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RESUMO 
 

OLIVEIRA, E.M. Novas perspectivas para o papel de amilóide sérica A (SAA) na 
obesidade e resistência à insulina. 2015. 119f. (Tese de Doutorado). Faculdade 

de Ciências Farmacêuticas. Universidade de São Paulo, São Paulo, 2015. 

 

Endotoxemia crônica de baixo grau tem um importante papel na obesidade e 

resistência à insulina associada a uma ração hiperlipídica. Por outro lado, embora se 

saiba que a endotoxemia intensa e infecção reduzam o apetite e induzam a um 

intenso catabolismo, conduzindo a perda de peso durante a fase aguda da 

inflamação, os efeitos tardios da endotoxemia intensa nunca foram explorados.  Aqui 

mostramos que, além dos efeitos correntes, a endotoxemia aguda provoca 

alterações bioquímicas prolongadas no tecido adiposo que intensificam os efeitos 

deletérios de uma ração hiperlipídica. Camundongos submetidos à endotoxemia 

aguda apresentaram aumento na expressão de TLR-4, CD14 e SAA3 no tecido 

adiposo, permanecendo alteradas após uma semana em recuperação. Quando 

associado a uma ração hiperlipídica, os camundongos previamente submetidos à 

endotoxemia aguda mostraram um ganho de peso mais pronunciado e uma maior 

resistência à insulina. Adotando a ração hiperlipídica como um estímulo 

obesogênico, foi avaliada a participação da proteína amilóide sérica A (SAA) no 

desenvolvimento da obesidade. Usando um oligonucleotídeo antisense anti-SAA, 

observamos que a depleção da SAA  previne as alterações metabólicas, elevação 

de endotoxina, ganho de peso e resistência à insulina associadas a ração rica em 

gordura.  O sono inadequado é outro fator importante a ser considerado na epidemia 

de obesidade. Descobrimos que a restrição do sono (SR) provoca alterações 

bioquímicas e morfológicas no tecido adiposo de camundongos. A concentração de 

resistina no soro e a expressão de mRNA no tecido adiposo de resistina, TNF-α e IL-

6 foram aumentadas após SR. Quando associado a uma ração hiperlipídica, os 

camundongos submetidos previamente à SR ganharam mais massa com aumento 

da infiltração de macrófagos no tecido adiposo epididimal, e resistência à 

insulina. SAA também faz parte das alterações bioquímicas iniciais provocadas pelo 

SR. Observou-se que a expressão de SAA no fígado e tecido adiposo é regulada 

positivamente, com retorno ao basal quando o sono é restaurado. Além disso, 48 
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horas de restrição de sono total em voluntários humanos saudáveis também causou 

uma elevação nas concentrações séricas de SAA. Considerando que SAA induz 

proliferação, sugerimos que situações onde ocorra aumento na produção de SAA e 

a consecutiva proliferação celular, o tecido adiposo se tornaria predisposto a futura 

diferenciação e hipertrofia. Além disso, sugerimos que SAA altera a sinalização de 

LPS, possivelmente inibindo sua depuração. O mecanismo de associação entre a 

inflamação e a obesidade é complexo e inclui uma diversidade de fatores; a proteína 

inflamatória SAA pode ser um deles. Em conclusão, nossos dados descrevem a 

relação entre SAA, inflamação aguda, restrição do sono e obesidade. 

 

Palavras-chave: adipócito, endotoxemia, fase aguda, inflamação, restrição de sono. 
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ABSTRACT 
 

OLIVEIRA, E.M. New insights into the role of serum amyloid A (SAA) on obesity 
and insulin resistance. 2015. 119p. (Doctoral Dissertation). Faculdade de Ciências 

Farmacêuticas. Universidade de São Paulo, São Paulo, 2015. 

 

Chronic low-grade endotoxemia is an important player in obesity and insulin 

resistance associated to a high-fat diet (HFD). On the other hand, although it is 

known that intense endotoxemia and infection reduce appetite and induce intense 

catabolism, leading to weight loss during the acute inflammatory phase, the late 

effects of an intense endotoxemia were previously unexplored.  Here we report that, 

besides the concurrent effects, multiple and intense endotoxemia causes long lasting 

biochemical alterations in the adipose tissue that intensify the harmful effects of a 

HFD. Mice submitted to multiple and severe endotoxemia had increased the adipose 

tissue expression of TLR-4, CD14 and SAA3, remaining altered after one week in 

recovery. When associated to a HFD, mice previously submitted to acute 

endotoxemia showed a more severe weight gain and impaired insulin sensitivity. 

Adopting the HFD as an obesogenic stimulus, we evaluated the participation of the 

protein serum amyloid A (SAA) in obesity development. Using a SAA-targeted 

antisense oligonucleotide, we observed that the depletion of SAA prevented 

metabolic alterations, endotoxin elevation, weight gain and insulin resistance in a 

diet-induced obesity protocol.  Inadequate sleep is another important factor to be 

considered in the obesity epidemic. We found that sleep restriction (SR) causes 

biochemical and morphological alterations in mice adipose tissue. The levels of 

serum resistin and the adipose tissue mRNA expression of resistin, TNF-α and IL-6 

were increased after SR. When associated to a HFD, mice previously submitted to 

SR gained more weight with increased macrophage infiltration in the epididymal 

adipose tissue, and insulin resistance. SAA is also part of the initial biochemical 

alterations caused by SR. It was observed that the expression of SAA in liver and 

adipose tissue is upregulated, with return to baseline when sleep is restored. 

Furthermore, 48 hours of total sleep restriction in healthy human volunteers also 

caused a serum elevation in SAA concentrations. Considering that SAA induces cell 

proliferation, we suggest that situations with an increase in SAA production and the 

consecutive preadipocyte proliferation would prime the adipose tissue to further 
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adipocyte differentiation and hypertrophy. Furthermore, we suggest that SAA alter 

LPS signaling, possibly inhibiting its clearance. The mechanism associating 

inflammation and obesity is complex and encompass a diversity of factors;  the 

inflammatory protein SAA may be one of them. In conclusion, our data describes the 

relationship between SAA, acute inflammation, sleep restriction and obesity. 

 

Keywords: adipocyte, endotoxemia, acute inflammation, inflammation, sleep 

restriction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



12 
 

INTRODUCTION 
 

This dissertation is organized as a literature review regarding the role of SAA 

in the adipose tissue and obesity, including the contributions made during my 

doctorate period, which are organized as three papers (P1 – page 22, P2 – page 27 

and P3 – page 36) and two manuscripts in preparation (draft D1 – page 45 and draft 

D2 – page 80), attached right after the introduction section. 

 

Serum amyloid A (SAA) 
 
Serum amyloid A protein (SAA) belongs to the family of apolipoproteins 

produced in countless vertebrates studied to date, especially many mammalian 

species including human, mouse, hamster, dog, rabbit, cow, sheep and horse. The 

high degree of conservation of SAA genes, which has been maintained through 

evolution of placental mammals and extending the other vertebrates including fish 

and marsupials, corroborate the evidence they have important biological functions1. 

In humans, the SAA family includes a number of genes that are closely related 

but differently regulated, showing four distinct genes localized on the short arm of 

chromosome 11p15.12; 3. Inducible SAA1 and SAA2 genes specify the two acute 

phase SAA (SAA1 and SAA2) whose expression is induced in response to pro-

inflammatory stimuli4, encoding 104 amino acids, molded into a protein of 12.5 kDa 

and sharing 93% identity in its sequence of amino acids. A third gene, called SAA3 

which shows 71% identity with SAA1 and SAA2 is considered a pseudogene5. The 

constitutive SAA (SAA4) is another SAA family member being the product of the 

SAA4 gene6. The SAA4 differs from SAA1 and SAA2 as regards the peptide chain, 

being eight amino acids longer, and showing an identity of approximately of 55% 

compared to both of them. In addition, SAA4 probably has a posttranslational 

modification, a glycosylation at a single point in the amino acid asparagine (N), 

number 76 in the polypeptide chain of the protein7.  

In mice, four functional and distinct isoforms of SAA have been identified, SAA 

1-41. Isoforms 1 and 2, whose expression and synthesis in the liver are induced in 

response to pro-inflammatory stimuli (inflammatory and/or infectious response)4.The 

SAA3 is mainly expressed in extrahepatic tissue but also considered an acute SAA, 

being the most abundant isoform in adipose tissue8; 9; 10 and the SAA4 that is 
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considered constitutively active as its serum levels do not change in the presence of 

acute inflammatory or infectious stimuli7.  

Although SAA have been sequenced in several species, there is a lack of 

studies concerning its structure. It is known that  SAA has a D-helix structure in the 

amino terminal region, allowing its connection with the high-density lipoprotein 

(HDL)11. Besides the association between HDL and SAA be essential for the 

transport of SAA in the bloodstream, it is believed that this association is important 

for keeping the SAA inactive during transport12. Dissociated SAA acts as a powerful 

stimuli for inflammatory cells13, featuring the HDL as a safe SAA carrier to specific 

sites14. 

Hepatocytes produce SAA from stimulus such as the inflammatory cytokines 

tumor necrosis factor-alpha (TNF-D), interleukin 1 (IL-1) and interleukin 6 (IL-6)11; 15. 

The inflammatory response is responsible for activate a cascade of reactions, 

collectively known as the acute-phase response (APR), that contribute to the 

protection of the host from tissue damage, infection or trauma. In healthy subjects, 

the plasma concentration of SAA is about 10 µg/mL, which could increase 1000 

times in 24 hours in response to tissue damage or infection16. A permanent but slight 

increase in serum SAA is observed in cases of chronic diseases such as diabetes17, 

rheumatoid arthritis18, cancer19 and atherosclerosis20 and is believed to contribute to 

their pathogenesis mechanisms. For instance, SAA directly accelerates the 

atherosclerosis development, leading an increased LDL retention in atherosclerotic 

lesions20; 21. 

The half-life of SAA in plasma is about 90 minutes22, and its catabolism also 

occurs in the liver. However, the liver's ability to degrade SAA during the acute phase 

is reduced, which maintains the high protein concentration in the plasma23. SAA is 

also synthesized in extra-hepatic tissues, including monocytes, macrophages, 

endothelial cells and smooth muscle cells11. Adipocytes also express and secrete 

SAA, characterizing the adipose tissue as another important source of this protein in 

addition to the liver24. 

Free SAA is only found in inflamed tissues, suggesting a role in the local 

inflammatory response25. Although until now no receptor dedicated solely to SAA has 

been identified, several studies suggest different types of receptors for SAA: (i) FPR-

2 (formyl-peptide receptor 2) a transmembrane G-protein coupled receptor that is 

responsive to pertussis toxin, and related to chemotactic activity, cytokine production 
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and angiogenesis26; 27; 28; (ii) CD36, also known as FAT (fatty acid translocase), a 

member of the class B scavenger receptor family of cell surfaces proteins, expressed 

by monocytes, macrophages, endothelial cells and adipocytes29; 30; (iii) SR-BI is 

another member of the class B scavenger receptor family that SAA can bind31, both 

scavenger receptors are related to an inflammatory response when activated by 

SAA; (iv) RAGE, the receptor for advanced glycation endproducts found on 

mononuclear cells32; (v) Tanis (or selenoprotein S), a receptor expressed by the liver 

and regulated by glucose concentration33; (vi) Toll-like receptors family, specially the 

innate immune related receptors TLR-234 and TLR-435. 

SAA has a high immunological activity and possesses many proinflammatory 

and cytokine-like properties. In neutrophils, SAA promoted the mRNA expression and 

release of cytokines related to the inflammatory response, such as TNF-α, IL-1β, IL-

1ra and IL-813; 36; 37. Also, SAA induced the production of nitric oxide (NO), CCL20, 

TNF-α, IL-1β, IL-6, IL-8 and the growth-promoting granulocyte-macrophage colony-

stimulating factor (GM-CSF) in monocytic cells35; 38; 39. This induction of cytokines is 

dependent on nuclear factor (NF)-κB and involves the activation of ERK1/2, p38, JNK 

mitogen-activated protein kinases, and the phosphoinositide-3 kinase pathway12; 39. 

SAA is chemoattractant for polymorphonuclear leucocytes and monocytes in vitro 

and in vivo, and may be involved in the pathogenesis of several diseases40. For 

instance, neutrophils and monocytes from diabetic subjects responded more 

efficiently to SAA increasing both the production of cytokines and cell migration41. 

SAA is also able to increase proliferation in fibroblasts42, endothelial cells43 and 

preadipocytes (P2). In tumor progression, it is suggested a dual role for SAA, in 

some cases inducing proliferation, migration and invasion and in other inhibiting 

these processes 44; 45. SAA was also identified as a molecule that functions in the 

placental microenvironment to regulate metalloprotease activity and trophoblast 

invasion, in a TLR-4-dependent manner, which are key processes in placentation 

and placental homeostasis46. Although SAA is a mediator of the innate immune 

system, it also participates in the regulation of adaptive immune responses. SAA, via 

IL-1β (activation of inflammasome), is able to induce a Th17 type of imunne 

response, being correlated to the pathogenesis of several diseases, including 

rheumatoid arthritis and asthma47; 48. 
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SAA and obesity  
 

Obesity is a disease characterized by excessive accumulation of 

subcutaneous and visceral fat. Its severity can be measured by complications such 

as dyslipidemia and cardiovascular disease, type 2 diabetes, certain cancers, 

respiratory problems, skin problems and disorders of the locomotor system49; 50; 51. 

Currently, obesity is a serious public health problem in developed countries and a 

growing problem in developing countries52; 53.  

The World Health Organization (WHO) tells that 2.8 million people die each 

year worldwide, due to diseases related to overweight or obesity. Between 1980 and 

2008, the worldwide prevalence of obesity has nearly doubled. In 2008, more than 

1.4 billion adults (20 and older) were overweight. Of these, over 200 million men and 

nearly 300 million women were obese, totaling a number of half a billion individuals, 

representing 10% of men and 14% of women in the world54. According to the Instituto 

Brasileiro de Geografia e Estatística (IBGE), is increasing the number of obese 

people in Brazil. Researches indicate that there are 101.8 million overweight adults 

(20 and older), representing 50.8% of the population and 35.1 million obese, 

representing 17.5% of the population55; 56.  

The development of obesity is characterized by an increase in the number of 

cells into the adipose tissue (hyperplasia) and intracellular accumulation of lipids 

(hypertrophy), the result of cellular proliferation and differentiation. These processes 

are regulated by endocrine, genetic, metabolic, neurological, pharmacological, 

environmental and nutritional factors57; 58; 59. The adipose tissue way to obesity, it is 

characterized by adipocyte hypertrophy and a reduction in local blood flow and 

insufficient angiogenesis, with consequent formation of hypoxic areas. Major 

inflammation-related adipokines has been shown to be modulated by hypoxia, 

including IL-6, MIF (macrophage migration inhibitory factor), VEGF, MMP-260; 61; 62 

and also serum amyloid A (P1). 

Over the past decades, the inflammatory response has been extensively 

associated with weight gain and related complications such as insulin resistance and 

cardiovascular risk63; 64; 65; 66. Furthermore, inflammation has been proposed as a link 

between obesity and its complications64. Among the studies correlating 

proinflammatory molecules with obesity, a meta-analysis comprising 11 cross-

sectional studies and 10 prospective studies has established that SAA levels are 
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positively associated with BMI levels while weight loss is associated with decreased 

SAA levels67.  Also, according to Yang et al, SAA derived from adipose tissue (both 

protein and gene expression) was associated with human BMI as well as its 

adipocyte size64. 

A causal relation between SAA and obesity is supported by its effect on the 

induction of pro-inflammatory cytokines and chemokines in adipocytes (P2), as in the 

case of immune cells68; 69.  SAA also affects adipocyte biology enhancing 

preadipocyte proliferation mediated by the ERK1/2 signaling pathway (P2) and 

inhibiting adipocyte differentiation by the decreased expression of adipogenesis-

related genes, such as PPARγ2 (peroxisome proliferator-activated receptor γ 2), 

C/EBPβ (CCAAT/enhancer-binding protein β) and GLUT4 (P2)68; 69.  

The inflammatory status associated with hyperplasia and hypertrophy of 

adipose tissue and the recruitment of macrophages into this tissue characterizes a 

state of mild chronic inflammation in obesity, leading to insulin resistance and type 2 

diabetes70. In obese mice, the expression of TNF-α and SAA are strongly related to 

insulin resistance and metabolic syndrome71. It is important to emphasize that 

adipocytes stimulated with SAA, presented impaired insulin sensitivity (P2). SAA also 

induces an increased lipolysis (P2) through an ERK dependent pathway69. The 

increased lipolysis could contribute to the increased circulating levels of free fatty 

acids and further decreased glucose uptake by muscle and liver found in metabolic 

disorders72. In type 2 diabetes, neutrophils  and monocytes are more activated and 

produces higher concentrations of IL-8, IL-1β, TNF-α and IL-1ra and reactive oxygen 

species73. This basal activation and the failure to appropriately respond to specific 

stimuli are related to the inflammatory status that accompanies diabetes and 

deficiencies in normal neutrophils responses, respectively73. Furthermore, diabetic 

patients have an increased serum levels of SAA, and  that could  be related to the 

higher responsivity of neutrophils from diabetic patients to SAA41. 

Besides the large amount of adipocytes, other cells contribute to the 

production of inflammatory mediators in adipose tissue74. Several research groups 

have demonstrated an effective participation of macrophages in inflammatory 

aspects of obesity75. The importance of macrophages in the development of 

metabolic complications in obesity is related to their ability to produce pro-

inflammatory cytokines. In this way, the beginning of this process may be the 

migration of M1 macrophages into the adipose tissue. In this context, there are 



17 
 

several studies showing the importance of inflammatory mediators such as MCP-1 

(monocyte chemotactic protein 1) and its receptor CCR2 and CCR4, that promote 

cell migration to the inflammatory site, when released by adipocytes76; 77. However, 

other important publications found mild influence of MCP-1 in macrophage infiltration 

or insulin resistance development78; 79. Others mechanisms that could contribute to 

the migration of macrophages to the adipose tissue may involve the chemoattractive 

properties of SAA (P1). 

The identification of SAA as a key factor triggering obesity gain more 

soundness in recent published studies with SAA 1/2 knockout mice (acute-phase-

related isoforms) showing that they gain less weight during theirs lifespan80 and that 
SAA3 knockout mice (adipose tissue-induced isoform) gained less weight on a high-

fat diet compared to controls, with reduced adipose tissue inflammation and 

macrophage content81.  

Despite the inflammation resulting from obesity is well characterized, it has 

been discussed if obesity could be a consequence of the inflammatory process. 

Although  intestinal microbiota have important physiological roles increasing 

vascularization and blood flow to the intestine, promoting better absorption of 

nutrients, it also contributes to a moderate endotoxemia, especially with the adoption 

of a high-fat diet82; 83. Accordingly, continuous infusion of low doses of 

lipopolysaccharide (LPS), mimicking the metabolic endotoxemia caused by a high-fat 

diet, induces obesity, insulin resistance and diabetes, in addition to the expression 

and release of TNF-α and IL-6 by adipose tissue in an murine experimental model84; 

85; 86    

The importance of enteric and non-pathogenic bacterial flora in diet-induced 

obesity was also clearly evidenced by studies that have shown that germ-free 

animals have a lower percentage of body fat and do not develop obesity and insulin 

resistance when subjected to a high-fat diet83. Another recent study also shows that 

intestinal LPS is able to increase the migration of macrophages to adipose tissue, 

contributing to the tissue inflammation87. 

The identification of the role of endotoxemia and the TLR co-receptor CD14 in 

obesity occurred simultaneously88. After that, it was shown that TLR-4-deficient mice 

are protected from diet-induced insulin resistance, independently of germ-free 

conditions89; 90 and that  the activation of TLR-4 and its co-receptor CD14 is 

associated to insulin resistance in adipocytes and to the adipose tissue 
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development88; 91; 92. In 2012, Caricilli et al. showed that mice TLR2-/- have a change 

in the profile of the existing intestinal microbiota, followed by an increment in LPS 

absorption, subclinical inflammation, insulin resistance and later obesity. The 

molecular mechanisms involves the activation of TLR4 receptors associated with 

endoplasmic reticulum stress and activation of the JKN both in liver and in fat tissue, 

all associated with promotion of inflammation93. 

The ability of low-grade inflammation driven by metabolic endotoxemia to 

induce obesity led us to consider that intense endotoxemia, mimicking an acute 

inflammation, may also impact on adipose tissue. Although intense and multiple 

endotoxemia lead to weight loss, it also causes long-lasting adipose tissue 

expression of TLR-4, CD14 and SAA (D1). These modifications in the adipose tissue 

by themselves are not enough to impact on weight gain unless a high-fat diet is 

introduced. When associated to a HFD, mice previously submitted to acute 

endotoxemia showed a more severe weight gain and impaired insulin (D1). The 

association of acute inflammation with obesity observed by us could explain 

epidemiological data that show a relationship between children from low-income 

families with a higher prevalence of childhood diseases94 and increased risk of 

obesity in adulthood95. In United States of America, from 2003 to 2007,  the 

prevalence of obesity increased by 10% in children and 23% considering only poor 

children95; 96. This study of more than 40,000 children showed that individuals from 

low-income families have 2 times more chance to become obese than a middle-class 

child or high95.Statistics also show that the possibility of becoming a morbid obesity is 

1.7 times higher for poor children and adolescents97. Poverty associated with poor 

hygiene, no health education, no access to safe drinking water, inadequate nutrition 

and air pollution is considered the dominant factor for a higher prevalence of 

diseases in children94; 98. In 2001, Ford et al. published the hypothesis that the 

overweight in adulthood may be associated with an inflammatory condition present in 

childhood99. Although for bacterial infections a direct relation with obesity was not 

previously considered, viral diseases are considered in the etiology of human 

obesity. Several experimental models with different animals show a positive 

correlation between viral infection and obesity100; 101; 102. It was shown that a human 

adenovirus, adenovirus-36 (Ad-36) is able to induce obesity in experimental models 

using chickens, mice and nonhuman primates103. In adipocytes, Ad-36 increased the 

differentiation and accumulation of lipids and also decreases the release of leptin103. 
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In humans, anti-Ad-36 antibodies are more prevalent in obese subjects (30%) than in 

non-obese (11%)104.  

The fact that SAA, a classical acute phase marker, has proliferative activity on 

preadipocytes, while inhibiting adipocyte differentiation (P2), led us to consider that 

SAA could participate in preadipocyte proliferation during endotoxemia, and under 

appropriate conditions differentiate to adipocyte with a consequent weight gain. In 

order to evaluate the participation of SAA as a triggering setting to insulin sensitivity 

and weight gain in a HFD-induced metabolic entodoxemia model, SAA-targeted 

antisense oligonucleotide was used. HFD-fed mice under ASOSAA treatment did not 

show increase in endotoxemia neither other HFD-related outcomes, as weight gain, 

visceral and subcutaneous fat accumulation, macrophage infiltration into the adipose 

tissue or impaired insulin sensitivity (D1). This data points to a link between SAA and 

LPS in the establishment of obesity and insulin resistance. LPS stimulates SAA 

production and this can be part of the LPS signaling to obesity and insulin resistance. 

Furthermore, it is possible to predict that SAA compromises LPS clearance by the 

impairment of the SR-BI (D1)31. 

Inadequate sleep is another important factor to be considered in the obesity 

epidemic, which can be defined as decreased total sleep time or reduced sleep 

quality, considering the presence of sleep disorders105.  Voluntary reduction of sleep 

time has become increasingly common in recent years, mainly due to the demands 

and opportunities of modern society106.The sleep restriction may be total (when there 

is no period of sleep a) or partial (when it takes longer than usual to go to sleep, or 

when you need to wake up earlier)107. 

In humans, epidemiological studies have evidenced a clear relationship 

between sleep reduction and obesity108; 109; 110. The restriction of sleep is associated 

with two parallel endocrine changes that can alter food intake: decreased release of 

the anorectic hormone leptin111; 112; 113  and increased release of the orexigenic 

hormone ghrelin113; 114; 115 resulting in increased feelings of hunger and food intake. 

Changes in cortisol release profile and growth hormone (GH) are also present in 

sleep restriction, which promotes stress and the exaggerated stimulation of the 

sympathetic system, with consequent serum increase of the above hormones106. 

Increased cortisol and GH are related to the regulation of glucose uptake, 

contributing to insulin resistance and predicting the development of type 2 

diabetes107.  
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Despite already shown different perspectives by which sleep restriction 

contributes to the weight gain process, it is not yet fully elucidated all mechanisms 

involved108. In addition, sleep restriction appears to be able to promote an 

inflammatory response, with increased serum and adipose tissue inflammatory 

molecules as C-reactive protein (CRP) and proinflammatory cytokines such as IL-6 

and TNF-α. Chronic elevation of serum concentration of proinflammatory cytokines 

and adipose tissue may favor a low-grade inflammation, very similar to that found in 

obesity116. Besides that, TLR-4 is activated in response to sleep loss117; 118. Probably 

the connection between sleep restriction and obesity occurs in persistent elevation of 

concentration of these cytokines107. 

It was demonstrated that obese patients with severe obstructive sleep apnea 

(OSA) have plasma SAA levels increased119; 120. Thus, in the proinflammatory context 

related to sleep restriction, defining a sleep restriction experimental model that lead 

to animal weight gain and insulin resistance could provide further conditions for the 

study of the participation of SAA in obesity. It was found that sleep restriction causes 

biochemical and morphological alterations in adipose tissue (P3). The levels of 

serum resistin and the adipose tissue mRNA expression of resitin, TNF-α and IL-6 

are increased after sleep restriction. Although during the sleep restriction mice lose 

weight, they became more susceptible to the harmful effects of a diet-induced obesity 

protocol. When associated to a HFD, sleep restricted mice gain more weight with 

increased subcutaneous fat mass and macrophage infiltration in the epididymal 

adipose tissue. Furthermore, enhanced glucose tolerance and insulin resistance is 

also observed (P3).Using the same sleep restriction protocol, it was described that 

the expression of SAA in liver and adipose tissue is upregulated under sleep loss 

condition, with return to baseline when sleep is restored (D2).Furthermore, 48h of 

total sleep restriction in non-obese and non-OSA human volunteers also cause a 

elevation in SAA concentrations in serum (D2). This data points out that sleep 

restricted individuals are subjected to any outcome derived from the elevation of SAA 

(D2). Corroborating to this data, there are studies showing that sleep restriction leads 

to the upregulation of TLR-4 expression in leukocytes117 and also to a low level 

endotoxemia121. 

Concluding, there is a clear relationship between SAA, endotoxemia and 

obesity development, possibly driven by a priming process in the adipose tissue via 
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activation of preadipocyte proliferation. The Figure 1 outlines the contributions 

included in this dissertation regarding the role of SAA in obesity. 

 

 

 

 
 

 
Figure 1. SAA participation in diet, inflammation and sleep restriction-induced 
insulin resistance and obesity. 
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Hypoxia Increases Serum Amyloid A3 (SAA3) in Differentiated 3T3-L1 
Adipocytes 
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Serum amyloid A is a growth factor for 3T3-L1 adipocytes, inhibits 
differentiation and promotes insulin resistance. 
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 Late effects of sleep restriction: Potentiating weight gain and insulin 
resistance arising from a high-fat diet in mice 
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ABSTRACT 
 

From the canonical study from Cani, Burcelin and colleagues we have learned that 

low-grade endotoxemia, also named metabolic endotoxemia, causes weight gain and 

insulin resistance (Cani P.D. et al. Diabetes. 2007;56:1761). This low-grade 

inflammation is also achieved with a HFD. From there, several studies have 

consolidated the role of microbiota-derived endotoxemia and the importance for the 

receptor system CD14/TLR-4 in obesity and insulin resistance. Here we took hold of 

these observations and addressed whether serial intense endotoxemia mimicking a 

systemic acute inflammation can also be considered an aggravating factor to obesity 

development. Mice lost weight when submitted to multiple LPS i.p. administrations 

(10 mg/kg, every 3 days for 24 days) and, after the cessation of endotoxemia, they 

rapidly recovered and maintained the normal weight. However, acute endotoxemia 

caused a long-lasting adipose tissue expression of TLR-4, CD14 and SAA in mice, 

becoming more susceptible to the harmful effects of a high-fat diet (HFD). Animals 

previously submitted to acute endotoxemia showed a more severe weight gain 

(approximately in 15%), related to an increase of visceral and subcutaneous adipose 

tissue (33.3% and 60.1%, respectively), a higher increment in leptin and insulin 

serum levels (1.3 and 3.6 times higher, respectively), and impaired insulin sensitivity. 

In the second part of this study, we evaluated the participation of the inflammatory 

protein serum amyloid A (SAA) as a triggering setting to insulin sensitivity and weight 

gain in a HFD-induced metabolic entodoxemia model. HFD-fed mice under SAA-

targeted antisense oligonucleotide (ASOSAA) treatment did not show increase in 

endotoxemia neither other HFD-related outcomes, as weight gain, visceral and 

subcutaneous fat accumulation, macrophage infiltration into the adipose tissue or 

impaired insulin sensitivity. In conclusion, our data describes that acute endotoxemia 

primes the adipose tissue and we identified SAA as one of the molecules involved in 

this process. It is known that SAA is produced by adipose tissue and promote 

preadipocyte proliferation. We suggest that situations with an increase in SAA and 

the consecutive preadipocyte proliferation would prime the adipose tissue to further 

adipocyte differentiation and hypertrophy, when in appropriate conditions such as 

HFD. Furthermore, we suggest that SAA alter LPS signaling, promoting its greater 

intestinal absorption or inhibiting its clearance. The mechanism associating 

inflammation and obesity is undoubtedly complex and encompass a diversity of 
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factors, and the inflammatory protein SAA may be one of those. If these data are 

confirmed in humans, acute inflammation associated with a western diet should be 

recognized as one of the contributing factors of the outbreak of obesity and type 2 

diabetes.   

  

INTRODUCTION 
 

The development of a chronic and low-grade inflammation is a hallmark of 

obesity and a key factor for the development of obesity comorbidities (1). Even more 

than a consequence of obesity, chronic inflammation is seen today as a key cause of 

the inflammatory status, weight gain, obesity and insulin resistance, specially 

triggered by the endotoxemia derived from intestinal microbiota (2; 3). Furthermore, 

high-fat feeding modulates gut microbiota and plasma concentration of endotoxin, 

correlating them to the occurrence of metabolic diseases (3).  

The basis for the role of metabolic endotoxemia in obesity is robust and thus, 

it is unavoidable to question what is the impact of a transient and intense 

endotoxemia in adipose tissue and weight gain. High concentrations of LPS cause an 

inflammatory acute phase and it is well known that this is a catabolic process leading 

to weight loss and causing injury to various organs mainly mediated by inflammatory 

products (4). However, we wonder if intense endotoxemia primes the adipose tissue 

resulting in similar metabolic changes observed by Cani and colleagues. Would 

acute inflammation contribute to weight gain obesity comorbidities induced by a high-

fat diet?  

Another point addressed in this study was to extend the understanding of 

which are the factors that link inflammation, weight gain and comorbidities induced by 

a high-fat- diet.  

The acute phase response is a complex reaction to infection or tissue injury 

characterized by fever, leukocytosis, changes in vascular permeability, altered 

metabolic responses and activation of nonspecific host defenses (5). These 

phenomena are primarily mediated by acute phase proteins mostly released by 

hepatocytes (5).   

One acute phase protein of particular interest for human and also expressed 

in mice is serum amyloid A (SAA). This protein has been implicated not only in the 

regulation of inflammatory responses (6-8), but also in control of cell proliferation (9-
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11) and metabolic profile (11-13). Although mainly secreted by the liver, SAA has 

also been reported to be produced by adipocytes, macrophages and several other 

cell types (14; 15). Furtheremore, SAA is an endogenous ligand to TLR-4, TLR-2 and 

SR-BI receptors, admittedly associated with the inflammatory response and also LPS 

receptors (6; 16; 17). 

Although LPS is certainly one of the early factors in high-fat diet–induced 

metabolic diseases, in this study we identified the protein serum amyloid A (SAA) as 

an additional trigger setting insulin sensitivity and weight gain.  

 

RESEARCH DESIGN AND METHODS 
 
Animals. Male Swiss Webster mouse (21 days of age) were obtained from the 

Animal Facility of the Faculty of Pharmaceutical Sciences, University of São Paulo, 

Brazil, under approval by its Ethical Committee (CEEA n°297). The animals were 

housed inside standard polypropylene cages in a room maintained at 22r2°C in 

12:12 h light/dark cycle (lights on at 7:00 am and off at 7:00 pm) and a relative 

humidity of 55r10%. Body weight was measured once a week during the entire 

protocol. Food and water intake were kept ad libitum and were measured every 2 

days. At the end, mice were submitted to euthanasia by anesthetic overdose and 

ensured by cervical dislocation. 

 

Acute endotoxemia. The method of multiple inductions of acute-phase comprises 

intraperitoneal administration of 8 consecutive injections (every 3 days) of LPS 10 

mg/kg (Lipopolysaccharides from Escherichia coli 026:B6, Sigma-Aldrich®, St. Louis, 

MO, USA), in saline (NaCl 0,9%), starting at weaning (21 days of age) with end at 45 

days of age of the animal. The time between two acute endotoxemia (3 days) was 

defined by the SAA profile. It was observed that after LPS injection, SAA 

concentration increases over a hundred times, with maximum values in 12 hours, 

approximately 1500 µg/mL, with return to basal in 72 hours (Supplementary Table 1).  

For acute endotoxemia experiments, mice (6 per group) were randomly assigned into 

2 different groups: the Control group and the LPS group, with euthanasia occurring 

after the last acute-phase period. The experimental design is illustrated in Figure 1A. 
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Acute endotoxemia followed by High-Fat Diet (HFD). For acute-phase followed by 

10 weeks on a high-fat diet (LPS+HFD) experiments, the animals (8 mice per group) 

were randomly assigned into 2 different groups: HFD group and LPS+HFD group. 

The HFD mice were submitted to a HFD for 10 weeks starting concurrently with the 

LPS+HFD group. The LPS+HFD mice were underwent to multiple inductions of 

acute-phase followed by 1 week of recovery period in standard chow-diet plus 10 

weeks on a 30% HFD. In our experimental model we consider the recovery sleep 

period as 7 days, the time that we observed weight reestablishment. The diet was 

produced following the American Institute of Nutrition´s recommendations for the 

adult rodent and its composition is listed in Supplementary Table 2. Body weight was 

measured every 3 days during acute-phase period. The experimental design is 

illustrated in Figure 2A. 

 

Diet-induced obesity protocol and SAA depletion. The animals were first 

randomly assigned into 2 different groups in order to receive chow or high-fat diet for 

10 weeks. Each group was then split again to receive antisense oligonucleotide in 

vivo treatment for SAA mRNA translation inhibition (kindly provided by Isis 

Pharmaceuticals, Inc., Carlsbad, CA, USA), composing the following groups with 6 

mice per group: Control (no ASO treatment), ASOscramble (ASO not specific to any 

murine transcript) and ASOSAA (ASO specific for murine SAA 1/2 transcript). Both 

ASOs were intraperitoneal injected at the dose of 25 mg/kg of the animal, once a 

week. The antisense oligonucleotides sequences and chemistries are listed in 

Supplementary Table 3. The experimental design is illustrated in Figure 4A. SAA 

levels tend to increase when a high-fat diet is introduced. In our experimental model, 

the mRNA transcription inhibitor ASOSAA was effective at decreasing the 

concentration of SAA even under HFD (Table 1). 

 

Glucose and insulin tolerance tests and measurements of serum leptin, 
adiponectin, insulin, IGF-I, SAA1/2 and endotoxin. Glucose and insulin tolerance 

tests (GTT and ITT) were performed as described previously (18). Serum 

concentrations of the proteins below were determined using ELISA following the 

manufacturer's instructions: leptin, adiponectin and insulin (Millipore® Corporation, 

Billerica, MA, USA), SAA1/2 (Tridelta Development Ltd, Maynooth, Ireland) and IGF-I 

(R&D Systems®, Minneapolis, MN, USA). Endotoxin was measured with the Limulus 
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Amoebocyte Lysate (LAL) chromogenic end-point assay (Lonza®, Allendale, NJ, 

USA). 

 

Histological Analysis. Paraffin-embedded sections (5 μm thick) from epididymal 

adipose tissue were stained by hematoxylin and eosin to assess morphology. 

Immunohistochemistry for F4/80 was performed using a rat anti-mouse F4/80 

antibody (1:100 dilution, AbD Serotec®, Raleigh, NC, USA) subsequently incubated 

with the appropriate secondary biotinylated antibody (Vector Laboratories Inc., 

Burlingame, CA, USA) and visualized with Immpact AEC peroxidase (Vector 

Laboratories Inc., Burlingame, CA, USA). Immunofluorescence for F4/80, SAA and 

perilipin were performed using a rat anti-mouse F4/80 antibody and rabbit anti-mouse 

perilipin (both 1:100 dilution, Abcam®, Cambridge, UK), and a rabbit anti-mouse SAA 

(1:200 dilution, kindly produced and provided by Dr. de Beer laboratory, University of 

Kentucky, KY, USA), subsequently incubated with the appropriate secondary 

fluorescent antibody (Invitrogen®, Camarillo, CA, USA) and the slides mounted using 

Vectashield set mounting medium with 4,6-diamidino-2-phenylindol-2-HCl (DAPI; 

Vector Laboratories Inc., Burlingame, CA, USA). An isotype control was used to 

ensure antibody specificity in each staining. Tissue sections were observed with a 

Nikon Eclipse 80i microscope (Nikon®) and digital images were captured with NIS-

Element AR software (Nikon®). 

 

In vivo peripheral fat area quantification. Two X-ray images were taken at different 

energy levels; one low-energy X-ray (10 keV) to image soft tissue, and one high-

energy X-ray (15 keV) to image bone, using the Carestream® In-Vivo MS FX Pro 

multispectral imaging system. A low/high energy ratio images were taken which 

allowed circumscribe and integrate different anatomical areas on the animals. The 

resulting ratiometric image was then displayed using a “Fire” intensity scale 

highlighting the subcutaneous fat area on the animals. 

 

Quantitative Real-Time PCR. Total RNA from epididymal adipose tissue was 

isolated using Qiagen RNeasy� Lipid Tissue Mini kit (Qiagen, Hilden, Germany). 

cDNA was then synthesized from 1 µg of RNA using the High Capacity cDNA 

Reverse Transcription (Life Technologies�, Grand Island, NY, USA). Real-time PCR 
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were performed using SyBr� Green Master Mix (Life Technologies�, Grand Island, 

NY, USA). The primer sequences are detailed in Supplementary Table 4. Real-time 

PCR for SAA3 was performed using the TaqMan� assay (Applied Biosystems�, 

Grand Island, NJ, USA), catalog number Mm00441203_m1 – Saa3 and β-actin 

(ACTB), number 4552933E, as an endogenous housekeeping gene control. Relative 

gene expression was determined using the 2-''Ct method. 

 

Gene Set Enrichment Analysis of publicly available microarray data. We 

collected from GEO (http://www.ncbi.nlm.nih.gov/geo, GSE50647) the expression 

profiles of mouse visceral adipose tissue. In the study (19), authors exposed chow-

fed apolipoprotein E (apoE) deficient mice to either 1) recurrent intravenous infection 

with A. actinomycetemcomitans or 2) a combination of recurrent intravenous infection 

with A. actinomycetemcomitans with a chronic intranasal infection with C. 
pneumonia. For the Gene Set Enrichment Analysis (GSEA) we ranked genes based 

on their mean log2 fold-change values between infected compared to uninfected 

mice. We then utilized custom gene sets, which contained genes related to: 

proliferation, adipogenesis, inflammation and the SAA. GSEA was performed using 

default parameters. Heat maps were used to display all genes from a statistically 

significant gene set. 

 

Statistical analysis. Results were presented as mean ± SEM. Statistical analysis 

was performed with Graph Pad Prism4 (Graph Pad Software, Inc., San Diego, CA, 

USA). Comparisons between two groups were conducted with the unpaired 

Student´s t test. Data with two independent variables were tested by two-way 

analysis of variance with Bonferroni post hoc test. The level of significance was set at 

p<0.05.  
 

RESULTS 
 
Acute endotoxemia per se affects the adipose tissue but not lead to late weight 
change. In order to verify the effect of acute endotoxemia in adipose tissue, mice 

were subjected to 8 consecutives LPS challenges, every 3 days (Fig. 1A). During the 

acute phase, endotoxin and SAA levels raised over a hundredfold in serum (Fig. 1B 
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and C) and mice developed overt signs of endotoxemia (hunched posture, reduced 

movement and piloerection) with no animal death. It is know that acute endotoxemia 

change food intake behavior causing a reduced food intake leading to weight loss. 

During the acute endotoxemia period, LPS animals showed a reduced caloric intake, 

coming to be 40% lower (Fig. 1D), causing weight loss, approximately 12.5% of their 

total weight and 20% of epididymal adipose tissue mass (Fig. 1 E and F). In 

histological analysis from epididymal adipose tissue, it was also possible to verify a 

decrease in 30% of the adipocyte size (Fig. 1G). Besides weight loss, mice 

presented increased inflammatory markers, such as macrophage infiltration, SAA 

mRNA expression and protein production and TLR-4 and CD14 expression in 

adipose tissue (Fig. 1H, I, J, K, L and M). The increased serum levels of endotoxin 

and SAA after each LPS challenge remains the same, indicating that there was no 

tolerance in this period. After endotoxemia, the animals recovered their weight in the 

course of a week without showing any difference from Control group in the 6 

consecutive weeks (Fig. 1C and D). One week without acute endotoxemia is also 

sufficient for the reestablishment of serum levels of endotoxin and SAA, however, the 

expression of SAA, TLR-4 and CD14 remain altered in the adipose tissue 

(Supplementary Figure 1). 

 

A previous history of acute endotoxemia exacerbates HFD complications. After 

the LPS challenges and a 1-week recovery period, mice were submitted to a high-fat 

diet (HFD) for 10 weeks. Mice submitted to HFD were used as control (Fig. 2A). The 

shift of chow diet to HFD during the experimental protocol resulted in an increment of 

approximately twice in the caloric intake for both groups (Fig. 2B) and despite the fact 

that the caloric intake were similar between them, mice previously submitted to 

multiple acute endotoxemia (LPS+HFD) showed a different growth curve with 

increased total body weight (approximately in 15%) (Fig. 2C), due an increment in 

visceral and subcutaneous adipose tissue depot (Fig. 2D, E and F). The data were 

confirmed using X-rays images highlighting the subcutaneous fat area on the 

animals, showing that LPS+HDF mice have a higher peripheral fat area, an 

increment in 23% of adipose tissue (Fig. 2G and H). Besides that, the epididymal fat 

from LPS+HFD mice presented larger adipocytes than HFD group (Fig. 2I), even 

though both groups show hypertrophied adipose tissue, with a clear increase in 
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macrophage infiltration and SAA production when compared to lean control (chow 

diet) (Fig. 2J). 

Under a high-fat diet, the endotoxin and SAA concentration reach levels about twice 

that observed in lean mice (Fig. 3A compared to 1B and Fig. 3B compared to 1C) but 

not differing between the groups HFD and LPS+HFD. In a similar manner, transcript 

levels of SAA3 in adipose tissue from HFD and LPS+HFD were comparable but 

increased when compared to a lean mice (Fig. 3D compared to 1I). The adipose 

tissue expression of SAA 1/2 was similar among all conditions (Fig. 3C and Fig. 1H). 

Nevertheless, mice previously submitted to multiple acute endotoxemia show an 

increment in TLR-4 and CD14 mRNA expression in the adipose tissue, with no 

change in TLR-2 transcript levels (Fig. 3E, F and G), and a worsened metabolic 

profile after the diet-induced obesity, with an increase in leptin and insulin levels (Fig. 

3H and I), culminating with a glucose and insulin tolerance tests notably affected, 

showing impaired insulin sensitivity (Fig. 5J and K). Fasting glucose, adiponectin and 

IGF-I concentrations were also measured in serum and no significant difference were 

observed (data not shown). 

 

SAA depletion prevents weight gain and its comorbidities induced by HFD. 
From the data obtained, we addressed the investigation of the involvement of SAA 

protein in weight gain and insulin resistance. For that, mice fed a chow or HFD for 10 

weeks and concurrently submitted to administration of SAA-targeted antisense 

oligonucleotide (Fig. 4A) were analysed regarding adipose tissue composition and 

architecture. Considering the type of diet used, no effect was observed in the amount 

and caloric intake when ASOscramble or ASOSAA was administered (Fig. 4B). The 

growth curves of mice fed a chow diet did not show any difference in the animal 

development, comparing the groups Control, ASOscramble and ASOSAA, demonstrating 

no toxic or side effect from the antisense oligonucleotide treatment (Fig. 4C). 

However, the ASOSAA group was protected from the effects caused by a HFD The 

growth curve and the visceral and subcutaneous fat depot weight were comparable 

to a chow-diet fed animal (Fig. 4D, E, F and G). These data were confirmed using X-

rays images highlighting the subcutaneous fat area on the animals, showing that 

HFD+ASOSAA mice have a minor peripheral fat area when compared to HFD or 

HFD+ASOscramble mice (Fig. 4H and I). 
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The metabolic status of the animal treated with SAA-targeted antisense 

oligonucleotide was also assessed. After 10 weeks on a HFD, mice from ASOSAA 

group did not show adipocyte hypertrophy or significant staining for F4/80 and SAA, 

demonstrating that SAA depletion prevents adipose tissue expansion and remodeling 

triggered by a diet rich in fat (Fig. 5A and B). Remarkably, endotoxin levels from mice 

treated with ASOSAA under a HFD are comparable to a chow-diet fed animal (Fig. 

5C).  Moreover, it is clear the trend to maintain the metabolic balance, with no 

change in the levels of TLR-4 expression in adipose tissue (Fig. 5D), and the serum 

levels of leptin (Fig. 5E), adiponectin (Fig. 5F) and IGF-I (Fig. 5G). Also, treatment 

with ASOSAA  enables an improvement in glucose tolerance and insulin resistance 

notably affected when a HFD is implemented (Fig. 5H, I, J and K). 

 

Recurrent infection upregulate proliferative and inflammatory genes in adipose 
tissue. We looked at the GEO database for studies similar to our experimental 

protocol and where it was performed transcriptome analysis in mice adipose tissue. 

From the study GSE50647 (Ref), where mice were infected with gram-negative 

bacteria (A. actinomycetemcomitans or coinfected with A. 
actinomycetemcomitans and C. pneumonia), it was observed that a group of genes 

responsible for driving proliferation and inflammation were upregulated after infection, 

as well as SAA-related genes (SAA isoforms and receptors). On the other hand, the 

cluster of genes involved in adipogenesis were downregulated (Fig. 6). 

 

DISCUSSION 
 

Chronic low-grade endotoxemia is an important player in obesity and insulin 

resistance associated to a high-fat diet (2). On the other hand, although it is known 

that intense endotoxemia and infection reduce appetite and induce intense 

catabolism, leading to weight loss during the acute inflammatory phase (4; 5), the 

late effects of an intense endotoxemia were previously unexplored.  Here we report 

that, besides the concurrent effects, multiple and intense endotoxemia also causes 

long lasting biochemical alterations in the adipose tissue that intensify the harmful 

effects of a high-fat diet. Mice submitted to multiple and severe endotoxemia had 

increased the adipose tissue expression of TLR4, CD14 and SAA3, that did not 

return to basal levels after one week in recovery, and became more prone to the 
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harmful effects of a HFD. This is the first description that acute inflammation is an 

aggravating factor for weight gain and insulin resistance derived from a fat-enriched 

diet. In the second part of this study, using the high-fat diet as an obesogenic 

stimulus, we evaluated the participation of the protein SAA in obesity development. 

The reasons underlying this study were the SAA’s ability to induce proinflammatory 

cytokines production in several cell types, to induce preadipocyte proliferation and to 

inhibit adipocyte glucose uptake in vitro (7; 10; 11; 20; 21). The depletion of SAA in a 

diet-induced obesity protocol prevented metabolic alterations, endotoxin elevation, 

weight gain and insulin resistance.  

The intense and transient endotoxemia we used, caused by an administration 

of 150 to 300 µg of LPS, led to an approximately 150 times increment in endotoxin 

levels in serum, reaching values near to 300 EU/mL being compatible with 

concentrations found in mice and humans during infectious processes and other 

pathological conditions (22). Endotoxemia induces the release of a large amount of 

inflammatory mediators, such as proinflammatory cytokines and highly reactive 

oxygen and nitrogen intermediates that were identified as contributors to the LPS-

induced tissue damage (23; 24). The protein SAA, an acute phase reactant, 

increased near 1000 times and returned to basal levels after 72 hours in each LPS 

administration. During the endotoxemic phase the food intake dramatically dropped 

and a perceptible and expected depletion in fat depots with smaller adipocytes 

occurred (2). Interestingly, besides SAA production, others inflammatory markers 

were increased in adipose tissue after the last LPS injection, including macrophage 

infiltration and TLR-4 and CD14 (25). The rapid recovery of weight and maintenance 

of the growth curve after the suspension of endotoxemia tells us that the 

modifications derived from the acute phase are transient and apparently not essential 

to the adipose tissue homeostasis unless a high-fat diet is introduced. In this case, 

the devastating metabolic repercussions are clearly more pronounced.  

The increase in TLR-4 and CD14 expression observed in adipose tissue after 

endotoxemia followed by HFD draws a lot of attention and may be the key to explain 

our data. It is known that LPS and nutritional fatty acids activates TLR-4 and the co-

receptor CD14 triggering the secretion of proinflammatory cytokines (26-28). This is 

probably one of the elements in the inflammatory signaling cascade in adipose tissue 

linked to metabolic diseases. Thus, the simple fact that after the suspension of acute 

endotoxemia the levels of TLR-4 and CD14 mRNA remains elevated could justify the 
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higher responsiveness of adipose tissue to a HFD. Accordingly, it was imperative to 

investigate other TLR-4 ligands, especially those endogenous such as SAA.  

SAA is the name of a highly conserved family of proteins. In human and mice, 

the inducible isoforms SAA1 and SAA2 are predominantly synthesized by the liver 

and carried by the high-density lipoproteins in the blood. During acute inflammation, 

the serum levels of SAA may increase up to 1000-fold the basal levels, whereas 

in chronic inflammatory conditions such as obesity, serum SAA is modest but 

persistently augmented. SAA is also expressed by several others cell types including 

macrophages, endothelial cells, smooth muscle cells and synoviocytes. Adipocytes 

are other known producers of SAA being positively correlated with the obesity grade 

and modulated under hypoxic conditions (15; 29). The role of SAA in adipose tissue 

began to be unraveled in the last years and may be associated to its action as a 

stimulus for the production of cytokines, reactive oxygen species and NO and also as 

a activator of the inflammasome pathway, being considered as a mediator of the 

innate and adaptive immune system (6-8; 30; 31). Furthermore, SAA is a potent 

chemotactic for a number of cell types and has proliferative activities (9-11; 32). A 

special feature of SAA that supports the rational of this study is its proliferative 

activity on preadipocytes, while inhibiting adipocyte differentiation (11; 33). This fact 

led us to consider that situations with an increase in SAA production would also 

promote preadipocyte proliferation. Thus, under appropriate conditions, the cells 

could be differentiated to adipocytes with a consequent hypertrophy of the adipose 

tissue. Also, it was recently reported that SAA3 knockout mice blunts weight gain and 

macrophage infiltration into the adipose tissue induced by an obesogenic diet (34). 

Moreover, knockout mice for both SAA1 and SAA2 gain less weight compared with 

their wild-type counterparts during the lifespan (35). 

In addition, although until now no receptor dedicated solely to SAA has been 

identified, SAA can bind and activate several cell surface receptors,  including  the 

TLR-4 and TLR-2 (6; 29). This seems extremely relevant to our study given the 

identified roles of these receptors in obesity. It is known that the activation of TLR-4 

and its co-receptor CD14 are associated to obesity and insulin resistance in a mice 

diet-induced obesity protocol (2; 36; 37). Besides that, TLR-2-deficient mice are 

protected from insulin resistance induced by a high-fat diet and show reduced tissue 

inflammation, in a process also dependent of the microbiota (38; 39). Although the 

expression of TLR-2 was not increased in our model of acute endotoxemia, it should 
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be considered that TLR-2 has the ability to interact with TLR-4 and the cooperation 

between them has been related to the responsiveness of cells to LPS. 

In order to define the contribution of SAA in obesity we evaluated the effect of 

SAA depletion in a diet-induced obesity protocol using a SAA-targeted antisense 

oligonucleotide. Under a HFD the serum levels of SAA doubled and ASOSAA 

treatment efficiently reduced it to the basal level. The treatment with ASOSAA was 

characterized by a marked reduction of the deleterious alterations caused by a HFD 

underlying the importance of SAA in obesity. Furthermore, it is remarkable the fact 

that ASOSAA prevented the elevation of endotoxin levels in serum, an increase that is 

expected when mice are submitted to a HFD, suggesting further interactions between 

LPS and SAA. Virtually all LPS molecules are rapidly complexed with circulating 

proteins and lipoproteins. When complexed with HDL (40; 41), LPS is cleared by the 

scavenger receptor BI (SR-BI) presented in hepatocytes (42) and in other cell types 

such as macrophages and monocytes as recently described (43). The clearance of 

LPS through SR-BI efficiently determines the magnitude of the inflammatory 

response. In this sense, it was shown  that SAA was associated with impairment of 

SR-BI (13). This regulation may explain our data of lower endotoxemia when mice 

are submitted to a HFD under treatment with ASOSAA. We suggest that the reduction 

in SAA serum levels could improve the SR-BI-mediated LPS clearance. The Figure 7 

summarizes the main findings of our previous (11) and current study outlining the 

possible collaboration of LPS and SAA as factors defining obesity.  

In order to evaluate the comprehensiveness of some of our conclusions, 

especially that related to our initial hypothesis that acute inflammation induces 

preadipocyte proliferation while triggering SAA production, we performed a Gene Set 

Enrichment Analysis in a publicly available microarray data (GSE50647) (19), where 

mice were infected with gram-negative bacteria. We identified an increment in SAA-

related genes (SAA isoforms and receptors) and the upregulation of a cluster of 

genes responsible for driving proliferation and inflammation after infection while 

genes involved in adipogenesis were downregulated, thus supporting the assumption 

that cell proliferation occurs in adipose tissue during an infection process. Recently, 

preadipocyte proliferation was also observed under inflammatory conditions. Luch 

and colleagues demonstrated that low rates of LPS increased the proliferation of 

preadipocytes in vitro and in vivo through a CD14-dependent mechanism (44). 
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Considering that epidemiological data shows that low-income children have a 

higher prevalence of infectious diseases and are more susceptible to obesity (45; 

46), is inevitable to consider that excess body weight in adulthood may be associated 

with an inflammatory state in children. Although obesity is to a large extend a lifestyle 

disease, the current scientific literature has shown previous unsuspected factors 

contributing to obesity development. For instance, viral infections have been linked to 

obesity, particularly by the human adenovirus-36 (47). In humans, anti-Ad-36 

antibodies are more prevalent in obese subjects (30%) than in non-obese (11%) (48). 

Despite differences between viral and bacterial infections it is legitimate to assume 

that both types of infection share some major signaling pathways linking them to 

obesity, such as the upregulation of TLR-4 and SAA (49; 50).   

 In conclusion, our data describes that conditions leading to inflammation may 

resound for a long time, contributing to the obesity and type 2 diabetes epidemis 

when associated with a western diet. The mechanism is undoubtedly complex and 

encompasses a diversity of factors, and the inflammatory protein SAA may be one of 

those. If confirmed in humans, these results could lead to new medical 

recommendations for patients in post-infection recovery, as additional diet 

instructions.  
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FIGURE LEGENDS 
 
Figure 1. Acute endotoxemia per se affects the adipose tissue but not lead to 
late weight change. (A) Experimental design. Mice Swiss Webster were submitted 

to i.p. administration of 8 consecutive doses of 10 mg/kg LPS, every 3 days. (B) 
Endotoxin levels in serum. (C) SAA concentration in serum. (D) Daily caloric intake. 

(E) Weight gain curve of Control and LPS mice. The black arrows in D and E indicate 

the end of acute endotoxemia period. (F) Epididymal fat pad weight. (G) Adipocyte 

size after LPS challenges. Quantitative Real-Time PCR was performed to asses 

mRNA expression of (H) SAA1/2, (I) SAA3, (J) TLR-2, (K) TLR-4 and (L) CD14 in 

epidydimal adipose tissue. (M) Histological sections of epididymal fat pads after LPS 

challenges showing adipocyte morphology on hematoxylin and eosin staining, 

macrophage infiltration (F4/80+) and SAA production. Data are means r SE from 6 

mice per group (*p < 0.05, **p < 0.01, ***p < 0.001, between groups, as indicated). 

 
Figure 2. A previous history of acute endotoxemia potentiates weight gain 
induced by a high-fat diet (HFD). (A) Experimental design. Mice Swiss Webster 

were submitted to i.p. administration of 8 consecutive doses of 10 mg/kg LPS, every 

3 days, followed by 10 weeks in HFD. (B) Daily caloric intake, considering the diet 

switch after acute endotoxemia period. (C) Weight gain curve of HFD and LPS+HFD 

groups. (D) Epididymal, (E) Retroperitoneal and (F) Subcutaneous fat pad weight 

after HFD period. (G) Representative subcutaneous fat area in HFD and LPS+HFD 

mice after HFD period. (H) Subcutaneous fat area quantification. (I) Adipocyte size 

after HFD period. (J) Histological sections of epididymal fat pads after HFD periods 

showing adipocyte morphology on hematoxylin and eosin staining, macrophage 

infiltration (F4/80+) and SAA production. Data are means r SE from 8 mice per group 

(*p < 0.05, **p < 0.01, ***p < 0.001, between groups, as indicated).  

 

Figure 3. A previous history of acute endotoxemia potentiates glucose 
tolerance and insulin resistance induced by a high-fat diet (HFD). After a HFD 
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period, mice previously submitted to multiple acute endotoxemia were evaluated 

regarding its metabolic parameters. Determination of (A) endotoxin and (B) SAA in 

serum. Quantitative Real-Time PCR for mRNA expression of (C) SAA 1/2 (D) SAA3, 

(E) TLR-2, (F) TLR-4 and (G) CD14 in adipose tissue. At last, the measurement of 

(H) leptin, (I) insulin in serum and (J) Glucose tolerance test (GTT) and (K) Insulin 

tolerance test (ITT). Data are means r SE from 8 mice per group (*p < 0.05, **p < 

0.01, between groups, as indicated). 

 

Figure 4. SAA depletion prevents weight gain triggered by a diet-induced 
obesity protocol. (A) Experimental design. Mice Swiss Webster fed a HFD were 

submitted to i.p. administration of SAA-targeted antisense oligonucleotide (ASOSAA 

25 mg/kg/week) during 10 weeks. (B) Daily caloric intake. (C) Weight gain curve of 

chow diet fed animals treated with ASOscramble or ASOSAA. (D) Weight gain curve of 

HFD fed animals animals treated with ASOscramble or ASOSAA. (E) Epididymal, (F) 
Retroperitoneal and (G) Subcutaneous fat pad weight. (H) Subcutaneous fat area 

quantification and (I) representative subcutaneous fat area in mice under chow or 

high-fat diet submitted to ASOscramble or ASOSAA. Data are means r SE from 6 mice 

per group (Different letters represent statistical difference, p < 0.05).  

 

Figure 5. SAA depletion prevents the harmful effects triggered by a diet-
induced obesity protocol. (A) Histological sections of epididymal fat pads from 

mice under chow or high-fat diet and submitted to ASOscramble or ASOSAA. Adipocyte 

morphology on hematoxylin and eosin staining, macrophage infiltration (F4/80+) and 

SAA production are indicated by the white arrows. Determination of (B) adipocyte 

size in epididymal adipose tissue. (C) Endotoxin levels in serum. (D) TLR-4 mRNA 

expression in epididymal adipose tissue. Measurement of (E) leptin, (F) adiponectin 

and (G) IGF-I in serum. Glucose tolerance test (GTT) in (H) chow diet fed animals 

and (I) HFD fed animals. Insulin tolerance test (ITT) in (J) chow diet fed animals and 

(K) HFD fed animals. Data are means r SE from 6 mice per group (Different letters 

represent statistical difference [p < 0.05] and *p < 0.05, between groups, as 

indicated). 
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Figure 6. Recurrent infection modulates proliferative, adipogenic, inflammatory 
and SAA-related genes in adipose tissue. Gene Set Enrichment Analysis (GSEA) 

revealed that proliferative, adipogenic, inflammatory and SAA-related gene sets in 

mouse adipose tissue were significantly associated (nominal p-value < 0.05) with 

infection with A. actinomycetemcomitans or co-infection with A. 
actinomycetemcomitans and C. pneumonia (see methods for details). Heat maps 

show the mean log2 fold-change of all genes of each gene set on each condition 

compared to uninfected mice.  
 

Figure 7. LPS and SAA in obesity development. 
 

Table 1. SAA levels under SAA-targeted antisense oligonucleotide treatment. 
SAA quantification in serum from Mice fed a chow diet or HFD and treated with 

ASOscramble and ASOSAA . 

 

Supplementary Figure 1. Alterations caused by acute endotoxemia are restored 
after a week without LPS treatment. Mice Swiss Webster were submitted to i.p. 

administration of 8 consecutive doses of 10 mg/kg LPS, every 3 days. After LPS 

period, mice were kept under standard conditions for one week for further metabolic 

analysis. Control group (empty bars). LPS-treated mice (black bars). LPS-treated 

mice followed 1 week in recovery (gray bars). (A) Endotoxin levels in serum. (B) SAA 

concentration in serum. Quantitative Real-Time PCR was performed to asses mRNA 

expression of (C), SAA 1/2 (D) SAA3, (E) TLR-2, (F) TLR-4 and (G) CD14 in 

epidydimal adipose tissue. Data are means r SE from 4 mice per group (Different 

letters represent statistical difference, p < 0.05). 
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Figure 7 
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Table 1- SAA levels under SAA-targeted 
antisense oligonucleotide treatment 

  SAA (µg/mL) 

C
ho

w
 

di
et

 - 14.3 ± 4.9 
ASOscramble 12.3 ± 3.3 

ASOSAA 13.6 ± 4.1 

H
FD

 - 27.0 ± 8.8** 
ASOscramble 36.4 ± 16.5* 

ASOSAA 10.5 ± 9.6 
Data are means r SD from 6 mice per group 

(*p<0.05, **p<0.01, when compared to chow diet mice without ASO 
treatment) 

 
 
 
Table 1. SAA levels under SAA-targeted antisense oligonucleotide treatment. 

SAA quantification in serum from Mice fed a chow diet or HFD and treated with 

ASOscramble and ASOSAA . 
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Supplementary Table 1- SAA profile during 

acute endotoxemia 

 SAA (µg/mL) 

Time 
(hours) Control LPS 

(10 mg/kg) 
0 h 16.8 ± 8.2 15.4 ± 6.8 
6 h 21.7 ± 6.8 986.4 ± 75.8*** 

12 h 25.4 ± 13.5 1527.0 ± 193.6*** 
24 h 18.2 ± 10.7 888.4 ± 141.0** 
48 h 7.1 ± 2.3 125.4 ± 40.1** 
72 h 17.5 ± 8.7 29.6 ± 11.7 

Data are means r SD from 3 mice per group 
(**p<0.01, ***p<0.001, between groups, as indicated) 

 
 
 
Supplementary Table 1. SAA profile during acute endotoxemia. SAA was 

quantified in serum after 6, 12, 24, 48 and 72 hours of LPS-treatment (10 mg/kg). 
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Supplementary Table 2- Experimental diet 

composition 
Ingredients (g/Kg) Chow diet1 

3.99 kcal/g 
High-Fat diet1 

5.55 kcal/g 
Sucrose 100 133.56 
Casein 120 186.98 
Corn oil 80 53.42 
Lard -- 300 
Cellulose 50 66.78 
Mineral Mix (Rhoster®) 35 46.74 
Vitamin Mix (Rhoster®) 10 13.36 
DL-Methionine 1.8 2.4 
Choline Bitartrate 2.5 3.34 
Tert-butylhydroquinone 0.01 0.04 
Cornstarch  q.s.p. 1000 1000 

1According to AIN-93M 
 
 

Supplementary Table 2. Experimental diet composition. Chow diet and high-fat 

diet formulation according to AIN-93M. 
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Supplementary Table 3- Antisense oligonucleotides sequences and chemistries 

ASO Target Species Chemistry Length Sequence 

ASOSAA SAA 1/2 Mouse 10-3-10 (S)-cEt gapmer w / 
phosphorothioate backbone 16 5’-GTTTATTACCCTCTCC-

3’ 

ASOscramble Control Mouse 10-3-10 (S)-cEt gapmer w / 
phosphorothioate backbone 16 5’-

GGCCAATACGCCGTCA-3’ 
All information was provided by the manufacturer Isis Pharmaceuticals, Inc., Carlsbad, CA, USA. 

 
Supplementary Table 3. Antisense oligonucleotides (ASOs) sequences and 

chemistries. ASOscramble (ASO not specific to any murine transcript) and ASOSAA 

(ASO specific for murine SAA 1/2 transcript) structural and chemical characteristics. 
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Supplementary Table 4 - PCR primers used in all quantitative PCR assays 
Primer 

(gene / protein) Forward Reverse 

Saa1/2 (SAA1 / SAA2) 5'-AGA CAA ATA CTT CCA TGC TCG G-3' 5'-CAT CAC TGA TTT TCT CAG CAG C-3' 

Tlr2 (TLR-2) 5'-CAG CTG GAG AAC TCT GAC CC-3' 5'-CAA AGA GCC TGA AGT GGG AG-3' 

Tlr4 (TLR-4) 5'-TCA TGG CAC TGT TCT TCT CCT-3' 5'-CAT CAG GGA CTT TGC TGA GTT-3' 

Cd14 (CD14) 5'-GCG AGC TAG ACG AGG AAA GT-3' 5'-CAC GCT TTA GAA GGT ATT CCA G-3' 

Gapdh (GAPDH) 5'-TGG CAA AGT GGA GAT TGT TGC C-3' 5'-AAG ATG GTG ATG GGC TTC CCG-3' 
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ABSTRACT 
 
Recently we described that sleep restriction (SR) primes adipose tissue predisposing 

it to hypertrophy and becoming mice prone to obesity and insulin resistance when a 

high-fat diet was adopted. The biochemical triggers of this process may be related to 

inflammatory cytokines and resistin, given that we observed a huge increase in TNF-

α, IL-6 and resistin in adipose tissue during the SR. Here, we moved ahead with this 

issue showing that the protein serum amyloid A (SAA) is also part of the initial 

biochemical alterations caused by SR. Based on a previously study from our lab that 

identified effects of SAA on adipocyte biology (Filippin-Monteiro et al. International 

Journal of Obesity. 2012;36:1032), we hypothesized that SAA has a role in the 

etiology of obesity and insulin resistance triggered by sleep restriction. Serum 

concentration and hepatic and adipose tissue expression of SAA, respectively 

SAA1/2 and SAA3, were increased in mice C57BL/6J when subjected to a multiple 

platform method of SR for 21 h daily, for 15 days. Given the wide interest to know 

how human are affected by shortening of sleep period, we also verified that a 72 h of 

paradoxal sleep deprivation in mice and a 48h of total sleep deprivation in healthy 

human volunteers causes an increase of SAA. Both humans and mice had an about 4 

times increase in serum SAA with return to baseline after a recovery period. In this 

study we discuss that SAA, an inflammatory component considered to be important 

in the critical function of the inflammasome in obesity and insulin resistance is 

present in sleep restriction. The presence of SAA in the adipose tissue may be 

relevant in the weight gain caused by SR and may have a role in other comorbidities 

associated to poor sleep such as insulin resistance, CAD and cancer. 
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INTRODUCTION 
 

Recently we describe that a history of sleep restriction potentiates future 

complications arising from a high-fat diet (1), corroborating epidemiological 

evidences that the restriction of human sleep may contribute to increased weight, 

and that short sleep duration is associated with concurrent and future obesity (2-4). 

This issue seemed especially relevant considering the reduction of the average sleep 

period in the last decades, the current epidemic of obesity and the increased risk of 

cardiovascular disease and diabetes (2; 5; 6). 

Also recently, we identified the potential participation of the protein serum 

amyloid A in weight gain and insulin resistance induced by intense endotoxemia and 

high-fat diet (D1).  SAA production is upregulated in liver and adipose tissue in the 

acute phase of an inflammatory process (7; 8). SAA has been considering to have a 

role in the activation of immune cells triggering inflammatory responses (8-10), to 

have growth factor-like activity, such as proliferative activity on different cell types, 

including preadipocytes (11-13), and to bind to receptors of the TLRs family and to 

SR-BI that are involved in the inflammatory process and metabolic control in 

obesity(14-16).  

Here we found that sleep restriction lead to alteration in the production of SAA 

in mice and humans and we hypothesized that SAA is one of the molecules involved 

in the signaling linking sleep restriction with obesity and comorbidities.  
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MATERIALS AND METHODS 
 
Animals – Male C57BL/6 mouse (3 months of age) were obtained from CEDEME 

Universidade Federal de São Paulo (UNIFESP). The animals were housed in a room 

maintained at 20r2°C in 12:12 h light/dark cycle (lights on at 7:00 am and off at 7:00 

pm) inside standard polypropylene cages. For each experimental group, 5-9 animals 

were used for the experimental protocol. All procedures used in the present study 

complied with the ‘Guide for the Care and Use of Laboratory Animals’ (Institute of 

Laboratory Animal Resources, 1996). The experimental protocol was approved by 

the Ethical Committee of UNIFESP (approval n°0474/09). 

 

Acute sleep restriction (SR) protocol. The method of SR was adapted from the 

multiple platform method, originally developed for rats (17-19). Groups of 5-9 mice 

were placed in water tanks (41 x 34 x 16.5 cm), containing 13 platforms (3 cm in 

diameter) each, surrounded by water up to 1 cm beneath the surface. In this method, 

the animals were able to move inside the tank, jumping from one platform to the 

other, keeping diet and water ad libitum. All the control groups were kept in control 

home-cages allowing sleep ad libitum under standard rodent chow diet. For SR 

experiments, the animals were randomly assigned into 2 groups: the control group 

and the SR group, both under standard rodent chow diet. The SR group was sleep 

restricted for 15 days, 21 h daily. After each 21 h period of SR, the mice were 

allowed to sleep for 3 h (sleep opportunity beginning at 10:00 am). The euthanasia 

occurred immediately after the last SR period. 

 

Paradoxical sleep deprivation (PSP) protocol. For PSP experiments, the animals 

were randomly assigned into 3 groups: the control group, the PSP72 group and the 

RT24 group. PSP animals were sleep deprived for 72 consecutive hours. The RT24 

mice were sleep deprived for 72 consecutive hours followed by 24 hours in sleep 

rebound period.  The euthanasia occurred immediately after the last sleep 

deprivation period. 

 

Human Sleep deprivation. The experimental protocol was performed as previously 

described (20). The study was conducted at the Sleep Laboratory of the Department 

of Psychobiology at the Universidade Federal de São Paulo (UNIFESP) with the 
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approval of the Ethics Committee of the University as well as the Radiation 

Protection Center (#1676/06). Thirty healthy male volunteers ranging from 19 to 29 

years of age were randomly assigned to one of three experimental groups after 

giving written informed consent (10 non-sleep deprived, 10 total sleep deprivaved, 

and 10 REM sleep deprived). Total sleep deprivation was defined as 48 consecutive 

hours without sleep. REM sleep deprived group were inhibit to have rapid eye 

movement (REM) during 4 consecutive nights. 

 

Quantitative Real-Time PCR. Total RNA from epididymal adipose tissue  liver was 

isolated using Qiagen RNeasy� Lipid Tissue Mini kit (Qiagen, Hilden, Germany). 

cDNA was then synthesized from 1 µg of RNA using the High Capacity cDNA 

Reverse Transcription (Life Technologies�, Grand Island, NY, USA). Real-time PCR 

were performed using SyBr� Green Master Mix (Life Technologies�, Grand Island, 

NY, USA) for SAA1/2 (F-5'-AGA CAA ATA CTT CCA TGC TCG G-3' and R-5'-CAT 

CAC TGA TTT TCT CAG CAG C-3'). Real-time PCR for SAA3 was performed using 

the TaqMan� assay (Applied Biosystems�, Grand Island, NJ, USA), catalog number 

Mm00441203_m1 – Saa3 and β-actin (ACTB), number 4552933E, as an 

endogenous housekeeping gene control. Relative gene expression was determined 

using the 2-''Ct method. 

 

SAA quantification. Serum concentrations of SAA was determined using ELISA 

following the manufacturer's instructions. Mouse SAA (Tridelta Development Ltd, 

Maynooth, Ireland) and human SAA (Invitrogen®, Camarillo, CA, USA). 

 

Histological Analysis. Paraffin-embedded sections (5 μm thick) from epididymal 

adipose tissue were stained by hematoxylin and eosin to assess morphology. 

Immunohistochemistry for F4/80 was performed using a rat anti-mouse F4/80 

antibody (1:100 dilution, AbD Serotec®, Raleigh, NC, USA) subsequently incubated 

with the appropriate secondary biotinylated antibody (Vector Laboratories Inc., 

Burlingame, CA, USA) and visualized with Immpact AEC peroxidase (Vector 

Laboratories Inc., Burlingame, CA, USA). Immunofluorescence for F4/80 and SAA 

were performed using a rat anti-mouse F4/80 antibody (1:100 dilution, Abcam®, 

Cambridge, UK), and a rabbit anti-mouse SAA (1:200 dilution, kindly produced and 
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provided by Dr. de Beer laboratory, University of Kentucky, KY, USA), subsequently 

incubated with the appropriate secondary fluorescent antibody (Invitrogen®, 

Camarillo, CA, USA) and the slides mounted using Vectashield set mounting medium 

with 4,6-diamidino-2-phenylindol-2-HCl (DAPI; Vector Laboratories Inc., Burlingame, 

CA, USA). An isotype control was used to ensure antibody specificity in each 

staining. Tissue sections were observed with a Nikon Eclipse 80i microscope 

(Nikon®) and digital images were captured with NIS-Element AR software (Nikon®). 

 

Statistical analysis. Results were presented as mean ± SE and the number of 

independent experiments is indicated. Statistical analysis was performed with Graph 

Pad Prism4 (Graph Pad Software, Inc., San Diego, CA, USA). When multiple 

samples were compared with one independent variable, one-way analysis of 

variance with Newman-Keuls post hoc test was performed. Data with two 

independent variables were tested by two-way analysis of variance with Bonferroni 

post hoc test, as indicated in figure legends. The level of significance was set at P < 

0.05.  
 
RESULTS AND DISCUSSION 
 

In order to verify the effect of sleep restriction on SAA production, mice were 

subjected to SR for 21 h daily for 15 days. As already known during this period mice 

loses weight; approximately 10% in our protocol, and the serum concentration of 

SAA had an increase of 4-fold.  This is an expressive increase considering that in 

obesity, diabetes and some chronic inflammatory conditions the rise in SAA serum 

levels reaches no more than 3-fold increase (21; 22). Serum levels of SAA mainly 

have a hepatic contribution from the upregulated mRNA expression of the SAA1/2 

isoforms (23; 24). Besides liver, SAA expression is also upregulated in adipose 

tissue but in this case the SAA3 is the isoform affected (25; 26).  The isoform SAA3 is 

the inducible isoform in mice adipose tissue (26). For instance, the same pattern was 

observed in mice under high-fat diet, acute endotoxemia and infection.  

By morphological and immunostaining of the adipose tissue of SR mice, it was 

observed that SAA production is correlated to the presence of small adipocytes and 

macrophage infiltration. This finding are in accordance with the described 
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proliferative activity of SAA on preadipocytes (11) and the induction of 

chemoattractive cytokines by SAA (27). 
The manner by which the expression of SAA1/2 and SAA3 are specifically 

regulated are not known but previous data supports the direct induction of adipose 

tissue SAA3 by the acute phase (hepatic) SAA1/2 (11). Sleep restriction and sleep 

reestablishment seemed to be a prompt stimulus for controlling the expression of 

SAA3 in adipose tissue given that an increase in SAA3 expression was observed in 

an experimental model of 72 consecutive hours without sleep with rapid return to the 

basal expression after 24 hours in recovery.  Despite the fact that it was not possible 

to identify the specific SAA isoforms in serum, it is possible to assume that there is a 

strong correlation between the serum (SAA1/2) and adipose tissue (SAA3) isoforms, 

considering that it was observed the same profile in response to SR.  
It was also possible to measure SAA from plasma derived from healthy human 

volunteers, kept during 48h in total sleep deprivation or 4 days in REM sleep 

deprivation. It was observed a 4-fold increase in SAA levels in 24 and 48h in total 

sleep deprived human. The increment was similar to that found in mice kept in 72h in 

total sleep restriction.  Besides the differences in sleep habits and characteristics 

between mice and humans, the increased in serum levels of SAA in response to SR 

seems to be similar between the species.  

It is unavoidable to analyze the data from this study with those recently 

published by us highlighting an acute and intense inflammation as an aggravating 

factor for diet-induced weight gain and insulin resistance (D1). As happened with 

acute inflammation (D1), the SR lead to weight loss but also lead to modification in 

adipose tissue expression of SAA3, that have been considered as an important factor 

to subsequently trigger obesity and insulin resistance. In these two cases mice 

became more prone to weigh gain (D1 and P3). There are more similarities among 

conditions that lead to obesity. For instance, acute endotoxemia, low-grade 

endotoxemia and sleep restriction have TLR-4 upregulated in adipose tissue driving 

inflammation (28; 29). Furthermore, sleep deprivation also results in a low-grade 

endotoxemia (30; 31).  The impairment of SR-BI by SAA (16; 32) may explain the 

increase of endotoxemia in sleep loss, similarly to ours previous hypothesis for the 

metabolic endotoxemia (D1).  

In conclusion, our findings showed that SAA, a protein considered to be 

important in the critical function of the inflammasome, cytokine production, 
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proliferative and chemoattractive phenomena besides the development  of obesity 

and insulin resistance, are upregulated in sleep restriction. More than a link between 

SR and obesity/insulin resistance, SAA could also explain the increased incidence of 

cardiovascular diseases and cancer in experimental models of sleep restriction (33; 

34). 
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Figure 2. Acute sleep restriction is also able to increase SAA levels with return 
to basal after 24 hours of recovery. Mice C57BL/6 were submitted to paradoxical 
sleep deprivation (PSP) for 72 h uninterrupted followed by 24 h of recovery period.  
(A) SAA concentration in serum, assessed by ELISA. Real-Time PCR were 
performed to asses mRNA expression of (B) SAA3 and (C) SAA1/2 in adipose tissue. 
Data are means r SE from 6-12 mice per group and statistical analyses were 
performed by two-way analysis of variance with Bonferroni post hoc test (** p<0.01, 
*** p<0.001, vs. control).  
 
 

 
 

 
  
 Figure 3. SAA is increased in human serum submitted to total sleep 
deprivation. (A) Schematic representation of the experimental protocol. Thirty 
healthy male volunteers ranging from 19 to 29 years of age were randomly assigned 
to one of the three experimental groups after giving written informed consent (10 
non-sleep deprived, 10 total sleep deprived, and 10 REM sleep deprived). Exclusion 
criteria included the following: sleep disorders, obesity and obstructive sleep apnea 
(OSA). (B) Serum SAA concentration during the experimental protocol. 
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 Universidade de São Paulo) 15/03/2011 09/06/2011 180 12 100 B N Concluída

FBC5722
2/1

Controle Hormonal da Resposta
Inflamatória 02/08/2011 22/08/2011 60 4 100 A N Concluída

BMA5887
2/1

Princípios de Tomografia Computadorizada
e Ressonância Magnética Aplicados à
Anatomia (Instituto de Ciências Biomédicas
 Universidade de São Paulo)

09/08/2011 17/10/2011 30 0 0  N Matrícula
cancelada

FBC5705
4/1 Tópicos em Microscopia Quantitativa 03/10/2011 09/10/2011 30 2 100 A N Concluída

MCM5891
1/3

Estatística Instrumental (Faculdade de
Medicina  Universidade de São Paulo) 04/10/2011 31/10/2011 60 4 87,5 A N Concluída

QBQ5747
6/3

Animais de Laboratório (Instituto de
Química  Universidade de São Paulo) 21/11/2011 30/11/2011 15 1 100 A N Concluída

BMH5745
3/3

Compartimentalização e Metabolismo de
Lípides (Instituto de Ciências Biomédicas 
Universidade de São Paulo)

03/04/2012 15/05/2012 60 4 95 A N Concluída

MCM5797
4/3

Obesidade (Faculdade de Medicina 
Universidade de São Paulo) 11/06/2012 01/07/2012 60 4 95 A N Concluída

FBC5734
2/1

Aplicações da Citometria de Fluxo em
Modelos Experimentais 06/08/2012 12/08/2012 30 2 100 A N Concluída

BMF5869
2/1

Processo Inflamatório em Doenças
Cardiovasculares e Metabólicas (Instituto
de Ciências Biomédicas  Universidade de
São Paulo)

04/09/2013 05/11/2013 90 6 90 A N Concluída

Credito
Externo Biologia do Sono (1) 10/02/2014 24/03/2014  3 81 T  

FBC5792
3/1 Tópicos em Análises Clínicas III 11/03/2014 23/06/2014 15 1 90 A N Concluída

Credito
Externo Medicina do Sono (1) 02/04/2014 07/05/2014  3 90 T  

FBC5766
4/1 Tópicos em Análises Clínicas IV 05/08/2014 17/11/2014 15 1 100 A N Concluída

BIB5748
1/2

Sequenciamento de Próxima Geração
(Next Generation Sequencing) (Instituto de
Biociências  Universidade de São Paulo)

13/10/2014 19/10/2014 30 0 0  N Matrícula
cancelada

Créditos m ín imos exigidos Créditos obtidos
Para  exam e  de  qualificação Para  depósito de  tese

Disciplinas: 0 20 47

Estágios:

Total: 0 20 47

Créditos Atribuídos à Tese: 167

Observações:
1) Disciplina(s) cursada(s) na(o) Universidade Federal de São Paulo. Atribuição de créditos aprovada pela Comissão
Coordenadora do Programa, em Sessão de 30/09/2014.
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Conceito a partir de 02/01/1997:
A  Excelente, com direito a crédito; B  Bom, com direito a crédito; C  Regular, com direito a crédito; R  Reprovado; T
 Transferência.

Um(1) crédito equivale a 15 horas de atividade programada.

Última ocorrência: Matrícula de Acompanhamento em 03/02/2015
Impresso em: 24/02/15 23:13:26
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Universidade de São Paulo
Faculdade de Ciências Farmacêuticas

Documento sem validade oficial
FICHA DO ALUNO

9136  6725865/2  Edson Mendes de Oliveira

Comissão julgadora da tese de doutorado:
NUSP Nome Vínculo Função

55700 Ana Campa FCF  USP Presidente

Última ocorrência: Matrícula de Acompanhamento em 03/02/2015
Impresso em: 24/02/15 23:13:26


