0.085503	1.141//	0.002472	-3.38095	0.004543	-3.04043
	0.076348	0.107146	1.64253	0.003458	2.81244	0.133376	1.58212
LUC441461	0.012688	0.0503/3/	-1.34188	0.001792	-1./1539	0.364073	-1.13607
LOC442511	0.002022	0.972652	1.00603	0.001286	-2.04861	0.057473	-1.43447
LOC494558	0.008906	0.00818072	2.65858	0.001996	3.3711	0.431495	1.28617
LOC51334	0.001383	0.134197	-1.34824	9.14E-05	-2.91524	0.020329	-1.64393
LOC51334	0.004168	0.106342	-1.60172	0.000272	-3.93571	0.52793	-1.1917
LOC54103	4.38E-06	0.00334391	-1.41656	1.81E-06	-2.27027	0.015855	-1.30728
LOC541469	0.000748	0.00129592	1.57419	0.002864	1.50067	0.244946	1.14223
LOC63929	0.002875	0.0145922	1.37615	0.003358	1.50407	0.46256	1.0887
LOC646999	0.004801	0.815157	1.03997	0.000787	2.07611	0.015348	1.58904
LOC91431	0.018685	0.414077	1.10425	0.002573	1.55941	0.305816	1.13358
LRDD	6.09E-05	0.0969796	1.1135	1.09E-05	1.53716	0.001779	1.26939
LRP5	0.003462	0.0242219	-1.28238	0.001218	-1.5007	0.00558	-1.38422
LRRC16	0.004305	0.577646	-1.11023	0.002765	-1.98435	0.021934	-1.61714
LTB4R2	0.017019	0.00326112	1.57707	0.002466	1.60742	0.019098	1.40038
LYPD1	7.74E-06	8.97E-05	-1.45082	3.76E-05	-1.50514	0.372087	-1.06169
MAGI2	0.001054	0.982002	1.0024	0.0007	-1.60128	0.009547	-1.37802
MAL2	2.12E-06	5.29E-05	-1.40462	5.29E-06	-1.53803	0.10118	-1.10384
MALL	0.021514	0.021421	-1 6065	0.001726	-2 05288	0.471416	-1 14263
MAMI 2	0.001903	0 115872	-1 35325	0.000216	-2 53741	0.021542	-1 60216
MAD2	0.001003	0.653172	1.05876	0.000210	-1 7665	0.021542	-1 23239
MBNI 2	1.04F-07	0.055172	-1 05185	1.81F-07	-1.7003	1 17F-05	-1.25255
MCC	7.685-05	0.200482	-1.03105	5.74E-06	-1.58722	0.001044	-1.30323
MCMA	5.575-06	0.00244001	-1.27045	0.000112	1.01002	0.001044	1 20026
	0.015228	0.0082097	1 14055	0.000113	1 52156	0.00103	1 2022
MCTD2	0.015228	0.275877	2 65256	0.003217	2 /2171	0.042210	1.3023
	0.003030	0.00185230	1 11050	0.0005557	1 77021	0.0145	1 11521
MEIS1	0.003443	0.387368	-1 16333	0.000004	-1 5274	0.403103	-1 2555
MENG	0.010010	0.00569404	2 /1/28	0.003203	3 005/1	0.072121	1 63359
MESDA	0.000118	0.00303404	1 20961	0.001248	2.07452	0.080083	1 24620
	2.045.05	0.000420824	-1.50601	0.000571	-2.07432	0.065027	-1.54059
NGC10597	3.94E-05	0.000420834	1.3582	5.12E-06	1.0377	0.012496	1.20503
MGC42174	2.1/E-U/	0.822202	1.01051	9.39E-07	-1.5157	3.02E-06	-1.45056
MGC44505	0.010214	0.438108	-1.18146	0.002693	-2.18//8	0.364248	-1.21661
MITE	8.92E-07	3.26E-06	-1.43256	1.10E-07	-1.63815	0.000841	-1.21616
MLL2	0.007298	0.00527615	1.56943	0.000292	1.94946	0.018214	1.43645
IVILLI 3	0.003048	0.963787	1.00503	0.002238	-1.51991	0.013031	-1.37059
MILLT6	0.027905	0.0215498	1.36955	0.003151	1.54997	0.218753	1.16714
MMP16	0.000167	0.731485	-1.04244	0.000402	-1.77419	0.310382	-1.13354
MNAT1	2.69E-06	0.308727	-1.05217	1.78E-06	-1.50894	0.000126	-1.3039
MOBKL2B	2.56E-07	1.83E-06	-1.38884	7.29E-08	-1.55708	0.626655	-1.0193
MOGAT3	0.009573	0.00327788	1.91383	0.003002	1.93023	0.152439	1.31145
MPPED2	6.90E-05	0.0132064	-1.27702	0.000109	-1.60764	0.000723	-1.46085
MSI2	4.98E-06	0.0250824	-1.16934	7.35E-07	-1.77162	0.001169	-1.29516
MSRA	4.64E-07	0.191423	-1.06555	5.86E-07	-1.54975	4.33E-06	-1.43601
MT1L	9.57E-06	0.740501	1.04238	1.60E-06	2.89787	0.207483	1.17722
MTBP	0.003864	0.0294624	1.24263	0.000597	1.50027	0.061646	1.19869
MTUS1	0.000712	0.00150843	-1.50278	7.72E-05	-1.79334	0.021787	-1.30032
MXD1	0.000908	0.000513582	1.49937	0.000263	1.55133	0.187506	1.12798
MYC	0.006883	0.0131377	-1.36456	0.000508	-1.65397	0.041079	-1.2771
MYO7A	0.000884	0.00190961	3.19639	0.002157	3.13381	0.069714	1.79502
MYOG	0.009169	0.0089039	1.96836	0.002736	2.26199	0.194416	1.348
NARG1L	0.002034	0.0653529	1.20154	0.000299	1.57553	0.44893	1.07344
NCALD	2.73E-05	0.240428	-1.08658	4.44E-05	-1.51925	0.01613	-1.20688
NEK11	0.001855	0.555774	-1.06876	0.001864	-1.54565	0.008676	-1.40992
NELL2	0.001847	0.7344	1.05041	0.000907	-1.85767	0.014583	-1.49754

NFIB	5.90E-08	0.575276	-1.02588	4.99E-07	-1.53763	1.45E-06	-1.47572
NHEJ1	0.024075	0.196144	1.4002	0.001237	2.80741	0.339572	1.2771
NLGN4Y	0.001051	0.979368	1.00397	0.001581	-1.83906	0.013766	-1.54118
NOXA1	0.010534	0.294677	-1.11117	0.001055	-1.51055	0.268079	-1.1182
NP113496	0.001862	0.350125	1.40471	0.000318	5.70992	0.798379	-1.09559
NPC1L1	0.018121	0.00365948	3.30456	0.00356	3.32105	0.026398	2.31787
NPTX1	2.52E-06	0.000737631	1.24019	2.04E-07	1.65665	0.001425	1.21821
NPTX1	0.000836	0.195304	1.13558	0.000143	1.6603	0.023349	1.2722
NRG2	5.03E-05	0.00293417	-1.42671	1.87E-05	-1.91765	0.001968	-1.45703
NTRK2	0.015169	0.00515809	2.18663	0.002159	2.4387	0.082097	1.54514
NTSR2	0.000987	0.620582	-1.07227	0.001974	-1.71714	0.180487	1.21566
NXN	6.83E-06	0.00919076	-1.19885	3.31E-06	-1.60631	0.047893	-1.13755
ODZ1	0.022783	0.302193	1.20915	0.003462	1.89488	0.553914	1.11324
OR10C1	0.007089	0.0114036	1.75687	0.002846	2.02479	0.186845	1.30264
OR8H1	9.74E-05	0.0023053	2.02661	0.002919	1.97901	0.505648	1.13412
OR8J1	0.009454	0.281919	-1.39899	0.001722	-3.30611	0.901623	-1.03834
ORC6L	0.000828	0.312157	1,14753	0.002544	1.64084	0.618688	-1.0689
OSCAR	0.023823	0.004402	2,15859	0.002277	2.3367	0.015915	1.85328
OTUD7B	0.018289	0.0942677	1.24417	0.003388	1.54911	0.477036	1.09227
OTX2	0.034567	0 159225	1 61752	0.002182	3 46821	0 279471	1 43751
D2BX5	0.006831	0.139223	-1 20301	0.002102	-1 5/1552	0.532869	1.13751
D2RV/	0.000031	0.0364884	2 76215	0.002332	3 23222	0.052805	1 75883
	0.008083	0.00304884	2.70213	0.001331	2 91990	0.0080	1.73003
	7 465 09	0.0107331	1 02721	1 695 07	1 52702	1.065.06	1 42629
	7.40E-06	0.01509	-1.02721	1.082-07	-1.55702	1.002-00	-1.45020
	0.011976	0.00501625	1.04591	1.605.06	1.97272	0.007836	1.58925
PCNA	3.41E-07	0.360625	1.05426	1.60E-06	1.62076	9.79E-06	1.49858
PCNXL2	1.95E-05	0.38864	-1.08398	0.000249	-1.58791	0.002491	-1.40964
PCSK1	6.38E-05	0.00360661	-1.4531	0.001411	-1.53324	0.49706	1.07528
PCSK1	0.000506	0.00437896	-1.56297	0.000707	-1.77922	0.536245	-1.08463
PDCD1	0.008111	0.0047115	1.55147	0.001506	1.67989	0.039198	1.34133
PDE4D	1.07E-06	2.10E-05	-1.36731	4.14E-07	-1.58191	0.529972	1.03052
PDE5A	0.002335	0.0289424	-1.46343	0.000788	-1.98122	0.844924	1.03116
PDE7B	0.003178	0.613524	-1.131	0.002993	-2.41152	0.500407	1.17933
PDGFD	0.00602	0.963663	-1.0068	0.002943	-1.71824	0.040405	-1.39729
PDGFRL	0.001639	0.0291101	-1.82789	0.000902	-2.90269	0.51299	-1.17839
PDZRN3	0.002724	0.00323243	-1.58399	0.000254	-1.90072	0.117542	-1.23564
PFKFB2	0.019177	0.0122679	1.57327	0.003062	1.76599	0.10392	1.31101
PKD1L2	0.044208	0.0444145	-2.30081	0.00307	-3.94007	0.371723	-1.41122
PKIB	0.00013	0.00102653	-1.43584	9.23E-05	-1.62098	0.897894	-1.01108
PKMYT1	0.00029	0.178264	1.12314	0.000206	1.53103	0.000572	1.45747
PLAT	4.06E-06	0.000107522	-1.46751	1.69E-05	-1.59579	0.381508	-1.06363
PLCG2	4.63E-08	0.00228989	-1.14285	2.50E-08	-1.55413	5.99E-07	-1.39126
PLD1	4.54E-07	0.00399153	-1.22239	2.22E-07	-1.80571	6.49E-05	-1.40175
PLD1	0.002517	0.0673049	-1.34675	0.000388	-2.05489	0.03835	-1.41096
PLEKHG1	0.000167	0.768255	-1.03649	0.000142	-1.91743	0.002643	-1.56667
PLK1	6.66E-07	0.000103275	-1.35082	2.06E-07	-1.7465	0.009963	-1.17585
PLK1	7.93E-08	3.22E-05	-1.35657	5.32E-08	-1.75702	0.000817	-1.23368
PLS1	0.001541	0.0123014	-1.32097	0.0002	-1.64535	0.357098	-1.09481
POFUT1	0.000139	0.00452353	1.75558	2.90E-05	2.86272	0.64859	1.07846
POLD2	0.049598	0.119835	1.70953	0.003474	3.19352	0.299256	1.41537
POLD3	0.000133	0.0853159	1.14692	4.12E-05	1.58173	0.00055	1.40597
POP1	0.001974	0.00196145	1.4429	0.000782	1.51411	0.394718	1.08561
POTF14	0.025382	0.0153095	-3,44635	0.002238	-5,4396	0.003672	-4.83019
POU3F2	0.005204	0.0686299	-1.45268	0.000315	-2.53816	0.420681	-1.16843
POU5F1	0.001358	0.0101837	1 49478	0.000424	1.88795	0.723611	1.04896
PPARG	9 55F-06	0.000516998	-1 32802	7.85F-07	-1 75303	0.000959	-1.2998
PPM1H	0 000225	0 403321	-1.10571	0.000175	-1.85924	0.00000000	-1 57032
PPP1R1C	0.000223	0.403321	-1 01555	0.000173	-1 52942	0.002147	-1 22077
	0.000230	0.000412	-1.01555		1.52643	0.02/033	-1.23077
	2.13E-0/	2.22E-05	-1.49499	1.1/E-05	-1.53002	0.400018	-1.05309
	0.000385	0.0307404	-1.25237	0.000201	-1.05506	0.902604	1.01204
	0.00066	0.001020152	-1.07649		-1./2211	0.32/96	-1.15852
	0.000443	0.00132152	-1.31992	3.50E-U5	-1.52956	0.403517	-1.05947
PRKCBI	1.8/E-06	0.155582	-1.07968	1.69E-06	-1.54839	6.98E-06	-1.46341
PRKCE	0.002673	0.776082	-1.05383	0.001008	-2.17559	0.080509	-1.41053
PRKG1	0.000353	0.858782	-1.03838	0.000212	-2.95413	0.00238	-2.21262
PRPF39	0.000413	0.00086686	1.39097	3.13E-05	1.62307	0.124181	1.13204

PSPN	0.0012	0.00790759	1.33656	0.000463	1.54383	0.460387	1.07203
PSTPIP2	0.001326	0.0161908	-1.41956	0.000165	-1.9634	0.668389	-1.05658
PTGER4	0.000163	0.00112696	-1.46327	0.00024	-1.58628	0.167212	1.14075
PTHB1	1.38E-05	0.361359	1.07175	6.68E-05	-1.54452	0.000144	-1.49047
PTHB1	0.000205	0.606755	1.05113	0.000129	-1.68571	0.065339	-1.21088
PTPRB	0.018798	0.0285866	-2.14427	0.001729	-3.42141	0.093899	-1.74714
PTPRO	0.001064	0.0482729	-1.2073	0.00013	-1.60624	0.009772	-1.30058
PTPRZ1	0.003177	0.0928615	-1.24008	0.000533	-1.7359	0.003516	-1.53205
RAB33B	0.023029	0.0206621	1.44797	0.002526	1.69594	0.109504	1.27155
RAB6IP2	1.95E-05	0.0233083	1.38036	0.003139	-1.57898	0.002264	-1.61454
RABGAP1L	0.000907	0.266852	-1.17744	0.00028	-2.03359	0.00303	-1.68058
RAD54L	7.38E-06	0.75089	1.02292	2.59E-06	1.78402	0.000274	1.42471
RAFTLIN	2.33E-08	0.0346299	-1.08902	3.20E-08	-1.56175	3.83E-07	-1.42728
RARB	0.004284	0.595391	1.14552	0.003315	-2.48293	0.228985	-1.37119
RASGEF1C	0.003217	0.0014912	2.11989	0.000847	2.24785	0.025783	1.59502
RBMS3	0.000687	0.307194	-1.42343	0.000413	-4.94562	0.012829	-2.62965
RCOR3	0.000452	0.0180352	1.20605	6.96E-05	1.50041	0.000969	1.34556
RCP9	0.003107	0.035004	1.27538	0.000794	1.57686	0.085487	1.21146
RCP9	0.006063	0.0064915	1.44921	0.002894	1.52281	0.040023	1.29675
RGNEF	6.94E-05	2.87E-05	-1.47502	6.78E-06	-1.56869	0.001011	-1.29326
RGS1	5.36E-08	3.85E-06	-1.37497	1.13E-08	-1.72437	0.000516	-1.20611
RGS2	1.41F-05	9.08F-05	-1.45508	2.96E-05	-1.52675	0.352475	-1.06506
RGS4	0.002166	0.0733207	-1.24521	0.001124	-1.6082	0.277118	1,13568
RHOR	2 59E-05	0.00639235	-1 38804	9 40F-05	-1 50838	0.062296	1 15874
RIMBP2	0.017561	0.0174787	1 88273	0.001488	2 56163	0.002230	1 88465
RIMS2	9.54F-05	0.001/4/8/	-1 /7175	5 31F-05	-1 66125	0.017355	-1 20722
	0.000128	0.000303412	1 /022	0.00024	-1.00123	0.120026	-1.20722
	0.000128	0.000710382	1 4955	0.00024	-1.56074	0.120930	-1.15967
	0.005505	0.00430333	1.49076	0.001187	1.02597	0.172789	1,10109
	0.001175	0.967022	1.00255	0.001809	-1.7909	0.000013	-1.01025
RNF186	4.88E-05	0.810799	1.03557	0.000125	-2.21007	0.460474	1.11506
RUBUI	0.000331	0.2/1913	-1.156/3	0.000106	-2.04517	0.070291	-1.28551
RUBU2	0.001097	0./133/6	-1.05081	0.00059	-1.83835	0.001664	-1./0111
RP11-138L21.1	0.00046	0.53786	-1.0/142	0.000199	-1.//311	0.270799	-1.1338
RPS6KA3	0.00026	0.000374323	-1.48816	0.000261	-1.51435	0.000996	-1.42116
RSNL2	0.000274	0.00411444	-1.32345	0.000109	-1.56364	0.588161	-1.04511
RIN4RL1	0.002563	0.014959	1.65117	0.000895	2.168/1	0.065097	1.43159
RUNX111	0.000135	0.0098028	-1.55032	0.000258	-2.07699	0.927195	-1.01344
S100A10	0.001/32	0.70702	1.05741	0.000694	-1.928	0.960502	1.00/36
\$71486	0.001592	0.0357251	1.95695	0.003532	2.79238	0.70718	-1.1154
SAMD4A	9.94E-07	0.0930309	-1.0827	6.08E-07	-1.51372	5.29E-05	-1.30459
SCN11A	0.000602	0.646576	-1.12682	0.000166	3.91499	0.651504	1.12479
SCN9A	0.021658	0.0925611	-1.64992	0.002344	-2.8652	0.139498	-1.54279
SEMA3A	2.97E-05	0.482509	-1.19795	1.18E-05	-5.92609	0.001697	-2.72386
SEMA4A	0.004919	0.0235133	1.93996	0.001854	2.75896	0.843489	1.05291
SEPP1	0.027609	0.0393433	-2.43842	0.002044	-4.52877	0.006522	-3.54826
SERTAD1	0.000937	0.000441276	1.387	3.70E-05	1.54228	0.008991	1.23682
SESN2	0.001287	0.0047731	1.27865	4.43E-05	1.55728	0.002658	1.30802
SFRS4	0.002639	0.0310831	1.22362	0.000189	1.54944	0.054113	1.19298
SGCD	0.000129	0.155208	-1.12683	7.97E-05	-1.58359	0.000439	-1.4583
SGCG	0.001577	0.00744872	-1.90981	0.000269	-2.78325	0.063336	-1.50976
SH2B1	0.006524	0.00454091	1.42552	0.000595	1.60013	0.001682	1.5069
SH3D19	2.19E-05	0.0684243	-1.14248	1.39E-05	-1.59546	0.001017	-1.33196
SHRM	1.02E-05	0.00127741	-1.45903	0.000625	-1.51369	0.168258	1.14172
SIAE	0.02684	0.0998162	-1.26082	0.003275	-1.60873	0.612691	-1.06988
SIGLEC5	0.001552	0.0152117	1.602	0.001277	2.00637	0.539974	-1.11082
SIGLEC8	0.023021	0.0296166	1.86578	0.001365	2.84894	0.051864	1.72545
SLC29A2	0.006798	0.00268354	1.67138	0.003462	1.63992	0.679941	1.05933
SLC39A10	0.005077	0.0254269	-1.30611	0.000639	-1.61422	0.099796	-1.20529
SLC45A3	9.20E-08	6.73E-05	-1.23616	7.54E-08	-1.50828	0.000178	-1.20944
SLCO3A1	1.09E-05	0.389912	-1.05311	1.06E-05	-1.51989	0.000187	-1.36029
SLURP1	0.009415	0.00170764	3.75013	0.00133	3.92644	0.024734	2.32616
SMG1	0.001871	0.25098	1.1425	0.002053	1.54099	0.566136	-1.06733
SMYD4	0.009692	0.079459	1.2626	0.001758	1.62721	0.182924	1.18768
SNTB1	0.000553	0.440731	1.09844	0.000582	-1.72449	0.012556	-1.41233
SOCS4	0.007104	0.793635	-1.03092	0.001997	1.56427	0.042712	1.29434
SOCS6	0.000236	0.000183626	-1.35595	1.20E-05	-1.50413	0.007598	-1.20136
						-	

SORBS2	0.000128	0.719729	1.04649	0.000341	-1.8426	0.013259	-1.43191
SORBS2	0.002791	0.497087	-1.14601	0.000704	-2.40909	0.058795	-1.50127
SOX21	0.005812	0.00321729	2.00183	0.002572	2.04884	0.161334	1.32635
SOX8	1.51E-05	0.000732897	-1.33648	2.32E-05	-1.53688	0.000589	-1.34739
SPATA1	0.014515	0.00650269	2.46834	0.002993	2.77154	0.107811	1.61251
SPATA6	0.000134	0.0517139	-1.14219	7.16E-06	-1.58744	0.004058	-1.24358
SPTI C21	0.002388	0.681169	-1.14448	0.001005	-3.98731	0.003583	-3,18013
ST8SIA1	9.08F-06	0.350837	1.07875	5.16F-05	-1.61305	0.000313	-1,4769
STARD13	0 000994	0.0219628	-1 38032	0.000323	-1 83952	0.020504	-1 38663
STARD13	2 40E-05	0.0213028	-1 /66	4 53E-06	-2.07826	0.020304	-1 32167
STK32B	0.00044	0.52/969	-1.400	4.551-00	-2.07820	0.002248	-1.32107
STON1	5 955 05	0.324303	-1.11001	1 545.05	-2.31030	0.002248	1 20197
	7.91E-09	0.0137723	-1.22009	1.340-09	1 60696	2.625.06	-1.30187
	7.811-08	0.00303913	1 24627	4.80L-08	-1.00090	0.000208	-1.37313
	5.10E-00	0.00155035	-1.24037	8.38E-07	-1.04807	0.000308	-1.311
SULTIAI	0.005561	0.0960225	1.24841	0.000961	1.70438	0.912205	-1.01392
SULTIAZ	0.000175	0.0133964	1.3929	0.000253	1.79035	0.21536	-1.10139
SULTIA4	0.002124	0.298064	1.12088	0.00093	1.57979	0.220193	-1.14533
SULIZAT	0.00013	0.00205013	2.68027	0.000289	3.55/15	0.404488	1.24303
SUV420H2	0.000447	0.0104386	1.29616	3.1/E-05	1./3633	0.00699	1.32034
SYT15	0.005252	0.00746931	1.42089	0.000604	1.6551	0.697788	1.04447
SYT6	0.000688	0.00098824	1.42855	0.000169	1.55657	0.330156	1.08731
T15787	0.006492	0.00393566	2.63414	0.001224	3.14007	0.152084	1.51633
TARP	0.003677	0.575948	1.20023	0.000344	4.79225	0.024157	2.26727
TASP1	4.73E-05	0.00212833	-1.31094	9.35E-06	-1.66209	0.000326	-1.41252
TBL1X	2.34E-06	0.160686	-1.09105	8.77E-07	-1.70926	2.91E-05	-1.46106
TBL1Y	0.000805	0.430578	-1.11854	0.002002	-1.71532	0.003045	-1.66182
TCP10L	0.00189	0.00927046	1.43812	0.001434	1.62096	0.804543	-1.03014
TCP10L2	0.023916	0.00531188	1.48297	0.002421	1.55858	0.045375	1.29578
TDRKH	0.022734	0.0503475	-1.30891	0.002148	-1.6185	0.766999	-1.03823
TFF2	0.00248	0.00839972	1.69904	0.001474	1.99401	0.494263	1.12603
TFR2	0.002414	0.00164009	1.7468	0.001529	1.75625	0.138208	1.2452
TGFBR3	0.001301	0.01974	-1.39382	0.000289	-1.86392	0.019847	-1.39331
THBD	0.000325	0.00884391	-1.31079	0.000368	-1.52901	0.015656	-1.2763
THBS1	8.76E-05	0.00165093	-1.94916	5.65E-05	-2.72491	0.268425	-1.21154
THC2269172	2.09E-06	0.00254112	1.39407	0.000348	1.53918	0.012132	1.2945
THC2277195	1.10E-05	0.329123	-1.07837	5.55E-06	-1.77023	0.000163	-1.49151
THC2278340	0.03398	0.0114349	2.76965	0.001941	3.84957	0.084037	1.9031
THC2279352	5.94E-06	0.0019961	-1.23869	4.67E-07	-1.70117	0.000164	-1.34075
THC2280006	0.007075	0.00794377	1.65683	0.002284	1.84522	0.683191	1.06869
THC2281914	0.005219	0.00168154	1.92485	0.002984	1.82826	0.075168	1.37285
THC2290729	0.008559	0.0187864	1.87701	0.002611	2.40449	0.00227	2.44785
THC2305336	0.035307	0.399737	1,28391	0.003514	2.81842	0.925819	1.02759
THC2313599	0.00516	0.00620152	1.50661	0.00137	1.6692	0.470771	1.09654
THC2314643	0.000145	0.000642433	-1.39849	2.28E-05	-1.63165	0.072444	-1.15546
THC2315566	0.007165	0.0389717	2 03892	0.002941	3 13595	0 979326	-1 00817
THC2316063	0.010958	0.0484462	1 69484	0.001169	2 76196	0.413307	1 22577
THC2316281	0.010558	0.0404402 0 34702	-1.12336	0.001215	-1.65049	0.044308	-1 30666
THC2317817	0.000302	0.07820	1 96624	0.003699	2 64017	0 304614	1 33622
THC2318873	0.003303	0.027029	2 / 282/	0.002526	2.04017	0.073265	1.53022
THC2343242	0.005741	0.00233037	-1 01211	0.002520	4 0459	0.573205	-1 28829
THC2343242	0.00302	0.372324	-1.07072	0.002039	-7 30082	0.0/3509	-1 52/17
THC2343897	0.001888	0.72080	2 016/0	0.000778	6 26456	0.100014	2 00802
THC2350025	0.030000	0.190707	1 07196	0.003002	4 55107	0.199014	1 00049
THC2364779	0.01450	0.859082	1.0/180	0.001889	4.55107	0.824080	1.09048
THC2274600	0.00/9/	0.00522934	1.8833	0.003005	1.95537	0.24089/	1.25403
TUC2279400	0.010306	0.199891	-1.45678	0.00322	-2.76544	0.242534	-1.40624
1HL23/8409	0.003447	0.0128016	2.04523	0.000479	3.19345	0.01/83/	1.95761
1HC2378994	0.002708	0.326883	-1.66151	0.002898	6.36341	0.322238	-1.67001
THC2379691	0.014416	0.00330416	1.80727	0.001778	1.90993	0.126695	1.30451
FHC2380080	0.002162	0.00275474	3.53002	0.000755	4.50337	0.694149	1.14497
THC2382784	0.001972	0.0157584	1.32185	0.000206	1.68344	0.132359	1.17392
THC2383841	0.015307	0.0350028	1.57035	0.002707	2.04344	0.940209	1.01465
THC2386962	7.83E-06	3.40E-05	1.38961	5.82E-07	1.63456	0.000493	1.27494
THC2398929	0.000832	0.882574	1.02426	0.000447	2.13778	0.628931	-1.08197
THC2404289	0.000676	0.00191885	-1.49569	9.44E-05	-1.79274	0.141154	-1.17405
THC2404671	2.10E-05	0.0107213	-1.25491	3.38E-06	-1.83754	0.000178	-1.49403
THC2405192	0.023706	0.846945	-1.0886	0.003365	4.79888	0.251418	1.67982

THC2405620	0.001899	0.266444	-1.14631	0.003681	1.52371	0.86393	1.02072
THC2406026	2.77E-06	0.000173222	1.33626	7.89E-07	1.65401	0.238206	-1.06955
THC2407002	0.027896	0.0103003	2.02426	0.00318	2,34626	0.075523	1.57067
THC2407039	0.000834	0.0278955	-1 42389	0.001152	-1 8202	0.90806	1 01681
THC2407115	0.000303	0.0402581	-1 30467	4 68E-05	-2 04547	0.049504	-1 28746
THC2407115	0.000303	0.0780678	1 42060	0.001205	1 500/	0.043304	1 20027
THC2408233	0.00801	0.00780078	1.42005	0.001203	2 15022	0.007012	1.50037
THC2408432	0.005127	0.0139613	1.57891	0.000401	2.15923	0.007912	1.05749
THC2408803	0.004428	0.0815769	2.30878	0.002081	5.58429	0.18838	1.84/5/
THC2409569	0.006747	0.00192699	1.65974	0.001562	1.68476	0.298517	1.14956
THC2413163	1.28E-08	1.28E-06	-1.44967	7.23E-08	-1.62277	0.028445	-1.10977
THC2440296	0.003693	0.459597	-1.13825	0.000808	-2.12196	0.007702	-1.71859
THC2442514	0.000157	0.198744	-1.13053	0.000615	-1.51361	0.327131	1.09651
THC2445939	0.001108	0.220524	1.15826	0.003307	-1.51476	0.075615	-1.2474
TIGD1	0.036986	0.0139866	1.67983	0.002005	2.03191	0.041236	1.51068
TKTL1	0.014991	0.0139196	-1.47511	0.00165	-1.7254	0.465169	-1.10732
TLR2	0.000577	0.0108388	-1.34787	0.000371	-1.62413	0.119594	-1.18074
TM4SF4	0.012453	0.00301337	-1.94854	0.002561	-1.9801	0.00858	-1,75936
TM7SF4	1 64F-05	0.00138659	-1 3988	3 15E-05	-1 68851	0.00601	-1 31034
TMCC3	0.014735	0.365519	-1 20644	0.002118	-2 17677	0.00001	-1.06996
тыссэ	0.014733	0.00504221	2 14170	0.002118	2.11077	0.021715	1 742
	0.005006	0.00594331	-2.14179	0.000204	-5.51875	0.031715	-1.742
TIMEIMIZ3	1.94E-06	0.132242	-1.08349	1.88E-06	-1.52902	0.000923	-1.2419
TMEM71	0.000176	0.00467428	-1.37775	1.99E-05	-1.86998	0.004687	-1.37756
TMEM79	4.55E-05	0.000896342	1.35474	1.40E-05	1.62653	0.536882	-1.04505
TNFRSF19L	3.20E-05	0.00100854	1.23784	1.48E-06	1.54199	8.81E-05	1.33068
TNK2	0.00999	0.00157638	1.84375	0.003521	1.72477	0.00917	1.59536
TOR3A	0.005052	0.495356	1.08	0.002559	1.51471	0.005328	1.44988
TPD52L1	0.000134	0.00141846	-1.30188	1.44E-05	-1.56512	0.026908	-1.17507
TPST1	1.89E-08	8.91E-05	-1.25832	5.05E-08	-1.60997	0.01489	-1.11979
TRAM111	0.01034	0.0295396	-1.47362	0.002544	-1.81521	0.202129	-1,23601
TRPC7	0.010108	0.0604595	-1 70238	0.002498	-2 65766	0.909212	1 03035
TRIC/	0.010100	0.0004555	1.70230	0.002450	1 7816	0.005712	1.03033
	0.000320	0.571021	1.42624	0.000782	1 92204	0.003712	-1.34403
TTC20	0.043913	0.0501552	-1.42034	0.002937	-1.83394	0.02881	-1.49926
11028	0.005754	0.899679	-1.0198	0.002651	-1.77653	0.53036	1.10338
TTTY2	0.02646	0.0166219	-2.21613	0.001971	-3.08573	0.064026	-1.79258
TULP3	0.000623	0.00136948	1.35791	4.29E-05	1.58638	0.323873	1.07898
TXNL4B	0.005299	0.0079864	1.31071	0.000255	1.54639	0.109641	1.1586
TXNL4B	0.011934	0.0601986	1.25199	0.000994	1.59693	0.139058	1.18726
U82313	0.006835	0.00867257	2.5354	0.002467	3.10552	0.536126	1.20834
UBN1	0.000417	0.00311657	1.25119	1.54E-05	1.5258	0.017428	1.18238
UCP3	0.008858	0.00768938	1.58609	0.002111	1.75569	0.827932	1.03258
UGT3A1	0.007423	0.00147983	3.13911	0.002286	2.93456	0.151382	1.53391
UNO6411	0.006775	0.0034328	2 48162	0.000949	2 9674	0.073668	1 63282
	0.000593	0.0027/817	2.10102	0.001197	2 26256	0.864107	1.03202
	0.000333	0.00274017	1 22625	0.0001137	1 7/272	0.004107	1 20222
	0.003388	0.0313031	1.32033	0.00044	1.74372	0.014301	1.39233
UPF3B	0.001419	0.0795337	1.10704	0.000233	1.5195	0.015779	1.25510
URUCI	0.025565	0.0218067	-3.16087	0.001904	-5.63348	0.00946	-3.84795
USP37	5.59E-06	0.000144708	1.30193	1.65E-07	1.67976	6.22E-05	1.33613
USP37	0.000269	0.00281169	1.34784	2.86E-05	1.68189	0.013793	1.25842
UTP14A	0.00157	0.000892592	1.48111	0.000295	1.56927	0.409654	1.07958
VEGFC	2.12E-06	9.30E-05	-1.46084	2.65E-06	-1.72715	0.114676	-1.11886
VN1R4	0.029161	0.536547	1.15538	0.003465	2.27838	0.757206	1.07444
VPS13D	0.004754	0.532899	1.07845	0.003598	-1.52856	0.019161	-1.3745
VTI1A	1.40E-05	0.939291	1.00519	2.56E-05	-1.55095	0.000329	-1.39142
VWCE	0.000737	0.370115	1.08448	0.000356	1.53434	0.009342	1.30894
WBSCR17	0.001718	0.00165059	1.91772	0.001812	1.90169	0.002158	1.87231
WDR35	0.016058	0.0399334	-1.25952	0.001032	-1.53832	0.014349	-1.33172
WDR76	0 000437	0 467679	-1,10707	0.001891	1,71106	0.004186	1 61287
WDR78	0.000437	0.202000	-1 1/226	0.000603	-1 75021	0.020107	_1 29967
	1 055 06	0.230330	1.14250	2 1 5 5 0 6	1.00E01	0.020107	1 26270
	1.925-00	0.000553576	-1.43707	5.13E-00	1.55351	0.001836	-1.362/9
WWUX	4.84E-05	0.781687	-1.02038	4.66E-05	-1.55351	0.000903	-1.36538
X51602	0.02134	0.0393482	2.27232	0.001343	4.36656	0.466884	1.30577
x58809	0.01429	0.020226	1.47456	0.002611	1.73182	0.114218	1.28058
XIST	0.008216	0.0012046	-1.69023	0.001329	-1.6786	0.017468	-1.40937
XPR1	0.000272	0.460837	-1.06423	0.000219	-1.53042	0.004485	-1.32969
XRCC3	0.023923	0.00780911	1.61104	0.003604	1.71516	0.036812	1.42097
ZBTB1	0.008678	0.00449095	1.6647	0.001141	1.85938	0.314677	1.16578
ZNF177	0.000459	0.00134303	1.68159	0.001705	1.65379	0.491641	-1.09287
-----------	----------	------------	---------	----------	----------	----------	----------
ZNF318	0.00664	0.0168804	1.3631	0.002182	1.54286	0.309481	1.12588
ZRANB3	0.001121	0.607912	1.11625	0.003114	-2.15864	0.002656	-2.19827
tcag7.981	0.000486	0.841617	1.01621	0.000217	-1.50761	0.002165	-1.35798

Tabela 2-A2 - Genes do grupo B do Diagrama de Venn

			Fold-		Fold-		
	p-value		Change		Change	p-value	Fold-Change
	(Treatment	p-value (Carb vs.	(Carb vs.	p-value (Carb UV	(Carb UV	(DMSO UV	(DMSO UV
GeneName	group)	DMSO)	DMSO)	vs. DMSO)	vs. DMSO)	vs. DMSO)	vs. DMSO)
AASDH	0.007099	0.000928731	1.63634	0.00200096	1.55869	0.177061	1.17586
ABHD4	3.02E-06	1.14E-06	1.53847	3.62E-07	1.61522	0.002334	1.20264
ADAM19	4.62E-07	6.20E-05	-1.59915	1.82E-06	-1.9567	0.157876	-1.12504
ADAMTS1	0.001279	0.000224205	-1.94314	0.000655579	-1.79168	0.380175	-1.1236
ADAMTS1	0.003577	0.000530305	-1.88402	0.00156003	-1.73375	0.335648	-1.14533
ADRA1B	2.59E-05	0.000814091	-1.99651	0.00089075	-1.98059	0.037029	1.44142
ADRA1B	7.66E-08	3.79E-05	-1.77187	2.29E-06	-2.13602	0.110514	1.16856
ADRB2	4.99E-06	0.000823411	-1.56549	0.000256839	-1.67756	0.776177	1.02987
AKR1B10	4.45E-07	3.80E-07	2.01051	1.15E-06	1.87646	0.144106	1.11598
AMZ1	1.38E-06	2.39E-05	-1.92499	2.10E-05	-1.94162	0.647371	-1.04734
ANGPTL4	4.99E-09	7.74E-07	-2.22063	5.30E-07	-2.28559	0.181166	1.12941
ANKRD20A2	0.014463	0.00106687	-1.77946	0.00218209	-1.68625	0.012989	-1.4803
AY203928	0.000139	1.01E-05	1.62588	3.96E-05	1.52503	0.020085	1.19664
AY358234	0.001219	0.000924189	1.89662	0.000355934	2.05718	0.002205	1.76589
A 23 P113453	5.50E-06	2.16E-05	-2.16919	4.15E-06	-2.49433	0.154578	-1.19159
A 23 P170719	1.44F-08	3.80F-06	-2.11347	1.32F-06	-2.29054	0.090162	1,18838
A 23 P206826	1.11E 00	0.000203636	1 53885	8.43F-06	1 83342	0.890539	1 0116
A 23 P57836	7 59E-06	3.06F-06	-1 8142	2 05E-06	-1 85729	0 147629	-1 11959
A 32 P152696	6 59E-07	1 14F-05	-1 62046	1 22E-06	-1 82298	0.004965	-1 26015
Δ 32 P157671	2 80E-08	2 63E-07	2 18948	5.64E-07	2 0755	0.004303	-1 02394
	5 61E-05	6.67E-05	-2 1615	5.04E 07	-2 20362	0.701404	-1 178/19
BEX1	9.52E-06	1.88E-05	-1 92607	J.51E-05	-1.81781	0.220030	1 00596
	2.66E.05	7 255.06	1 9671	1 205-05	1 91177	0.145022	1 12270
	2.00L-0J	7.33E-00	4 70272	2 215 07	-1.01177	0.145032	1 15002
DX040045	1.01E-07	0.46E-07	4.70575	3.21E-07	5.22177	0.364629	-1.15902
C14orfCE	1.42E-07	5.22E-07	4.90541	2.56E-07	1 52274	0.409976	-1.15222
C140(105	0.000648	0.000127795	-1.51004	9.172-05	-1.53374	0.005835	-1.10249
C160/128	4.00E-06	3.54E-00	1.81138	5.12E-07	2.04253	0.072987	1.15012
C160/1/3	8.94E-06	9.08E-05	-1.75303	4.01E-06	-2.18338	0.402238	-1.08904
Clorf165	0.00035	0.000469348	-1.67486	4.99E-05	-1.94771	0.154606	-1.17919
CIOFI63	9.01E-05	0.00031223	1.5111	0.000141866	1.57232	0.232283	-1.10959
C70ff29	1.95E-05	7.69E-05	-1.59844	7.14E-05	-1.60461	0.623611	1.04112
C90rf140	1.21E-09	2.55E-08	-1.65799	2.34E-09	-1.86645	0.001607	-1.17495
C90F161	6.39E-07	3.97E-06	-1.81851	5.83E-06	-1.//86	0.762482	-1.02351
CARD12	0.000538	6.30E-05	3.70161	0.000377436	2.90469	0.121502	1.43907
CB852269	0.001217	0.000468016	-3.26146	0.000280929	-3.51621	0.022387	-1.91812
	1.56E-05	0.000185191	-1.9305	5.51E-06	-2.59731	0.032116	-1.35011
СНМР6	0.001549	0.000563362	2.20794	0.000120813	2.58642	0.099345	1.3558/
CLCA2	0.000883	0.000494644	-1.86243	0.000389465	-1.89/18	0.088162	-1.27685
CLN8	0.002222	0.000768482	1.8086	0.000545241	1.85675	0.372657	1.13068
CR593560	1.56E-05	3.92E-05	-1.90001	0.00122671	-1.53388	0.082781	1.21247
CSF1	0.0028	0.000737909	1.65368	0.00108171	1.61382	0.085219	1.23378
CX3CL1	1.52E-05	0.000121195	-1.6259	5.60E-05	-1.69773	0.772132	1.02617
CXADR	3.44E-06	1.32E-05	-1.65982	4.01E-05	-1.57029	0.709744	-1.02773
CXCL1	1.22E-06	3.67E-06	-3.20466	2.10E-05	-2.65832	0.176661	1.2318
CYR61	2.09E-06	5.08E-05	-1.84203	6.76E-08	-3.19007	0.002817	-1.45162
CYR61	6.85E-06	4.33E-05	-1.9467	2.05E-07	-3.0778	0.002712	-1.49433
CYR61	4.36E-05	0.000103422	-2.1975	1.76E-06	-3.30324	0.01361	-1.49315
DDAH1	1.16E-05	6.87E-05	-1.57277	1.02E-06	-1.99716	0.008405	-1.27148
DFNB31	1.97E-05	1.77E-05	-1.52431	2.42E-05	-1.50379	0.941945	-1.00459
DKK1	6.22E-05	0.000186988	-1.81361	9.62E-05	-1.90004	0.377752	-1.10826
DNAJB4	0.000176	0.000823584	1.86703	0.000688575	1.89426	0.700115	1.0572
DNAJB9	4.91E-08	4.13E-08	2.37051	4.07E-07	2.0154	0.842795	1.01447
DNM3	1.34E-09	1.98E-07	-1.71868	5.59E-10	-2.48516	0.000353	-1.28708
DSCR6	8.98E-06	0.000171971	-1.59018	4.49E-06	-1.97557	0.959491	1.0045

DUSP10	0.000162	7.77E-05	-1.74887	0.00058783	-1.55466	0.502271	1.06826
DUSP10	0.000183	6.18E-05	-1.86267	0.000718331	-1.59499	0.681618	1.04452
E2F5	6.74E-07	3.67E-06	-1.97776	1.11E-07	-2.57707	0.009791	-1.29786
EFHC2	5.53E-06	1.82E-06	-1.58504	1.16E-06	-1.61727	5.31E-05	-1.38757
ELOVL4	0.005943	0.000867705	-1.55812	0.00124734	-1.52617	0.107978	-1.1914
EMILIN3	0.007866	0.00099528	1.59304	0.000937145	1.59892	0.033253	1.29581
ENC1	3.16F-05	0.000132191	-1.77256	1.40F-05	-2.07039	0.016669	-1,33413
ENST0000258817	0.000133	0.000901424	1.85485	0.00172956	1.76132	0.736284	1.04986
ENST00000236881	9 38F-05	6 29E-06	-2 31053	0.000302678	-1 73683	0.195274	-1 16306
ENST00000320001	9.00E-06	1.00E.05	1 72750	2 785.06	1 86072	0.101/2	-1.10300
	0.000	0.000596104	1 67/29	0.000454354	1 70222	0.10143	1 0101
ENST00000356550	0.0008	1 705 05	-1.07428	0.000434234	-1.70225	0.808001	1.0191
ENST0000366784	1.01E-05	1.78E-05	-2.05729	0.000229834	-1.72561	0.147039	1.1//42
ENS10000366930	3.84E-05	0.000248674	-2.1///9	1.14E-05	-2.96369	0.012007	-1.56581
ENST00000370238	4.30E-10	2.29E-09	2.164	1.00E-08	1.97069	0.297955	-1.05492
ENST00000370611	1.78E-06	8.50E-05	-1.64667	8.08E-06	-1.89293	0.735677	1.03017
ENST00000370611	2.04E-06	0.000259797	-1.50049	4.61E-05	-1.63647	0.738049	-1.02758
ENST00000371528	9.80E-06	0.000141284	-2.04386	0.000922063	-1.76741	0.13483	1.23276
ENST00000375077	3.35E-06	1.68E-05	-1.60247	3.38E-07	-1.99014	0.003072	-1.28762
ENST0000381827	2.35E-07	1.69E-05	-1.6301	5.51E-05	-1.53953	0.358954	1.07006
ESR2	2.27E-05	0.000432353	-1.53183	4.17E-06	-2.02069	0.003964	-1.37121
FAM46B	0.000234	0.000595853	-1.65915	9.00E-05	-1.88173	0.984697	-1.00215
FBXO30	2.29E-05	2.80E-05	1.51376	8.11E-06	1.60092	0.894513	1.00863
FLI14834	5.91E-08	1.13E-05	-1.58775	2.41E-07	-1.95108	0.699702	-1.02579
FOS	5 30F-06	0.000433412	-1 81194	0.000163838	-1 94819	0 256329	-1 15904
FUT1	5.50E 00	2.46E-05	-1 59/82	8 26F-05	-1 50682	0.142145	1 11712
6052	7.565-06	5.67E.05	2 01005	5 265 06	2 45248	0.142145	1.11712
	1.425.00	5.072-05	-2.01905	5.202-00	1 67260	0.019980	1.00079
GADD45B	1.43E-09	5.26E-09	-2.21083	0.03E-07	-1.07209	0.005500	1.02909
GCLIM	2.46E-07	3.24E-06	2.1/8/5	1.98E-06	2.26289	0.905596	-1.01169
GPR37	5.31E-05	0.000196426	-1.5303	1.82E-05	-1./3531	0.153408	-1.13082
GPR4	0.000298	0.000746842	-1.65757	0.000334971	-1.74738	0.604923	-1.0617
GTPBP5	0.000102	0.000510221	1.52472	4.46E-05	1.74631	0.022041	1.26574
H1F0	0.000677	5.13E-05	-2.45979	0.00139831	-1.83418	0.312713	-1.16745
HEYL	2.66E-09	8.40E-08	-2.0842	2.85E-09	-2.69449	0.063392	-1.1406
HMOX1	1.69E-09	2.97E-08	2.46462	1.67E-08	2.58357	0.232772	-1.09465
HS3ST3A1	2.76E-07	2.59E-05	-2.01284	1.62E-06	-2.51422	0.474469	1.08159
HSPA1L	0.000931	0.000313454	1.65933	0.00115281	1.53704	0.622527	1.05259
HSPA6	0.000153	0.000296255	-1.65027	0.000928151	-1.54433	0.505298	1.07085
HYPE	9.61E-07	4.87E-07	2.0168	3.52E-06	1.78798	0.924332	-1.00703
ID1	5.27E-09	1.39E-08	-2.06278	5.47E-10	-2.61197	0.002726	-1.22499
ID2	0.000546	0.00021652	-2.10361	0.000742325	-1.8964	0.86974	1.02418
ID2	1.53E-05	1.03F-05	-2.06804	2.90F-05	-1.92217	0.852409	1.01927
111	1.87E-08	9 59E-07	-2 21953	6 78F-05	-1 68129	0.030869	1 23831
116	9.465-06	9.25E-06	-2 26326	3.04E-05	-2 06033	0.544544	1.23031
ITLN2	2 38F-05	0.000580798	-1 51656	5.04E 05	-1 99358	0.344344	1.07203
	2.381-03	6 225 06	1.51050	3.78L-00	1 6 41 21	0.465785	1.00084
	9.00E-07	0.23E-00	-1.55455	1.90E-00	-1.04121	0.141303	-1.09551
KUNFI	9.97E-07	2.93E-00	-2.37419	4.41E-07	-2.81397	0.122983	-1.19125
KIAAU888	9.17E-05	0.000278619	-1.65646	0.000213595	-1.6832	0.853388	1.019
KIAA1822	0.000358	0.000424663	1.61082	0.000184119	1.69292	0.203903	1.14239
	3.35E-07	2.91E-06	-1.59041	9.21E-06	-1.51306	0.950248	1.00361
LAYN	3.31E-07	1.49E-06	-1.61185	2.36E-06	-1.57902	0.588531	-1.0308
LIF	0.000112	3.91E-05	-2.63892	0.000593877	-2.03462	0.951992	-1.0095
LMO2	0.000185	0.000254065	-1.62601	2.73E-05	-1.86303	0.079216	-1.19982
LOC201164	6.18E-11	3.47E-10	-1.95827	1.24E-09	-1.82632	0.285	1.04151
LYPD1	2.48E-07	8.53E-07	-1.59505	2.49E-06	-1.52439	0.253405	1.06263
MAFB	4.84E-07	5.10E-07	-2.06152	6.19E-06	-1.76721	0.130292	1.12909
MALL	8.98E-06	2.43E-05	-1.53411	1.27E-06	-1.7744	0.027276	-1.17612
MCHR1	9.49E-06	5.22E-05	-2.07785	0.000447024	-1.77174	0.541353	1.07809
MIS12	5.08E-07	9.74E-07	1.53432	1.93E-07	1.64467	0.004428	1.17851
NFE2L3	2.41E-05	0.000815754	-1.5362	0.000550405	-1.57031	0.452405	1.0781
NGFR	6.71E-06	0.000508468	-1.67547	0.000932058	-1.61258	0.144213	1.18685
NR0B1	0.000267	3.06F-05	1.96877	0.000158028	1.76141	0.188001	1,15735
NR4A3	4.14F-08	1.96F-07	-1.70263	4.46F-07	-1.63785	0.83952	-1.01047
NTNG1	3 74F-05	1 99F_05	3 82822	0 00342072	2 05611	0 747563	-1.0675
	5.74L-05	0.000507366	-1 5/185	2 USA	-1 8500	0.695629	-1.0075
OKI38	7 200 11	Q 77E 11	2 0504	2.0JL-0J 6 7/E 11	2 1100	0.000020	1 24702
	1.55E-11	0.2/E-11	1.0504	0./4E-11	1 20005	0.001339	1.24/93
PARF12	1.10E-07	2.89E-07	-1.8/942	5.05E-07	-1.80905	0.520486	-1.04179

PCDH20	7.91E-07	4.76E-05	-1.50612	7.62E-06	-1.64016	0.752783	1.0216
PDGFC	3.35E-06	0.000712445	-1.99956	1.03E-06	-4.01956	0.007416	-1.63868
PHLDB2	3.19E-06	3.14E-05	-1.63177	6.78E-07	-2.04391	0.007983	-1.27241
PLEKHA6	1.07E-05	1.50E-05	-1.77393	3.57E-06	-1.93727	0.011934	-1.27554
PLK2	8.31E-05	3.61E-05	-1.64357	8.75E-05	-1.57066	0.932606	1.00677
PRTG	4.92E-06	2.03E-05	-1.52912	1.24E-05	-1.56303	0.090448	1.12274
PTX3	1.94E-05	5.57E-05	-2.03332	0.000278486	-1.80704	0.470952	1.0909
RASGEF1B	6.48E-05	0.00019921	-2.20523	0.00102663	-1.90834	0.041353	1.40927
RASGRP2	0.002247	0.000969624	1.7854	0.000721215	1.82621	0.13184	1.24135
RGMB	8.81E-05	8.08E-05	-1.62591	0.000317402	-1.51523	0.794905	-1.02241
RGS16	5.08E-07	5.53E-06	-1.8748	4.38E-07	-2.2275	0.753322	1.02659
SHC4	9.99E-07	4.22E-07	-1.543	5.02E-07	-1.53234	0.001183	-1.20439
SLC7A11	1.32E-05	2.70E-05	2.81095	0.000171033	2.32689	0.217472	-1.22767
SLC7A11	1.60E-06	7.36E-06	2.6551	6.28E-05	2.1851	0.038708	-1.3535
SMG1	0.000643	0.000211126	1.79536	0.000280728	1.7611	0.138514	1.1943
SNF1LK	2.69E-05	6.94E-06	-1.64687	1.12E-05	-1.60853	0.272005	-1.07925
SPOCD1	8.71E-08	4.50E-07	-1.62136	8.25E-08	-1.75853	5.16E-05	-1.35279
SPOCD1	1.09E-05	0.000300467	-1.72092	0.000305741	-1.71898	0.00427	-1.46258
SPRY1	6.60E-09	2.35E-08	-1.95166	2.30E-09	-2.27113	0.11028	-1.09427
SRXN1	6.31E-12	4.66E-10	1.75147	3.61E-11	2.00917	0.262988	1.03718
SSTR2	0.000245	0.00103148	-2.86904	0.00055463	-3.13049	0.849685	-1.04861
TAGAP	0.001583	0.000228454	-2.11316	0.00153396	-1.8015	0.001825	-1.7765
TFAP2B	0.000127	0.000172108	-1.72055	0.000356986	-1.64542	0.644158	-1.04918
THC2283468	0.000426	9.25E-05	-1.81935	0.00107795	-1.5612	0.884563	-1.01557
THC2343678	0.00021	0.000301531	-1.88491	4.82E-05	-2.18021	0.579779	-1.07458
THC2378620	0.004013	0.00045898	1.63492	0.00105595	1.55602	0.001692	1.51416
THC2412623	0.000648	0.000886678	-2.24455	0.00298789	-1.98106	0.601377	1.10396
THC2431327	0.000166	0.000834088	2.97037	2.06E-05	5.26223	0.656234	1.11896
TIMP3	0.000156	0.000407474	-1.72492	4.20E-05	-2.02469	0.007977	-1.43051
TMEM22	0.000121	7.85E-05	-1.50057	7.24E-05	-1.50601	0.368946	-1.06692
TMEM39A	2.32E-07	1.77E-07	1.82869	2.89E-06	1.59069	0.098671	-1.10655
TMEPAI	9.37E-07	1.33E-05	-1.59985	5.07E-05	-1.50473	0.654325	-1.03106
TMEPAI	1.64E-09	4.36E-09	-1.85523	6.30E-09	-1.81924	0.439278	-1.03385
TRIM16	6.17E-07	4.75E-06	2.11345	7.54E-06	2.04382	0.83018	-1.0212
TRPV6	0.000404	0.000728132	2.17469	0.000220061	2.45675	0.248564	1.23297
TUBB2B	2.00E-09	2.45E-08	-2.03625	1.41E-07	-1.83595	0.006221	1.20277
WNT6	5.86E-07	9.60E-05	-1.50096	2.09E-06	-1.82441	0.160133	-1.11215
XBP1	6.40E-12	7.31E-11	1.62728	2.42E-10	1.55179	5.45E-06	-1.19444
ZBTB24	0.000419	0.000384228	-1.73652	0.00140198	-1.59619	0.419091	1.09944
ZNF177	3.61E-05	2.48E-05	1.91631	7.72E-05	1.77888	0.26024	1.12317
ZNF469	5.27E-06	1.98E-05	-1.67015	1.24E-05	-1.71292	0.366229	-1.0737

Tabela 3-A2 - Genes do grupo C do Diagrama de Venn

	p-value	p-value	Fold-Change	p-value	Fold-Change	p-value	Fold-Change
	(Treatment	(Carb vs.	(Carb vs.	(Carb UV	(Carb UV vs.	(DMSO UV	(DMSO UV vs.
GeneName	group)	DMSO)	DMSO)	vs. DMSO)	DMSO)	vs. DMSO)	DMSO)
ADAR	0.000665	0.000973	-1.59655	0.01416	-1.36286	0.094502	1.21655
AF119900	0.008606	0.000953	9.78216	0.803439	1.14288	0.445909	1.5123
AK055529	0.000944	0.000706	1.55303	0.002473	1.45004	0.358515	-1.09753
AK090803	3.05E-05	0.000498	-1.53553	0.007705	-1.33689	0.008147	1.33325
AK123450	1.42E-05	0.000152	-1.58611	0.000795	-1.45886	0.053977	1.19881
ARMET	1.16E-05	1.63E-05	1.59619	0.000759	1.35369	0.275852	-1.08033
ASPHD2	1.05E-05	6.93E-06	-1.6449	0.001426	-1.31271	0.432223	1.05517
AW444553	9.27E-05	5.72E-05	-4.3276	0.036644	-1.76633	0.833765	1.05327
A_24_P290348	1.05E-05	1.67E-06	1.63694	5.43E-05	1.41461	0.001765	1.25584
A_24_P490463	0.000145	1.67E-05	2.79328	0.010784	1.5673	0.523716	1.10288
A_24_P558070	0.005541	0.000683	2.15964	0.009903	1.68104	0.002667	1.89677
A_32_P197393	0.003971	0.000348	1.92903	0.035173	1.37202	0.440273	1.11222
BC042080	2.05E-08	6.99E-06	-1.51328	0.725007	-1.02002	2.99E-05	1.42929
BCOR	0.005132	0.001111	-1.52123	0.123078	-1.17752	0.953957	1.00583
BEX2	0.000253	0.000491	-1.505	0.001506	-1.42402	0.513868	1.0599
BF195626	0.000577	0.000131	2.63064	0.004603	1.83708	0.808654	1.0443

BX101288	5.99E-06	6.39E-07	1.60919	3.81E-06	1.49353	0.001992	1.21825
C15orf42	2.33E-06	1.31E-06	-1.61942	0.000181	-1.33615	0.447186	-1.0437
C17orf76	3.53E-08	7.02E-08	-1.77621	3.50E-05	-1.37154	0.066085	1.10527
CABYR	4.15E-08	4.33E-08	-1.60518	8.89E-07	-1.4314	0.61823	1.02018
CD1C	0.00017	2.41E-05	-1.50365	2.92E-05	-1.49156	0.000194	-1.38354
CDH15	0.000149	3.40E-05	1.54297	0.996136	1.00034	0.287796	1.07829
CLN3	0.007308	0.000271	-1.5111	0.091877	-1.16057	0.061006	-1.18296
CR599788	3.02E-06	2.51E-06	-1.65033	3.34E-05	-1.47106	0.424252	1.05106
CR601694	2.70E-05	1.05E-06	-1.67452	0.005893	-1.20978	0.114993	-1.10176
CXCL2	9.66E-06	6.23E-05	-1.80536	0.579884	-1.05763	0.007678	1.37001
DKFZp762E1312	0.006452	0.000374	-1.69157	0.041154	-1.27884	0.412581	-1.09558
DNAJC3	6.28E-05	8.55E-05	1.55556	0.000882	1.39752	0.133995	-1.13037
ENST00000238875	6.40E-08	2.48E-07	-1.6642	9.40E-05	-1.32619	0.003113	1.19902
ENST00000258775	2.23E-06	0.00012	-1.5413	0.003972	-1.31733	0.071958	1.16537
ENST00000292729	0.002266	0.000224	-1.51425	0.004898	-1.31626	0.636569	-1.03949
ENST00000315302	1.41E-05	0.000311	-1.63827	0.006628	-1.38213	0.009137	1.35872
ENST00000320159	1.52E-06	3.87E-05	-1.53735	0.004917	-1.26383	0.001995	1.30702
ENST00000341955	1.09E-05	4.76E-05	-1.68458	0.030166	-1.23066	0.016412	1.26545
ENST00000375377	0.001307	0.000448	-2.11722	0.408713	-1.14377	0.642659	1.07754
ERBB3	7.24E-05	6.65E-05	-1.58964	0.000547	-1.4376	0.213177	-1.10773
ETS1	0.006058	0.000666	-1.67597	0.012108	-1.39787	0.680579	-1.04904
FAM40B	0.000198	0.000487	-1.53734	0.054233	1.21395	0.328265	1.09704
FAM7A3	1.34E-05	5.82E-05	-1.70203	0.011271	-1.30105	0.007665	1.32503
FHL1	0.000971	8.31E-05	-1.50348	0.002236	-1.31178	0.054037	-1.16162
FL 110781	2.72F-07	9.63E-07	-1.58615	1.36E-05	-1.42761	0.119967	1.08839
FOXO1A	3.18F-10	4.77E-09	-1.6397	2.27E-06	-1.32577	0.025224	1.08955
FOXO1A	2 35F-07	7 71F-07	-1 65067	0.000395	-1 29867	0.014582	1 16591
FOXO1	3.18F-05	1.12E-05	-1,91931	0.001884	-1.43331	0.625685	1.04653
FST	8.95E-06	0.000464	-1.83183	0.012092	-1.45565	0.025817	1.38174
GADD45B	0.000199	0.00018	-2 22895	0.007417	-1 62214	0.262249	1 19361
GBX2	4 63F-05	0.000766	-1 64619	0.052426	-1 2713	0.003031	1 51094
GNR11	4.05E 05	5.83F-08	1.6795	1 14F-06	1 48319	0.258103	-1 05356
GPC2	0.001306	0.000125	-1 58558	0.005467	-1 32391	0.050732	-1 19745
GPRC5A	5.84F-06	2 89F-05	-1 5656	0.005407	-1 14283	0.030752	1 20806
HERDLID1	1 92F-08	1.81E-07	1 71888	0.070551	1 25922	0.000217	-1 30378
HES2	5 20F-05	0.000272	-1 53658	0.000085	-1 02728	0.000217	1 20406
HOXD9	7 51E-06	1 22F-05	-1 53349	3 32F-05	-1 47028	0.154838	1.20400
	0.011943	0.000839	-2 96733	0.628389	-1.47028	0.3331//2	-1 2818/
	1 9/F-07	1 79E-06	1 51617	0.028383	1 17536	0.001356	-1.20104
	1.54E-07	0.000293	-1 5271	0.00332	-1 /1787	0.001330	1 3/1701
	0.000779	0.000200	1 56238	0.001344	1 28215	0.004002	1.54751
	0.000773	0.000337	1.00466	0.019230	1.20215	0.423829	1 21/22
	1.046.05	8 425 05	-1.50400	0.175000	-1.23910	0.006226	1 16225
	0.000504	6 745 05	-1.02033	0.003337	1 27921	0.090330	1.10323
	0.000304	0.000241	-1.03143	0.002117	-1.37821	0.73402	-1.02007
IRV5	0.000211	0.000341	-1.0/222	0.132711	-1.21378	0.231032	1.17527
	0.000384	0.000237	1 52/20	0.040330	1 10605	0.274802	1 1109
KIAA0319	0.000774	0.000318	-1.53489	0.03848	-1.19095	0.245110	1.1108
KIAA0313	7 3/15 05	6 765 05	-5.01921	0.102040	-1.50/95	0.10452	-1.4577
KIAA0072	7.34E-03	0.70E-05	1.75796	0.365509	1.05577	0.351651	-1.09424
KI E10	0.0002	0.000107	1 9157	0.000302	1 46240	0.230123	1.00008
	0.000281	0.000107	1 02200	0.00539	-1.40549	0.312346	1.07560
	0.000241	0.001039	1 51092	0.029928	1.27404	0.200092	1.10135
	0.000544	0.000101	1.51082	0.005781	1.27494	0.333551	1.07579
10051233	0.001/69	0.000933	1.84191	0.000776	1.58019	0.00953/	-1.0238
	0.002564	0.001062	1.7741	0.011205	1.49269	0.98346	1.00284
	0.004848	2.000594	-1.97799	0.015279	-1.51838	0.095559	-1.06103
	1.82E-05	2.90E-05	-1.05544	0.000443	-1.44892	0.808125	1.01323
IVIETIL/A	0.00845	0.000291	-2.28308	0.078168	-1.3/119	0.039857	-1.45909
	0.000209	9.59E-06	-1.97343	0.019626	-1.28518	0.008452	-1.34073
NFAIC1	0.000454	0.000147	-1.71748	0.011625	-1.34314	0.696623	1.04042
NR2F2	0.001378	0.000409	-1.53822	0.012338	-1.29954	0.568589	1.0536
NK4A1	1.53E-07	2.24E-07	-1.7703	2.25E-05	-1.445	0.049107	1.1281
NR4A2	1.47E-05	0.000115	-1.60325	0.488273	-1.06208	0.009324	1.29752
NKP1	0.001202	0.000187	3.80464	0.135118	1.49718	0.977949	-1.00713
OVOL1	6.42E-10	5.08E-08	-1.58111	9.72E-05	-1.2449	0.005873	1.1367
PDE4D	1.06E-05	3.56E-05	-1.56772	0.002644	-1.30539	0.01675	1.21651

PLEKHK1	4.97E-05	0.000444	-1.56654	0.001786	-1.45413	0.020292	1.28492
RASD1	4.38E-07	9.90E-06	-1.96728	0.020592	-1.28163	0.00127	1.47613
RASEF	2.31E-07	1.14E-05	-1.81236	0.00098	-1.43215	0.183973	1.12408
RGS7	0.000281	6.81E-05	1.62752	0.000485	1.47422	0.348432	1.08329
RHPN2	0.001289	0.00088	-1.51169	0.650596	1.04469	0.183509	1.14207
SALL2	9.97E-07	1.72E-06	-1.70707	7.00E-05	-1.44351	0.373578	1.05895
SDF2L1	6.50E-05	3.36E-05	1.57731	0.000365	1.41689	0.500843	-1.05059
SEC24D	0.000126	6.10E-05	1.73951	0.001306	1.46769	0.590903	-1.05216
SLC33A1	7.04E-05	0.000228	1.61696	0.007526	1.34622	0.122253	-1.16662
SNX5	1.16E-06	3.33E-06	-1.55797	0.000537	-1.29182	0.026788	1.14814
SRrp35	1.52E-07	5.57E-06	-1.6349	4.17E-05	-1.49188	0.001546	1.2971
THC2305303	3.52E-10	3.64E-08	-1.6078	0.538537	1.02472	8.08E-07	1.42982
THC2315973	1.02E-08	1.48E-06	-1.50842	0.000106	-1.30414	6.64E-06	1.42649
THC2361211	0.002836	0.000402	1.67319	0.009247	1.38959	0.010331	1.38081
THC2428671	0.000373	0.000784	-1.6901	0.02073	-1.3681	0.285838	-1.14058
THC2431726	0.002659	0.00033	-1.61401	0.011194	-1.33499	0.919965	-1.00995
THC2442829	0.01676	0.00099	1.79875	0.017389	1.45402	0.00353	1.63435
THC2443387	0.012255	0.000579	-2.25686	0.008357	-1.73997	0.047172	-1.47501
TLR7	0.00773	0.000624	-2.32035	0.011098	-1.7334	0.015889	-1.67302
TMEM158	1.60E-05	3.05E-05	-1.80783	0.001259	-1.46662	0.131543	1.15951
TMOD1	0.002853	0.000286	1.68199	0.00432	1.43541	0.140762	1.17646
TRIB1	0.000254	0.000124	-1.57049	0.016349	-1.25414	0.875124	1.01312
TSPYL5	0.000361	0.000391	-1.51512	0.00149	-1.41886	0.588204	1.0487
ZNF462	0.000191	0.000733	-1.55978	0.017277	-1.31382	0.021509	1.29852

Tabela 4-A2 - Genes do grupo D do Diagrama de Venn

		p-	Fold-Change	p-value	Fold-Change	p-value	Fold-Change
	p-value (Treatment	value(Carb	(Carb vs.	(Carb UV	(Carb UV vs.	(DMSO UV vs.	(DMSO UV vs.
GeneName	group)	vs. DMSO)	DMSO)	vs. DMSO)	DMSO)	DMSO)	DMSO)
ABCA1	0.001677	0.000816	-2.36882	0.034427	-1.59042	9.95E-05	-3.02924
CEBPA	3.53E-07	2.75E-05	-1.70796	0.051113	-1.19388	0.000214	1.53268

Tabela 5-A2 - Genes do grupo E do Diagrama de Venn

		p-value	Fold-Change	p-value	Fold-Change	p-value	Fold-Change
	p-value	(Carb vs.	(Carb vs.	(Carb UV	(Carb UV vs.	(DMSO UV	(DMSO UV vs.
GeneName	(Treatment group)	DMSO)	DMSO)	vs. DMSO)	DMSO)	vs. DMSO)	DMSO)
ABHD2	3.33E-06	0.18003	-1.26696	0.023316	-1.54002	5.47E-05	2.74878
ADRA2C	0.010997	0.064612	1.22189	0.048128	1.24198	0.001138	1.51909
AF010236	4.30E-05	0.787957	1.02257	0.000574	-1.45674	5.94E-05	-1.63115
AF086011	0.020309	0.218105	-1.33966	0.585339	-1.13444	0.001378	-2.53633
AF088004	0.000253	0.635412	-1.06487	0.264325	1.16334	0.000513	1.83575
AF116688	0.003739	0.163503	-1.20547	0.614061	-1.06735	0.001017	-1.72009
AK055214	2.58E-05	0.061129	1.35737	0.03399	-1.4245	0.000497	-2.01002
AK091904	0.0012	0.889997	1.04285	0.02755	-2.10559	0.000373	-4.27201
AK123506	0.000444	0.298502	-1.21876	0.03307	-1.54999	0.000971	-2.20124
AK130118	0.007785	0.30822	-1.30268	0.044298	-1.74746	0.000614	-3.13374
AL049387	1.53E-05	0.082714	1.17253	0.013507	-1.27534	2.07E-05	-1.76243
AL834536	0.015464	0.020133	-2.18848	0.407204	-1.28565	0.001156	-3.45258
ALPK1	6.96E-06	0.065075	1.21551	0.00211	-1.45479	4.86E-05	-1.80805
ALPK1	1.83E-05	0.300748	1.11985	0.002217	-1.49981	3.37E-05	-1.95511
ALS2CR19	3.96E-05	0.42243	1.13392	0.004487	-1.69497	0.000111	-2.34272
ANTXR2	2.43E-06	0.425395	1.05129	7.25E-05	-1.43	1.12E-05	-1.54512
ARHGAP26	0.000676	0.148663	1.16139	0.993649	-1.00079	0.000358	-1.61006
ASCC3	3.95E-06	0.54037	1.04536	9.04E-05	-1.49987	2.18E-05	-1.60329
ATG10	0.000205	0.680627	1.04073	0.001614	-1.46695	0.000339	-1.59696
ATP8B1	8.01E-05	0.231514	-1.11779	0.014597	-1.28646	3.51E-05	-1.75701
A_23_P83991	0.001643	0.391769	1.10588	0.364124	-1.11278	0.000422	-1.72547
A_24_P195400	1.44E-05	0.427239	1.05319	0.0008	1.32354	1.90E-05	1.53565
A_24_P399341	0.009026	0.886509	1.06681	0.545573	1.31777	0.001215	6.4667
A_24_P928333	0.003364	0.15803	1.28488	0.251411	1.22217	0.000233	2.36489

A_24_P930148	0.002277	0.084036	1.25619	0.352119	1.12435	0.000272	1.84908
A_32_P148407	2.16E-06	0.75682	1.01833	0.000107	-1.38274	5.75E-06	-1.5524
A_32_P42666	6.25E-05	0.939943	1.00716	0.203949	1.13269	0.00074	-1.51639
A_32_P98854	0.000899	0.486498	1.07511	0.012555	1.34414	0.000679	1.58066
BACH2	6.76E-05	0.426701	1.12656	0.003944	-1.67402	0.000952	-1.87652
BC004287	4.18E-05	0.567796	1.04443	0.000886	-1.38343	5.15E-05	-1.57317
BC027847	0.011642	0.145248	1.23429	0.367918	1.13476	0.000694	1.84355
BC039397	2.97E-05	0.168157	1.14802	0.003864	-1.3991	0.000143	-1.6735
BC040991	0.002665	0.111135	-1.16525	0.002934	-1.39192	0.000523	-1.51753
BC064982	0.009403	0.109764	1.22485	0.184742	1.17968	0.00127	1.63428
BCL2L11	0.000293	0.741283	1.03783	0.065279	1.24974	0.000102	1.86708
BF812215	1.94E-05	0.525969	1.08756	0.036232	1.35383	0.000684	-1.79096
BM503308	0.000262	0.808683	-1.03711	0.021067	-1.47769	0.000606	1.96946
BNC2	8.94E-05	0.823478	1.01899	0.021876	-1.24252	0.000129	-1.57879
BX118161	0.009054	0.453924	1.42337	0.263792	1.70702	0.001126	6.95077
C11orf69	0.000328	0.226134	1.14016	0.022613	-1.30838	0.000332	-1.66487
C18orf55	0.001769	0.904496	1.01231	0.084818	1.20623	0.001214	1.52204
C1orf211	5.84E-05	0.139629	1.1024	0.000857	1.31191	1.94E-05	1.51915
C20orf74	0.000344	0.691114	-1.04791	0.034891	-1.31436	9.99E-05	-1.92441
C20orf82	0.000528	0.084093	-1.15744	0.001927	-1.35886	0.000108	-1.55011
C5orf21	6.26E-05	0.144839	1.16417	0.010703	-1.342	0.000504	-1.58288
C6orf59	0.002323	0.21384	-1.27183	0.042523	-1.5153	0.000743	-2.27488
C8orf57	0.000823	0.122749	1.22517	0.016414	-1.40633	0.001352	-1.66089
CAMK2D	3.99E-05	0.632307	1.04408	0.000916	-1.46781	7.68E-05	-1.6739
CCDC71	0.001841	0.718118	-1.04525	0.673642	-1.05304	0.000797	-1.70307
CCNB3	0.000921	0.254095	1.148	0.014184	-1.39135	0.001267	-1.61951
CCRN4L	9.26E-06	0.857249	-1.0099	0.018784	1.15662	3.57E-06	1.53865
CCT5	0.004564	0.222373	1.1395	0.014442	1.33625	0.000688	1.58379
CDC42BPA	3.12E-07	0.170008	1.0819	2.36E-05	-1.43131	9.55E-07	-1.63555
CHDH	0.003844	0.010702	1.42388	0.004706	1.49972	0.000715	1.69557
CHDH	0.00024	0.471929	1.075	0.001936	1.46869	0.000973	1.52491
CHRM2	0.00017	0.784097	1.08264	0.005773	-2.58449	0.000214	-4.39202
COL5A2	5.64E-05	0.466408	1.07123	0.001191	-1.47093	0.000243	-1.60096
COVA1	9.38E-08	0.034685	1.15848	5.03E-05	-1.46121	3.04E-06	-1.65614
CPA1	2.94E-07	0.166541	-1.21477	0.136027	-1.23502	0.000197	2.00689
CR617033	5.64E-06	0.02144	1.75281	0.019086	-1.77638	1.03E-05	-4.64752
CR617865	0.002662	0.013449	-1.31818	0.937705	-1.00764	0.000394	-1.58945
DA372386	0.003519	0.054172	1.59736	0.095266	1.48799	0.000262	3.06229
DST	0.010228	0.103059	-1.37258	0.054638	-1.46541	0.000521	-2.3215
DZIP3	0.005829	0.355518	-1.13756	0.020549	-1.42988	0.000898	-1.79901
EDN3	0.025259	0.115161	1.2662	0.088043	1.29436	0.001116	1.80644
EIF4G3	9.80E-07	0.620448	-1.02576	0.0001	-1.3297	2.41E-06	-1.51894
EMP1	0.00477	0.002854	-1.67884	0.051282	-1.35035	0.000261	-2.02961
ENST00000219090	6.45E-05	0.824612	-1.03497	0.010807	-1.57961	2.37E-05	-2.74218
ENST00000253728	0.004267	0.00/1/2	1.84868	0.035047	1.57055	0.000679	2.3693
ENST00000311208	0.000223	0.93296	-1.02051	0.017184	1.92114	0.001359	2.66299
EINST00000354417	0.007733	0.90278	1.02698	0.965303	1.00952	0.00146/	2.39955
ENST00000355232	0.001809	0.993087	1.00191	0.158138	1.38422	0.001047	-2.52708
	0.000066	0.741782	2.41606	0.009499	-1.318/1	0.000419 8 605 05	-1.54136
	0.002107	0.009379	-2.41000	0.00007	-1.00901	0.00E-03	-5.22594
	1.695-05	0.199181	1.20152	0.008072	-1.71952	7.045.05	-2.2095
	0.004504	0.020259	1 21102	0.003108	-1.20595	7.04E-03	-1.50455
FDAU34	0.004594 E 60E 06	0.050256	1 1 1 2 2 0 5	0.003743	1.40022	0.001019	1.00900
FL 142875	0.002-00	0.109003	1 35086	0.017007	1.24308	0.002-05	3 02500
EOVD2	1 725 05	0.233784	1.33080	0.747190	1.03380	0.000349	2 0510
FRMD4A	0.001/07	0.472133	-1.07397	0.409009	1 1/285	0 000891	-1 8202
GARNI 1	0.001407	0.200473	1 09611	0.04400	_1 21994	2 025 06	-1.6205
	3.32E-07 2.87F_06	0.172241	1.08011	5 18F-05	-1.31004	9 80F-06	-1.02171
INPPAR	2.071-00	0.231204	-1 05009	0.000620	-1.40219	3 2/15 05	-1 62025
ΙΤΡΚΔ	0 000111	0.168038	1 133/	0.001743	1 40761	0 000283	1 53926
KIAA1303	6 53F-08	0.006361	1 15944	0.000401	-1 2/278	4 23F-07	-1 55534
KIAA1407	0.002555	0 5676	-1 0964	0.024184	-1 /19732	0 000819	-2 001/1/
KIAA1718	0.002333	0.359249	-1 08023	0.060455	-1 18265	0.000819	-1 50717
KI HI 23	4 50F-05	0.115931	-1 19086	0.007838	1 38871	0 000270	1 62638
KRT17	9.29F-07	0.043055	-1.23504	0.001021	1.49461	7.62F-06	2.00637
	5.252 07	1.1 10000		0.001011			2.00037

LOC147650	0.001242	0.265414	-1.12779	0.411754	-1.09149	0.000616	-1.60492
LOC153561	0.001358	0.013234	-1.27038	0.011278	-1.27943	5.81E-05	-1.6456
LOC153561	4.51E-05	0.159104	1.12923	0.916751	1.00868	9.77E-05	-1.58/5
LOC400509	1.20E-07	0.031691	1.17849	0.00067	-1.3596	8.32E-07	-1.86/35
LOC441208	0.007738	0.594651	1.05651	0.385513	1.0948	0.001154	1.53122
LOC5414/1	4.11E-08	0.000124	1.45372	9.93E-05	-1.46/44	7.81E-06	-1.6502
MALAT1	0.006987	0.539668	-1.14586	0.785098	-1.06199	0.00067	-2.66601
MCCD1	0.005896	0.039475	-1.36857	0.032635	-1.38816	0.000325	-1.96453
MGC13057	0.00014	0.054411	-1.28358	0.767357	-1.03608	0.001052	1.65257
NAALAD2	0.010833	0.636809	1.05957	0.578333	1.07062	0.001237	1.65103
NAG	3.01E-07	0.054	1.12207	3.09E-05	-1.41717	3.16E-06	-1.55095
NANOS1	0.000163	0.325303	-1.11953	0.026618	1.3206	0.000343	1.72242
OCLN	0.002833	0.665399	1.12626	0.212882	-1.4231	0.000534	-3.50681
OTUD4	0.000268	0.982068	1.00159	0.849271	1.01356	5.56E-05	1.52391
PCNXL2	4.18E-07	0.388418	1.06191	7.93E-05	-1.48024	1.40E-06	-1.80553
PFTK1	0.001085	0.86543	1.03509	0.004102	-2.02262	0.001276	-2.29962
PKMYT1	2.16E-05	0.579142	1.0384	0.000115	1.44841	2.22E-05	1.55631
PSD4	0.000257	0.498051	1.06872	0.997115	1.00035	0.000299	1.61214
PTPRG	6.62E-05	0.699542	1.0335	0.000607	-1.46784	0.000153	-1.57209
RABGAP1L	0.000155	0.552935	1.09279	0.009281	-1.56806	0.000316	-2.06453
RASL11B	2.44E-09	0.000734	-1.26105	0.159077	-1.08058	1.20E-07	1.76953
RNGTT	9.00E-09	0.00191	1.18318	2.66E-06	-1.42178	2.98E-07	-1.5413
RP11-93B10.1	8.78E-08	0.820559	-1.00948	2.74E-06	1.39908	5.12E-08	1.62579
RUNDC2A	1.92E-07	0.020995	1.22307	0.002248	-1.34065	3.27E-06	-1.84975
SEMA5A	1.12E-07	0.098014	1.10581	0.000242	-1.33449	5.70E-07	-1.71072
SGIP1	0.002452	0.647655	1.05312	0.184054	-1.16841	0.000655	-1.65439
SLC29A3	0.003479	0.099823	1.23908	0.019186	1.38399	0.000334	1.814
SLC2A13	0.000212	0.203557	1.235	0.005829	-1.69059	0.000254	-2.23264
SLC4A4	0.002981	0.709208	-1.10539	0.024883	-1.95874	0.001241	-3.00667
SORCS1	0.000109	0.575568	1.07314	0.008719	-1.46772	0.000346	-1.83141
SOX5	0.000391	0.480895	1.26574	0.005361	-2.99937	0.001369	-3.82455
STOX2	2.12E-05	0.004334	1.35622	0.603104	-1.0475	0.000396	-1.52464
THC2262874	3.37E-05	0.296814	-1.29417	0.006832	-2.16124	6.57E-06	-5.99057
THC2282475	0.000348	0.597139	1.11594	0.005576	-1.97546	0.000417	-2.65006
THC2313214	2.69E-05	0.134247	1.25391	0.004385	-1.63729	0.000351	-2.00144
THC2313919	0.000572	0.717917	-1.05311	0.023984	-1.43516	0.000875	-1.84901
THC2337941	0.001157	0.331123	-1.11705	0.056464	1.25946	0.001032	-1.59996
THC2361461	0.003771	0.103574	-1.41645	0.423611	-1.17789	0.000631	-2.47293
THC2394812	5.68E-05	0.536859	-1.08838	0.053986	1.32912	0.001059	-1.76972
THC2407541	0.003135	0.525533	-1.16509	0.058359	-1.63051	0.000587	-2.94544
TMTC1	7.54E-07	0.474395	1.03783	0.000922	-1.24533	2.00E-06	-1.53336
TNFRSF10C	2.23E-05	0.064029	-1.20804	0.104184	1.17693	0.000242	1.61128
TNRC4	0.000278	0.006052	1.24596	0.075716	1.13719	2.64E-05	1.54455
VIPR2	0.011828	0.033208	2.20364	0.006939	2.90987	0.000488	4.73127
WBSCR23	1.40E-05	0.058512	-1.15417	0.00923	1.2367	5.36E-05	-1.51919
WDFY3	0.000412	0.612591	1.05025	0.006547	-1.36287	0.000542	-1.55332
WDR19	0.00069	0.127036	-1.13984	0.007524	-1.29187	6.09F-05	-1.61619
XRCC2	0.001191	0.397259	1,1235	0.003733	1,60936	0.00121	1.74801
7BTB20	0.002741	0.69059	-1 09797	0.005358	-2 17527	0.001035	-2 67819
ZDHHC14	6 88F-11	1.84F-06	1 34198	1.21F-05	-1 27695	9.38F-09	-1 61019
	0.000 11	2.012.00	2.5 1250		2.27035	3.302 05	1.01015

Tabela 6-A2 - Genes do grupo F do Diagrama de Venn

		p-value	Fold-Change	p-value	Fold-Change	p-value	Fold-Change
	p-value	(Carb vs.	(Carb vs.	(Carb UV	(Carb UV vs.	(DMSO UV	(DMSO UV vs.
GeneName	(Treatment group)	DMSO)	DMSO)	vs. DMSO)	DMSO)	vs. DMSO)	DMSO)
AA428090	4.88E-05	0.063981	-1.43657	9.90E-06	-3.63504	7.90E-05	-2.82302
ABLIM1	3.82E-08	0.003715	-1.21821	2.26E-07	-1.77462	2.95E-07	-1.75045
ADAMTS9	7.72E-05	0.73279	1.04634	0.000258	-1.9388	0.000109	-2.07723
AK021785	6.49E-07	0.276904	1.16254	2.09E-06	-3.06307	6.24E-05	-2.21013
AK021980	7.34E-07	0.352064	-1.09488	2.39E-06	-2.18765	2.26E-05	-1.8693
AK023660	1.61E-08	0.066647	-1.09167	3.86E-08	-1.70307	5.48E-07	-1.51891
AK026194	1.68E-08	0.050011	1.11469	1.54E-06	-1.54438	1.84E-07	-1.69884
AK055214	1.35E-06	0.516561	-1.08098	1.85E-05	-2.21324	1.38E-06	-2.79092
AK055302	1.03E-06	0.007706	1.65641	5.74E-05	-2.60117	0.000109	-2.43766

44002082	1 505 06	0 210011	1 1 2 / 2 2	4 72E OE	1 72600		1 67046
AK093382	1.392-00	0.210011	1.12422	4.721-03	-1.72033	7.00L-03	-1.07940
AK123704	1.26E-05	0.00173	-1.35488	1.53E-06	-1.9368	0.000144	-1.512/6
AK123972	0.000135	0.627826	-1.04953	0.000183	-1.67655	0.000423	-1.59638
AK126242	1.18E-11	0.186491	1.07135	6.95E-10	-2.35572	1.22E-10	-2.70557
AI 359605	4 19F-06	0 117645	-1 27269	3 55F-05	-2 48793	1 02F-06	-3 65718
	1 ORE 11	5 525 05	1 20525	2 27E 11	2.04258	5.065.10	1 72215
AFBBZ	4.082-11	J.J2L-0J	-1.20323	2.371-11	-2.04338	5.00L-10	-1.75515
ARHGAP24	5.34E-08	0.570556	1.06198	3.31E-07	-2.82572	5.60E-07	-2.68901
ARHGAP24	3.55E-07	0.381495	1.14164	1.22E-05	-2.82317	2.40E-06	-3.38111
ARHGAP26	1.34E-09	0.080077	-1.16054	5.83E-09	-3.08734	5.88E-09	-3.08472
ASB2	1 40F-06	0.083836	-1 16402	1 25E-06	-2 04789	4 18F-05	-1 65604
	1.40E 00	0.003030	1.10702	1.232.00	1 7 7 7 2 4	2 705 00	1.05004
ASTNZ	9.14E-10	0.002392	1.20725	1.13E-07	-1./2/34	2.78E-08	-1.85867
ATXN7L1	0.000267	0.982409	-1.00208	0.000237	-1.61077	0.000538	-1.53989
AY660577	0.005914	0.03422	-2.07449	0.003086	-3.08819	0.001465	-3.50233
A 23 P14432	5.90E-05	0.718983	-1.04431	0.000132	-1.91444	0.001093	-1.65238
A 24 P127462	3 10F-05	0.087/83	1 10615	5 9/F-05	1 78687	0 000394	1 59612
A_24_112/402	3.150-05	0.007405	1.13015	J.J4L-0J	2.01114	0.000334	2.00042
A_32_P131998	3.10E-05	0.034876	1.43816	0.00064	-2.01114	0.00068	-2.00043
A_32_P229447	2.48E-05	0.626204	-1.06901	0.000193	-2.02514	0.000388	-1.9145
B3GALT1	0.000148	0.935685	1.01698	0.000484	-2.63102	0.000422	-2.6745
BE893137	1.75E-07	0.756279	1.02491	1.19E-06	-1.99885	4.72E-06	-1.8335
BE508144	2 79F-07	0.016193	-1 23/09	1 25E-07	-2 29063	4 50E-06	-1 80671
DF902042		0.024744	1.012409	0.001000	1.72402		1.00071
BF803942	0.50E-U5	0.924714	-1.01346	0.001839	-1./3483	0.000143	-2.13363
вмрк1В	3.40E-06	0.021752	-1.32354	0.000112	-1.81803	3.15E-05	-1.98628
BTBD9	1.31E-08	0.52804	1.06293	1.25E-08	-3.56606	1.71E-06	-2.24989
BTBD9	5.13E-05	0.43666	-1.16209	9.90E-05	-2.89859	0.000314	-2.53906
C11orf41	1 86F-07	0 318364	-1 083	1 09F-06	-1 99/6	1 /QE_06	_1 95/155
	1.000 07	0.310304	1 10290	1.03E 00	1.0040	1.450.00	2,00002
014011145	1.585-00	0.231901	-1.10389	4.04E-06	-1.80559	1.34E-00	-2.00092
C15orf41	1.38E-06	0.297617	1.07352	3.61E-06	-1.68776	4.24E-05	-1.50287
C19orf48	4.79E-06	0.181877	1.08403	4.86E-06	1.55916	9.69E-06	1.51386
C20orf23	1.48E-06	0.031626	-1.22006	1.16E-06	-2.08105	4.08E-06	-1.91383
CAMK1D	1.67E-06	0 750063	1 036	3 80F-05	-1 98641	1 39F-05	-2 14275
CASK	1.072.00	0.050005	1 04070	0.095.05	1.300 11	9 20E 0E	1 77160
CASK	1.012-05	0.09198	1.04079	9.08L-03	-1.70280	8.39L-03	-1.77108
CCDC46	3.81E-05	0.524986	-1.09592	0.000111	-2.1969	0.000253	-2.04697
CDC6	1.04E-06	0.004103	1.23622	5.88E-07	1.77309	6.46E-06	1.576
CDH11	1.21E-05	0.002927	-1.54756	4.25E-06	-2.52917	0.000819	-1.68231
CDK6	7.72E-08	0.080388	-1.12254	2.35E-07	-1.87644	5.55E-07	-1.78815
CDKAL1	1.81E-05	0.581989	-1.07584	2.12E-05	-2.3839	0.000457	-1.85196
CDKN1A	2 60E-05	0 521128	-1 06956	0.000501	1 61565	0.000101	1 78367
CDT1	1.405.06	0.020120	1.00550	1.045.06	1.01303	2.065.06	1.70507
CDT1	1.49E-00	0.086227	1.10744	1.94E-00	1.59644	3.00E-00	1.50052
CD11	0.000148	0.145027	1.14928	0.00011	1.65389	0.000136	1.6341
CENTG2	5.81E-10	0.040283	-1.17007	6.69E-09	-2.65712	2.37E-09	-2.9161
CENTG2	2.56E-09	0.256408	1.08267	7.32E-07	-1.86564	1.32E-08	-2.4548
CHAF1B	3.91E-07	0.942214	1.00398	3.50E-06	1.54107	5.81E-06	1.50915
CHRM3	1 85E-06	0 956201	-1 01081	7 77E-06	-4 16964	6 36F-05	-3 15067
CUST11	1.05E 00	0.330201	1 1 2 0 9		1 91740	0.000222	1.62016
	0.000149	0.233937	-1.1298	5.05E-05	-1.81/49	0.000333	-1.02010
COG5	8.93E-11	0.919636	-1.00401	3.43E-10	-2.05326	8.87E-10	-1.94025
COL12A1	0.000827	0.009218	-1.41155	0.000206	-1.79233	0.000248	-1.7701
COL27A1	0.001071	0.056987	-1.32844	0.002919	-1.65198	0.00018	-2.05172
CR601835	3.34F-06	0.706215	-1.03798	1.22F-05	-1.98815	1.41F-05	-1.96772
CR602105	1 165 11	0.154776	1 05993	9 02E 11	2 20202	0.455.11	2.00772
CDC00007	1.10E-11	0.134770	-1.05663	0.02E-11	-2.20203	9.436-11	-2.1//82
CK608907	4.20E-09	0.211779	1.14483	1.07E-07	-3.14411	9.00E-08	-3.20115
CSS3	0.000179	0.296875	-1.17135	0.000167	-2.18037	0.000686	-1.92981
CUTL1	2.19E-06	0.796384	-1.02078	1.70E-05	-1.70923	2.78E-06	-1.90051
ChGn	6.66E-05	0.857977	1.0269	8.89E-05	-2.31096	0.000706	-1.92663
	2 27F_06	0.055702	1 18032	7 80F_05	-1 61309	5 52F-05	-1 6//9
	2.371-00	0.000015	1.10555	7.051-05	-1.01338	2.405.05	1.0449
	0.35E-Ub	0.098315	-1.19633	1.25E-Ub	-2.11694	2.48E-05	-1.93785
DIAPH2	6.79E-12	0.612228	1.02089	3.14E-10	-2.09827	3.91E-11	-2.42486
DIAPH3	9.27E-05	0.341465	-1.11499	0.000265	-1.74987	0.000571	-1.66487
DKFZP686A01247	3.66E-09	0.960167	-1.00251	3.26E-08	-1.84455	4.86E-08	-1.80524
DLGAP1	3,99F-06	0.799947	-1.06564	8.09F-06	-6.17195	5.24F-05	-4,48056
DOCK1	1 200	0 207577	1.05007	2 275 07	1 76053	2 626 00	1 05530
DOCKI	1.33E-08	0.30/3/2	-1.05003	2.3/6-0/	-1.70052	5.02E-U8	-1.95527
DUCKIU	2.12E-05	0.0/1013	-1.19701	2.38E-05	-1.82821	4.01E-05	-1.77016
DOCK4	9.64E-07	0.46676	1.11366	9.47E-05	-2.27183	4.66E-06	-3.07087
DOCK8	1.58E-06	0.622003	-1.04016	3.99E-06	-1.85676	1.90E-05	-1.69747
DOCK9	0.00031	0.21221	-1.18273	0.002091	-1.64437	0.000392	-1.85704
DTI	1 &1F_05	0.020958	1 23/85	4.23F-06	1 8741	9 64F-05	1 57/83
DVM	1.01E 0J	0.211025	1.02019	1 055 11	1 72050	A 20E 11	1 61716
	2.00E-12	0.211033	-1.02918	1.036-11	-1.72059	4.30E-11	-1.01/16

DYNC2H1	0.000754	0.473816	-1.0854	0.001353	-1.58345	0.000641	-1.65986
DZIP3	4.11E-06	0.655871	-1.02834	1.64E-05	-1.5253	1.62E-05	-1.52624
E2F2	5.12E-06	0.441984	-1.09901	2.46E-05	2.19497	5.24E-05	2.06604
EDA	3.98E-08	0.391694	1.07164	1.18E-05	-1.74338	7.74E-08	-2.44874
ELP4	6.40E-09	0.05233	1.15645	1.93E-07	-2.043	1.12E-07	-2.11899
ENST00000233161	1.02E-05	0.210784	-1.38931	0.000628	-3.12687	3.70E-05	-4.84264
ENST00000261569	1.18E-08	0.70166	-1.02118	3.00E-07	-1.72097	2.84E-07	-1.72597
ENST0000284894	5.39E-07	0.897069	-1.00809	1.33E-06	-1.71499	1.14E-05	-1.54807
ENST0000288548	4.10E-08	0.011738	-1.12766	9.40E-08	-1.58005	5.48E-08	-1.61657
ENST00000297423	6.33E-06	0.169001	-1.12389	2.97E-05	-1.67879	8.69E-06	-1.79976
ENST00000328681	2.09E-06	0.089328	1.18742	8.61E-05	-1.71273	2.59E-05	-1.84419
ENST00000330640	7.44E-07	0.003497	-1.31013	1.70E-07	-2.22259	1.52E-05	-1.67992
ENST00000366569	4.27E-06	0.407063	1.28502	1.43E-05	-7.72181	0.000287	-4.36042
ENST00000367545	1.57E-08	0.007134	-1.17332	1.05E-07	-1.73768	1.70E-08	-1.91684
ENST00000367895	0.00061	0.89911	1.02089	0.00248	-1.83738	0.000907	-2.0099
ENST00000369615	7.34E-07	0.102663	-1.14048	2.53E-06	-1.85613	3.68E-06	-1.81579
ENST00000371079	2.66E-08	0.810469	1.0193	1.05E-07	-2.39243	1.14E-06	-2.01355
ENST00000371189	3.28E-06	0.650938	-1.04953	4.78E-05	-1.90217	1.33E-05	-2.08556
ENST00000372142	3.81E-06	0.657528	1.04431	1.51E-05	-1.94252	7.94E-06	-2.03124
ENST00000373886	2.92E-08	0.445537	1.04974	5.68E-07	-1.80323	1.41E-06	-1.71813
ENST00000376611	6.53E-07	0.155201	-1.08528	2.05E-06	-1.58045	1.61E-06	-1.59737
ENST00000378179	1.75E-08	0.662849	-1.01882	3.40E-07	-1.52069	1.12E-07	-1.5905
ENST00000378624	1.04E-07	0.715249	-1.04611	8.83E-07	-3.03248	6.49E-07	-3.13287
ENST00000379734	4.35E-11	0.728666	1.01478	6.25E-10	-2.06757	7.87E-10	-2.03811
ENST00000380186	0.002738	0.028833	-2.19349	0.000624	-4.26993	0.000254	-5.05264
EPHA5	1.54E-07	0.037419	1.27713	1.39E-05	-2.0839	2.18E-06	-2.41503
ESCO2	9.16E-07	0.019248	1.13979	9.28E-07	1.5575	1.39E-06	1.53159
EVI5	5.18E-05	0.599949	-1.04215	6.92E-05	-1.57539	0.000122	-1.53267
EXO1	1.87E-07	0.015926	1.18548	1.15E-07	1.96124	6.26E-06	1.58674
EXT1	6.06E-06	0.178419	-1.11358	1.03E-05	-1.72386	0.000163	-1.50005
FAF1	9.08E-11	0.543115	1.01983	9.59E-10	-1.70165	1.89E-09	-1.65088
FARS2	6.57E-06	0.765482	1.02873	2.49E-05	-1.84746	0.000149	-1.65768
FBXL17	6.47E-06	0.469178	1.12095	4.43E-05	-2.58743	3.35E-05	-2.66271
FBXL7	2.08E-09	0.038347	-1.12514	6.84E-09	-2.06184	6.49E-09	-2.06867
FCHSD2	0.000314	0.128751	-1.23851	0.000573	-1.83685	0.000551	-1.84235
FER	8.27E-11	0.085925	-1.06529	1.49E-10	-1.95869	2.70E-10	-1.89418
FLJ20054	0.00018	0.890079	1.01675	0.000319	-1.79687	0.00098	-1.66427
FNDC3B	1.36E-07	0.663997	1.0229	1.02E-06	-1.58549	2.50E-06	-1.52675
FRAS1	8.58E-07	0.69393	1.0324	9.46E-05	-1.57327	1.39E-05	-1.74273
FRMD4B	1.21E-06	0.018669	-1.15948	3.46E-06	-1.5512	4.04E-06	-1.541
FRY	3.08E-07	0.995266	-1.00078	5.06E-06	-2.70718	1.77E-06	-3.0121
FZR1	0.000941	0.792592	-1.03755	0.003354	1.64842	0.001087	1.79595
GBE1	5.19E-06	0.709074	1.02997	5.23E-05	-1.60392	9.99E-05	-1.5529
GHR	1.60E-06	0.123144	1.15596	3.30E-05	-1.75252	1.07E-05	-1.87823
GINS3	0.00039	0.996695	-1.00042	0.001063	1.52393	0.00087	1.54111
GLIS3	2.86E-05	0.561723	-1.11999	7.44E-05	-3.05581	6.53E-05	-3.1056
GPHN	2.90E-08	0.009721	-1.38677	2.30E-07	-3.03273	2.39E-08	-3.90102
GPR158	8.75E-06	0.436084	-1.13336	5.62E-06	-3.30285	9.07E-05	-2.44599
GRK5	2.55E-07	0.582352	-1.03464	4.90E-06	-1.59948	1.28E-06	-1.70708
GTDC1	7.54E-10	0.866364	-1.00779	3.58E-09	-1.97811	1.16E-08	-1.85027
GUCY1A2	4.76E-07	0.590223	-1.06185	6.70E-07	-2.78187	6.59E-06	-2.27279
GULP1	6.72E-09	0.648727	-1.02873	3.32E-08	-2.12231	4.50E-07	-1.8106
HHAT	2.01E-05	0.678218	1.03553	5.87E-05	-1.64171	0.000145	-1.56565
ICA1	1.17E-05	0.85263	1.0154	5.44E-05	-1.63244	2.06E-05	-1.7211
ITPR1	8.68E-08	0.606515	1.04504	2.30E-06	-2.0117	3.91E-07	-2.28434
JAKMIP2	8.65E-06	0.00445	-1.38412	9.98E-07	-2.33026	1.69E-05	-1.89813
JMJD2C	8.94E-07	0.194366	-1.15642	1.73E-06	-2.4881	1.57E-06	-2.50972
KCNH8	0.000377	0.546244	-1.16491	0.000509	-3.18023	0.001081	-2.85922
KIAA0427	6.46E-08	0.421735	1.05395	3.61E-06	-1.66105	7.17E-07	-1.80789
KIF26B	3.57E-07	0.110751	1.14991	4.93E-05	-1.64724	1.36E-05	-1.76996
KLF12	2.94E-11	0.546857	-1.02823	2.13E-10	-2.37734	3.88E-10	-2.27649
LACE1	3.06E-06	0.346358	-1.08407	2.33E-06	-1.99415	8.19E-06	-1.84046
LARGE	7.56E-14	0.074953	-1.07751	8.99E-13	-3.23822	5.68E-13	-3.39199
LHFP	3.70E-07	0.045411	-1.1365	8.62E-07	-1.6956	2.87E-06	-1.6011
LM07	2.29E-05	0.037842	-1.25304	1.15E-05	-1.99794	0.000482	-1.58103
LOC51057	1.68E-07	0.112627	-1.16846	6.83E-07	-2.35459	2.97E-06	-2.10515

LOC642826	9.59E-09	0.471812	1.04944	4.79E-06	-1.66097	2.85E-08	-2.26382
LOC642826	8.75E-07	0.317201	1.12771	0.000174	-1.85165	2.83E-06	-2.57858
LOC92017	8.41E-10	0.489243	1.0539	4.51E-08	-2.43171	4.91E-09	-2.94882
LPP	1.60E-09	0.060717	1.1912	1.01E-07	-2.58278	1.96E-08	-3.00293
LPP	7.08E-09	0.424301	1.07223	4.70E-07	-2.27549	4.44E-08	-2.77213
LRBA	3.46E-07	0.344163	-1.07714	2.82E-06	-1.86017	5.98E-07	-2.05328
LRRN6C	3.04E-08	0.06934	1.30263	2.06E-05	-2.44555	2.75E-07	-3.88922
MAGI1	0.000669	0.971836	-1.00788	0.001809	-2.38208	0.000426	-2.85093
MAP3K5	1.16E-07	0.000603	-1.43293	2.69E-08	-2.68441	2.49E-05	-1.67594
MAP7	5.47E-06	0.059285	-1.24359	1.47E-06	-2.50036	0.000114	-1.79927
MCM10	1.21E-07	0.841625	1.01199	2.35E-07	1.83473	1.67E-06	1.65715
MCM10	1.35E-06	0.529383	1.04215	1.52E-06	1.74428	3.26E-06	1.67706
MCTP1	1.26E-08	0.267019	-1.10654	6.32E-08	-2.76996	2.27E-07	-2.47728
MCTP1	2.26E-05	0.051085	-1.35485	5.38E-06	-2.95224	0.000276	-2.0347
MGC11271	2.33E-06	0.171543	1.09926	1.57E-06	1.76207	1.63E-05	1.56754
MGC16121	5.40E-05	0.007299	-1.51768	0.003126	-1.61073	0.000185	-1.988
MSI2	2.06E-08	0.006776	-1.15712	1.06E-08	-1.84826	1.16E-07	-1.64145
MYB	1.13E-07	0.078837	-1.16342	2.32E-05	1.69031	7.36E-07	2.08932
MYO9A	8.36E-06	0.399847	1.07928	0.000469	-1.51509	1.12E-05	-1.87315
NAG	4.18E-07	0.096056	1.12771	3.26E-05	-1.534	1.67E-05	-1.58184
NAV2	0.001555	0.009736	-1.4282	0.000205	-1.83942	0.001465	-1.6104
NAV2	0.000226	0.003242	-1.43184	0.00013	-1.71916	0.00011	-1.73668
NAV3	5.76E-07	0.255297	1.18404	1.98E-06	-3.33314	9.15E-06	-2.81769
NAV3	9.76E-05	0.976857	1.00676	0.000106	-3.62695	0.000603	-2.85434
NBEA	3.16E-09	0.053044	1.19518	1.88E-07	-2.41488	4.07E-08	-2.75311
NCOA1	8.60E-07	0.005484	-1.23768	9.85E-07	-1.77578	1.60E-06	-1.73059
NFIA	1.15E-08	0.2229	1.09076	2.81E-07	-1.99606	1.79E-07	-2.05504
NFIB	6.00E-05	0.037359	-1.23003	7.36E-05	-1.68385	8.26E-05	-1.67279
NHS	2.45E-05	0.108522	-1.53525	3.43E-05	-4.8599	2.06E-05	-5.29693
NLGN1	4.81E-11	0.086494	1.1794	3.10E-09	-3.86528	3.83E-10	-5.05574
NME7	1.37E-07	0.903738	1.0071	4.69E-07	-1.74763	1.62E-06	-1.64319
NOX4	6.82E-08	0.003846	-1.25106	2.12E-08	-2.2486	1.47E-06	-1.73206
NOX4	1.52E-05	0.050933	-1.24236	3.29E-06	-2.25034	0.001035	-1.53753
NRCAM	4.86E-09	0.054255	-1.17498	8.86E-09	-2.87152	2.40E-07	-2.19131
ODZ3	2.62E-11	0.949875	1.00321	2.19E-09	-2.19859	1.68E-10	-2.67391
ODZ3	1.86E-07	0.147103	1.17585	3.18E-05	-1.96153	1.69E-06	-2.4682
OR4C46	0.000489	0.148008	1.23045	0.001067	1.77562	3.58E-05	2.34857
ORC1L	4.08E-05	0.159916	1.13836	2.46E-05	1.77299	0.00011	1.62761
OSBPL10	1.62E-09	5.43E-05	-1.31191	5.04E-10	-2.22227	4.44E-08	-1.71459
OSBPL10	0.000143	0.009632	-1.47944	5.72E-05	-2.16238	0.001443	-1.68827
PARD3	7.13E-06	0.686574	1.06383	1.64E-05	-2.80957	0.000566	-2.0036
PARD3	1.16E-12	0.014665	1.11281	1.89E-11	-2.43513	4.32E-11	-2.29241
PCDH7	3.96E-06	0.057203	1.41074	0.000637	-2.11398	2.81E-05	-2.91108
PCSK5	3.30E-07	0.016144	-1.22963	3.16E-07	-2.112	2.41E-06	-1.85399
PFTK1	1.55E-05	0.184675	1.23173	0.000253	-2.13453	0.000169	-2.21337
PITPNC1	1.08E-08	0.657571	1.02515	1.20E-07	-1.82989	2.26E-07	-1.76843
PITPNC1	0.001174	0.255147	-1.25475	0.000292	-2.60183	0.001418	-2.18707
PITPNC1	5.00E-06	0.080371	1.30349	0.000138	-2.1435	3.29E-05	-2.43871
PKNOX2	6.65E-08	0.340319	1.04831	1.42E-06	-1.51819	5.10E-07	-1.58379
PLXNA2	2.96E-07	0.008951	-1.26564	2.33E-07	-2.19687	2.81E-05	-1.63872
POLD3	0.000279	0.00741	1.39485	2.92E-05	1.96028	0.000664	1.60167
POLE2	0.000252	0.247505	1.12665	0.000454	1.59716	0.000392	1.61065
PPARGC1A	4.99E-05	0.015593	-1.29494	2.78E-06	-2.13024	0.000795	-1.50439
PPP1R1C	6.52E-06	0.547893	-1.08328	2.61E-05	-2.34249	6.72E-05	-2.15892
PPP1R9A	2.03E-06	0.407703	-1.13355	8.41E-06	-2.94267	5.41E-06	-3.0888
PPP1R9A	1.82E-05	0.524345	-1.1266	3.62E-05	-3.17603	0.000111	-2.78271
PPP3CA	1.06E-09	0.035201	-1.11556	1.92E-09	-2.08575	1.43E-08	-1.85232
PPP3CA	3.83E-08	0.631989	-1.03035	1.80E-07	-1.91176	2.31E-06	-1.66559
PRKCA	4.84E-06	0.709559	-1.03181	7.44E-06	-1.84788	4.41E-05	-1.66723
PRKCA	5.29E-09	0.100741	1.08852	1.80E-07	-1.66232	7.86E-08	-1.7298
PRKCE	4.65E-06	0.334759	1.10995	2.55E-05	-1.98336	8.78E-05	-1.82158
PRKCH	7.71E-08	0.002722	-1.17606	4.11E-08	-1.69091	3.09E-07	-1.54853
PRKD1	2.25E-09	0.067094	-1.07646	3.78E-09	-1.73383	1.35E-08	-1.63577
PRKG1	3.54E-08	0.443163	1.10976	3.65E-06	-2.86778	7.37E-08	-4.55929
PSD3	3.15E-09	0.12586	-1.12277	8.74E-09	-2.67335	2.29E-08	-2.46708
PSD3	1.03E-08	0.296079	1.08927	1.00E-06	-2.03602	4.77E-07	-2.14279

PSD3	3.53E-06	0.841408	-1.02463	1.15E-05	-2.34431	1.37E-05	-2.3091
PTPN13	8.07E-07	0.008936	-1.22765	7.83E-07	-1.84436	1.65E-06	-1.76893
PTPRK	1.22F-11	0.109908	-1,13137	1.27F-10	-4,22788	1.89F-10	-4.02661
PTPRM	8 80F-08	0.021032	-1 19124	3 81F-07	-1 92644	2 06F-07	-2 00176
RAB6IP2	1 85E-06	0 114799	1 14034	0.000129	-1 53299	2.00E 07	-1 68205
RABGAR1I	6 76E-10	0.907168	-1 00528	9.62E-09	-1 8/15/17	2.05E 05	-2.00584
	5 24E 06	0.006568	1 21722	4.07E.06	1.04347	2.242.05	1 72870
	9.24E-00	0.000308	-1.51725	4.072-00	-1.94750	2.36E-03	-1.75679
RABGAPIL	8.32E-08	0.858302	-1.01307	5.20E-07	-1.98807	5.80E-07	-1.97575
RADSILI	2.43E-08	0.189795	1.09808	1.23E-07	-2.1014	2.29E-06	-1.75934
RANBP17	0.000114	0.531071	1.07555	0.000259	-1.//99/	0.000268	-1.//5/1
RASAL2	1.69E-05	0.713269	-1.03724	2.06E-05	-1.92564	0.000259	-1.64251
RASAL2	5.33E-06	0.368261	-1.08473	4.21E-05	-1.72345	2.30E-05	-1.78629
RBMS3	1.37E-09	0.333028	1.16441	1.25E-07	-5.26743	4.58E-09	-9.31298
RGL1	4.86E-07	0.827623	-1.01699	2.62E-06	-1.87217	3.25E-05	-1.62686
RGNEF	7.84E-05	0.020464	-1.34685	0.000141	-1.84309	0.000377	-1.72429
RHBDD1	2.05E-08	0.006578	1.16915	1.77E-06	-1.50665	1.69E-06	-1.5094
RIBC2	1.16E-06	0.627569	1.04062	7.58E-06	1.81657	4.30E-06	1.88028
ROBO1	5.30E-06	0.898839	1.01217	0.000114	-1.6871	4.19E-05	-1.79198
ROBO2	6.54E-05	0.384187	1.20439	0.000605	-2.58139	0.000463	-2.66555
ROR1	1.85E-08	0.078097	-1.14676	1.54E-08	-2.57183	9.92E-08	-2.2246
RP11-301 17.1	8.22E-07	0.558924	1.15154	1.45E-05	-5.16279	2.44E-05	-4.73836
RPIB9	6.05E-06	0.453187	-1.09762	1.46E-05	-2.31581	3.78E-05	-2.13911
RSRC1	2.06E-06	0.873086	1.01108	1.78E-05	-1.58774	3.20E-05	-1.54471
RSRC1	3 64F-08	0.011132	-1 19853	2.07E-08	-2 18652	1 95F-07	-1 8947
SATR2	0.001091	0.548088	-1 10007	0.000819	-1 9815	0.000969	-1 95239
SBE2	1 3/F-08	0.840618	-1 01893	9 19F-08	-2 810/19	8 67E-08	-2 82589
	1.040-08	0.032604	-1.01093	3.192-08	-2.81049	1.915.00	-2.82383
	1.05E-10	0.032604	1.11355	2.50E-09	-2.00227	1.81E-09	-2.04221
SDCCAGIU	1.15E-05	0.471523	1.00303	0.82E-05	-1.03/01	0.000128	-1.58447
SECISLZ	2.60E-05	0.794675	-1.04178	0.000176	-2.2/48/	0.000123	-2.35368
SEMA3A	1.58E-05	0.93535	1.0207	0.000101	-4.08327	0.000337	-3.40099
SEMA3D	9.99E-05	0.064106	-1.50981	4.12E-05	-3.55136	0.000749	-2.4/38
SETBP1	1.14E-05	0.976752	-1.00233	9.18E-05	-1.56681	0.000108	-1.5544
SGCD	5.16E-11	0.017747	1.09898	4.31E-10	-1.86654	3.37E-09	-1.68568
SH3D19	4.48E-05	0.061201	-1.1677	1.20E-05	-1.70736	0.000111	-1.52555
SH3MD4	4.51E-07	0.940956	-1.0064	1.90E-06	-2.057	1.73E-06	-2.0709
SIPA1L1	6.80E-07	0.695354	-1.0346	1.92E-06	-2.06224	1.91E-05	-1.77931
SIPA1L1	4.87E-07	0.197416	-1.11322	1.56E-06	-1.98265	2.67E-06	-1.91579
SLC2A13	8.81E-05	0.682474	-1.05144	0.001265	-1.64998	0.000333	-1.80928
SLC39A11	9.59E-05	0.728324	-1.03009	0.000305	-1.51831	9.44E-05	-1.61246
SLC8A1	2.19E-06	0.600096	-1.05942	3.01E-05	-2.00368	3.68E-05	-1.97487
SLC9A9	1.22E-05	0.024213	1.30619	0.000759	-1.59001	0.000307	-1.67971
SLIT2	2.86E-05	0.840213	-1.02927	0.000134	-2.16367	0.000718	-1.8797
SMYD3	2.65E-07	0.668149	-1.02906	6.55E-07	-1.85219	1.19E-06	-1.79067
SOX5	1.51E-05	0.964201	1.00857	4.64E-05	-3.16805	0.00022	-2.63628
SSBP2	4.95E-11	0.036635	-1.10114	3.85E-11	-2.49634	1.03E-09	-1.99367
ST6GALNAC3	4.38E-09	0.014794	1.16514	5.78E-07	-1.67207	1.34E-07	-1.80084
STK32B	2.85E-07	0.322228	-1.08569	1.14E-06	-2.04366	2.26E-06	-1.95274
STK39	1.56E-06	0.591233	-1.03807	3.23E-06	-1.73295	6.29E-06	-1.67354
STK39	2.98E-07	0.247768	-1.07626	4.14E-07	-1.81637	2.32E-06	-1.66063
SV2B	2.75E-06	0.764628	-1.02323	9.06E-06	-1.73273	6.38E-06	-1.76709
SYNE1	5.56E-07	0.882064	-1.0119	4.79E-06	-1.84005	3.09E-06	-1.89
SYTL5	8.62E-05	0.031889	-1.41059	2.31E-05	-2.57171	0.000407	-1.9848
TCF12	6 74F-06	0.965947	1 00278	8 68F-06	-1 59753	3 21F-05	-1 50622
TCF19	3.06E-06	0.031295	1 15953	4.62E-06	1.60965	6.68E-06	1 58251
	2 42E-09	0.001832	-1 2311/	2 17E-09	-2 28205	1 19F-08	-2 03/18
ТНАПА	7 175_00	0.612520	1 022	9 525 07	-1.76796	5 205 07	-2.0340
THC2279570	2 22E 0F	0.012330	1 11621	5 205 05	2 65796		2 1 2 0 2 1
TUC2270370		0.303043	1.11051	1 605 00	-2.03760		7 12700
TUC2201110	5.05E-10	0.001002	1.27862	1.00E-08	-0.80667	1.22E-U8	-7.12768
THC2282/1/	0.000111	0.001802	-1.56978	4.30E-06	-2.44238	0.000664	-1.6/315
THC2283850	0.000747	0.94601	-1.02156	0.002918	-3.15201	0.001016	-3.77784
THC2310680	3.78E-08	0.240321	1.08083	1.05E-06	-1.76674	5.15E-07	-1.83732
THC2322184	0.003841	0.026512	-3.09191	0.000409	-8.65998	0.000626	-7.74868
THC2342793	0.000395	0.560503	-1.10166	0.002465	-1.85309	0.000106	-2.49607
THC2343933	2.02E-05	0.64741	1.06981	0.002503	-1.72897	0.000166	-2.16806
THC2374505	1.05E-07	0.973494	-1.00589	1.07E-06	-4.77235	7.53E-07	-5.03261
THC2375512	3.14E-06	0.097929	-1.32402	8.31E-06	-3.18007	1.04E-05	-3.09997

THC2403217	7.40E-05	0.561711	1.17872	0.001711	-3.02372	0.000378	-3.8362
THC2415390	2.88E-10	0.150912	1.19939	1.15E-08	-5.02998	1.71E-08	-4.75805
THC2437069	4.82E-07	0.125484	-1.18463	8.75E-05	1.81226	1.96E-06	2.40239
THC2453346	5.32E-08	0.121481	-1.12699	1.23E-07	-2.20566	4.16E-06	-1.76505
TIAM2	9.46E-09	4.57E-05	-1.3384	7.38E-09	-1.94709	7.16E-08	-1.72347
TMEM108	1.51E-06	0.005655	-1.40399	1.72E-07	-2.94409	6.70E-06	-2.1443
TMEM108	8.85E-08	0.000616	-1.43095	1.46E-08	-2.83278	1.35E-06	-1.99058
TMEM117	3.53E-10	0.719388	1.02835	2.01E-09	-3.34496	1.05E-08	-2.84377
TMEM132D	5.60E-07	0.583348	1.11936	1.15E-05	-4.18655	3.21E-05	-3.62588
TMEM16D	0.001178	0.243239	-1.30529	0.00086	-2.60097	0.001396	-2.45103
TMEM16D	3.22E-07	0.200283	-1.15037	6.62E-07	-2.65422	7.76E-07	-2.61612
TMTC2	9.16E-08	0.003902	1.44799	8.42E-05	-1.82767	2.38E-06	-2.38426
TNIK	4.24E-09	0.098366	-1.11055	1.76E-08	-2.15614	5.95E-08	-1.9921
TTC28	2.16E-05	0.609855	-1.06028	0.000135	-1.84935	3.89E-05	-2.02372
TTC28	1.37E-05	0.898695	1.02682	0.000139	-3.05448	3.94E-05	-3.60466
UBE2E2	6.10E-07	0.018004	-1.31035	1.59E-07	-2.89777	8.45E-06	-2.07308
UST	3.92E-07	0.719811	1.0301	3.84E-06	-1.90521	2.03E-06	-1.9851
UTRN	3.60E-05	0.266851	-1.12581	9.10E-05	-1.79605	8.76E-05	-1.80046
VAV3	1.98E-07	0.098663	-1.22081	2.55E-07	-3.15794	1.91E-06	-2.59061
VPS13B	4.73E-06	0.885386	1.019	8.07E-05	-2.10772	1.44E-05	-2.44681
VPS13B	1.77E-09	0.583198	1.04196	3.51E-08	-2.4601	2.60E-08	-2.52042
WDHD1	0.000398	0.002311	1.4329	0.000208	1.63156	0.000854	1.50959
WDR70	1.10E-09	0.85195	-1.00826	9.38E-09	-1.81999	2.06E-08	-1.74803
XRCC4	8.70E-09	0.279891	-1.07031	3.28E-08	-2.10882	2.43E-07	-1.86333
ZBTB20	5.29E-05	0.128088	1.2224	0.001026	-1.69673	0.000751	-1.73423
ZNF291	1.07E-11	0.598343	-1.02445	1.29E-10	-2.45599	1.31E-10	-2.45406
ZNF407	8.26E-05	0.771468	-1.02947	0.001146	-1.51376	0.000285	-1.63825
ZNF438	2.48E-06	0.605577	1.03326	2.45E-05	-1.50491	2.31E-05	-1.50867
ZNF521	3.84E-07	0.081181	-1.10634	2.92E-07	-1.71773	3.64E-06	-1.53109

Tabela 7-A2 - Genes do grupo G do Diagrama de Venn

		p-value	Fold-Change	p-value	Fold-Change	p-value	Fold-
	p-value	(Carb vs.	(Carb vs.	(Carb UV vs.	(Carb UV vs.	(DMSO UV vs.	Change(DMSO
GeneName	(Treatment group)	DMSO)	DMSO)	DMSO)	DMSO)	DMSO)	UV vs. DMSO)
BQ185350	0.00382797	0.000306559	2.10274	0.000926047	1.911	0.000761081	1.94305
CCL25	0.00165512	0.00108064	1.76878	0.000308173	1.94931	0.000281256	1.96359
DMD	5.53986e-009	1.5762e-005	-1.56186	1.05124e-009	-2.94749	2.65642e-005	-1.5257
ENST00000329615	0.000799067	0.000623899	2.0958	0.000278122	2.26295	0.000591843	2.10614
ENST00000370237	0.00284054	0.000459165	-2.76794	0.00224831	-2.28319	0.000422607	-2.7969
ERG	1.37867e-006	0.000345894	-1.76799	2.61098e-007	-3.2846	4.13341e-005	-2.06295
FLT3	1.72216e-012	6.88271e-013	-1.58187	5.23759e-013	-1.59885	4.75235e-013	-1.60503
GTDC1	0.0018217	0.000139521	-4.56569	0.000250139	-4.13514	0.00144699	-3.11977
KIAA0746	1.36787e-007	5.64592e-006	-1.62729	1.59833e-008	-2.31406	9.83094e-006	-1.58521
KIAA1199	2.26805e-007	0.00112851	-1.6696	4.90481e-007	-3.22701	4.25531e-005	-2.12526
KIAA1199	7.72377e-008	0.000288449	-1.75439	1.85979e-007	-3.26813	2.54633e-005	-2.08671
OSTbeta	0.00091616	0.000124308	3.33914	0.00254889	2.27857	0.0011176	2.51717
THC2409506	0.00226368	0.000469741	-2.24532	0.000525627	-2.22038	0.000320948	-2.33297
TRERF1	1.33693e-006	0.000324863	-1.80154	1.90597e-007	-3.50782	1.42253e-005	-2.29251
ZNF408	0.00387067	0.000763755	1.57526	0.00135567	1.52405	0.000403647	1.63573