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ABSTRACT
Objective: Identify the risk of patients with Chronic Chagas Cardiomyopathy (CCC) to prevent them from having
Sudden Cardiac Death (SCD). Methods: We developed an SCD prediction system using a heterogeneous dataset of
chagasic patients evaluated in 9 state-of-the-art machine learning algorithms to select the most critical clinical variables
and predict SCD in chagasic patients even when the interval between the most recent exams and the SCD event is
months or years. Results: 310 patients were analyzed, being 81 (14,7%) suffering from SCD. In the study, Balanced
Random Forest showed the best performance, with AUC:80.03 and F1:75.12. Due to their high weights in the machine
learning classifiers, we suggest Holter - Non-Sustained Ventricular Tachycardia, Total Ventricular Extrasystoles, Left
Ventricular Systolic Diameter, Syncope, and Left Ventricular Diastolic Diameter as essential features to identify SCD.
Conclusion: The high-risk pattern of SCD in patients with CCC can be identified and prevented based on clinical and
laboratory variables.

RESUMO
Objetivo: Identificar o risco de pacientes com Cardiomiopatia Chagásica Crônica (CCC) para prevenir a Morte Súbita
Cardíaca (MSC). Métodos: Desenvolvemos um sistema de MSC usando um conjunto de dados heterogêneo de pacientes
chagásicos avaliados em 9 algoritmos de aprendizado de máquina de última geração para selecionar as variáveis   clínicas
mais críticas e prever MSC em pacientes chagásicos mesmo quando o intervalo mais recente entre os mais recentes
exames e o evento MSC é meses ou anos. Resultados: Foram analisados   310 pacientes, sendo 81 (14,7%) portadores
de CCC. No estudo, o algoritmo Balanced Random Forest apresentou o melhor desempenho, com AUC:80,03 e F1:75,12.
Devido ao seu alto peso nos classificadores de aprendizado de máquina, sugerimos Holter - Taquicardia Ventricular Não
Sustentada, Extrassístoles Ventriculares Totais, Diâmetro Sistólico do Ventrículo Esquerdo, Síncope e Diâmetro Diastólico
do Ventrículo Esquerdo como características essenciais para identificar a CCC. Conclusão: O padrão de alto risco de
MSC em pacientes com CCC pode ser identificado e prevenido com base em variáveis   clínicas e laboratoriais.

RESUMEN
Objetivo: Identificar el riesgo de los pacientes con Miocardiopatía Chagásica Crónica (MCC) para evitar que
presenten Muerte Cardíaca Súbita (MCS). Métodos: Desarrollamos un sistema MCS utilizando un conjunto de datos
heterogéneo de pacientes chagásicos evaluados en 9 algoritmos de aprendizaje automático de última generación para
seleccionar las variables clínicas más críticas y predecir MCS en pacientes chagásicos incluso cuando el intervalo más
reciente entre los más recientes exámenes y el evento MCS es meses o años. Resultados: Se analizaron 310
pacientes, siendo 81 (14,7%) con MSC. En el estudio, Balanced Random Forest mostró el mejor desempeño, con
AUC:80.03 y F1:75.12. Debido a su alto peso en los clasificadores de aprendizaje automático, sugerimos Holter -
Taquicardia ventricular no sostenida, Extrasístoles ventriculares totales, Diámetro sistólico del ventrículo izquierdo,
Síncope y Diámetro diastólico del ventrículo izquierdo como características esenciales para identificar la MSC.
Conclusión: El patrón de alto riesgo de MSC en pacientes con MCC se puede identificar y prevenir con base en
variables clínicas y de laboratorio.
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INTRODUCTION

Chagas Disease, also known as American
trypanosomiasis, occurs in more than 21 countries, mainly
in Latin America (Brazil and Mexico)(1-3). The number of
infected is around 6 to 7 million people(4), and according to
the World Health Organization (WHO), 30% of  patients
develop some kind of cardiomyopathy (CCC).

CCC is considered an arrhythmogenic condition because
of the presence of a variable myriad of life-threatening
arrhythmias. In Brazil, the CCC has a mortality annual rate
of 24/1000 patients, and sudden cardiac death (SCD) is
one of the main modes of death (55%-65%) with an annual
mortality rate varying from 0.2% to 19.2%(5-6).
Approximately, 90% are due to sustained ventricular
tachycardia (SVT) that degenerates to ventricular fibrillation
throughout the various stages of the CCC(5-7). Concerning
this context, a considerable number of these patients die
and that could be empirically averted if patients at risk were
identified and treated with implantable cardioverter
defibrillators (ICDs)(8-9). Nonetheless, the accurate
identification of vulnerable patients susceptible for frequent
malignant arrhythmias and SCD who actually benefit from
ICD implantation remains a great clinical challenge in CCC(9).
The use of a machine learning based approach can meet

this need. However, this technique was very little tested in
the universe of  CCC patients. We want to evaluate the
discriminative ability of the clinical and electrical variables
panel to identify individual subgroups with higher risk for
SCD in CCC. Therefore, we have the following research
question. Considering a dataset with a wide diversity of
CCC patients, containing a diversity of clinical data, we may
obtain an application based on Machine Learning for
classifying these patients as low and high predisposition for
SCD, applying also resampling methods and feature selection.
In addition, as another challenge, the success for SCD
prediction may occur even when the interval between the
most recent exams and the SCD event is months or years.

 The mentioned research question was applied using Cox
proportional-hazards models with clinical variables(10);
Logistic Regression (LR)/Fisher’s linear discriminant (LDA)
using Heart Rate Turbulence (HRT) and Heart Rate Variability
(HRV) features(11), and  K-Nearest Neighborhood with HRT
and HRV features(12). Unfortunately, most of  these
approaches are performed with a small and non-significative
sample, compromising the generalization of  the results.
Besides, algorithms like Support Vector Machine (SVM),
Random Forest (RF), and  Gradient Boosting (GB) typically
outperform LR, KNN, and cox models, but weren’t tested.
Finally, the lack of  sensitivity/specificity and methodologies

Table 1 - Attributes used in the experiments

Attributes Group Variables Type 
Personal Data Gender Categorical 

Body Mass Index Quantitative 
Clinical History Cancer Categorical 

Systemic Arterial Hypertension Categorical 
Type 2 Diabetes Mellitus Categorical 
Other Heart Diseases Categorical 
Pacemaker Categorical 
Syncope Categorical 
Atrial Fibrillation/Flutter Categorical 
Chronic Kidney Failure Categorical 
Pulmonary Embolism Categorical 
Cardiac insufficiency Categorical 
Ventriculoperitoneal Shunt Categorical 
Tabagism Categorical 
Alcoholism Categorical 
Sedentary Lifestyle Categorical 

ECG Inactive Electrical Area Categorical 
Ventricular Extrasystole Categorical 
Supraventricular Extrasystole Categorical 
Non-Sustained Ventricular Tachycardia Categorical 
Pause > 3s Categorical 
Primary Change Categorical 
Interventricular Conduction Disturbance Categorical 
Atrioventricular Conduction Disturbance Categorical 

ECO Diastolic Dysfunction Categorical 
Left Atrial Diameter Quantitative 
Left Ventricular Diastolic Diameter Quantitative 
Left Ventricular Systolic Diameter Quantitative 
Segmental Deficit Categorical 

Holter Atrial Fibrillation/Flutter Categorical 
Average Heart Rate Quantitative 
Sinus Node Dysfunction Categorical 
Sustained Ventricular Tachycardia Categorical 
Non-Sustained Ventricular Tachycardia Categorical 
Ventricular Extrasystoles Categorical 
Total Ventricular Extrasystoles Quantitative 
Atrioventricular Conduction Disturbance Categorical 
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to lead with unbalanced data make it impracticable to
reproduce those works in different datasets.

To solve the presented drawbacks, we proposed a new
prediction system tested on 310 patient samples using 9
state-of-art algorithms in machine learning and two leading
techniques with unbalanced data. As for results, we verify
Holter - Non-Sustained Ventricular Tachycardia, Total
Ventricular Extrasystoles, Left Ventricular Systolic
Diameter, History - Atrial Fibrillation/Flutter and Left
Ventricular Diastolic Diameter as important features to
predict SCD.

MATERIAL AND METHODS

Database
Clinical and laboratory data were collected from 310

patients at University Hospital Clementino Fraga Filho
(HUCFF), at Federal University of  Rio de Janeiro, for 26
years, between 1990 and 2016. About 160 patients had
two or more medical records. Hence, the database contains
550 samples, from which 232 are male patients and 318
are female patients. About 14,7% of  records (81)
correspond to patients who suffered SCD as an outcome
of Chagas disease. In order to obtain the database used in
this paper, the protocol was approved by HUCFF-UFRJ
ethics committee, who waived the need for written consent
under number 45360915.1.1001.5262, in accordance with
the current standards applied by national research ethics
committee (Conep) and the principles described in
Declaration of Helsinki.

The scope of this approach is limited to the
classification of chagas patients into two classes: SCD and
non-SCD. Hence, some considerations about the original
database are made. First, the patients who died from causes
other than SCD, such as natural causes or other diseases,
are allocated into a non-SCD class. Only the most recent
record of each patient is used, totalizing 310 unique
patients, from which 78 (25,16%) died from SCD and
232 (74,84%) were alive until the last check or died from
other causes. Furthermore, only 37 features are considered,
referring to previous medical history and data from
Electrocardiogram, Echocardiogram and Holter exams.
Other features, such as medicament use, are discarded with
the aim to avoid bias in the data. Table 1 summarizes the
features used in this approach.

To occurrence of  death was conducted a probabilistic
linkage with the Brazilian National Mortality System (SIM-
Sistema de Informação sobre Mortalidade, in Portuguese)
using full name, date of  birth, mother’s name, and
municipality of  residence as matching variables. The linkage
algorithm has been previously validated with a sensitivity
and specificity of 94% and 91%, respectively(13). When
contact was possible, SCA data were obtained by direct
interview with participants’ relatives. In addition,
information about SCA was also obtained annually from
HUCFF Digital Registry and from mobile emergency care
service (SAMU in Portuguese) [SAMU database, available
at http://www.saude.gov.br/samu], Brazil. Non-witnessed
cases by SAMU crew were excluded. SAMU follows the
French pre-hospital care model that provides on-scene

care for individuals and not just transport to the hospital.
This is supported by the Brazilian Government and is
available 24h a day, and consists of  teams of  health
professionals that include medical doctors. It is the medical
doctors’ responsibility to complete the death certificates.
Individuals not identified in the mortality database (SIM)
were censored in February, 2020 (date of  the linkage). As
such, vital status was determined for all participants
irrespective of whether contact was possible at the follow-
up visit.

SCD was defined as an abrupt collapse with
documented loss of vital signs that might result in attempts
to restore circulation (cardiopulmonary resuscitation). The
aetiology was only considered cardiac after the exclusion
of SCAs due vascular non-cardiac disease, acute non-
cardiac illnesses, drug overdose, metabolic causes or
terminal disease(14).

It is important to emphasize that this database is
constantly updated, despite the clinical data having been
collected until 2016. Information like date and death
occurrence are collected annually. In this approach, the
last update was on 10/02/2020, and there were no new
deaths until that day.

Related Works
Different approaches were proposed to identify the

clinical and laboratory features of patients with high SCD
propensity(9, 11-12). The approach developed by(10) used Cox
proportional-hazards model to evaluate the relationship
between the risk factors with CCC and SCD, creating a
risk score, analyzing ROC curves and Kaplan Meier
survival curves to evaluate the scores’ predictive
performances. Although they have a sample of  373
examples (43 examples of SCD), they did neither explore
some scenarios, such as the use of data resampling
techniques, nor provided details about sensibility and
specificity.

The work in(11) proposed to extract features from Heart
Rate Turbulence (HRT) and parameters from time-domain
Heart Rate Variability (HRV) of  ECG signals divided into
two 12-hours periods. These parameters were used as input
to two multivariate linear models - Logistic Regression
(LR) and Fisher’s linear discriminant (LDA). However,
although stratified, the approach had a limited number of
22 samples. Finally, in another approach(12), applied HRT
and HRV techniques to extract features from Holter ECG
signals and investigate possible associations with SCD
events, considering 3 different scenarios: a 24h complete
signal, just the 12 hours of  daylight, and the other 12 hours.
Forward and backward feature selection methods were
used to reduce the number of parameters, K-Nearest
Neighbors to do the classification and Leave-One-Out to
do cross-validation. However, this approach uses a limited
sample of 82 patients (20 SCD positives) and the features
are focused on the metrics extracted from the ECG signal
processing. In addition, considering that a great amount
of holter signals from CCC patients contain significant
occurrences of ectopic/arrhythmic beats, we found that
the methodology for feature extraction applying HRV
techniques is impaired.
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Even though all mentioned approaches proposed a
system to predict SCD, they differ from the proposed
work in several aspects as you can see in Table 2. First,
our system uses a bigger sample than approaches(11) and(12),
providing more substantial results than the previous works.
Also, different from(10), we use the appropriate metrics
to evaluate our approach, not only accuracy, but precision,
sensitivity, sensibility and f1-score which gives more
information about the model’s effectiveness.

In this work, we developed a model tested with 9
state-of-the-art machine learning algorithms in four
different scenarios leading with imbalanced data
(undersampling and oversampling techniques), yielding a
robustness system to predict SCD and indicating which
variables are more important for this prediction. These
algorithms were optimized over a sample of 310 patients,
from which 78 suffered SCD, aiming at a computer-
aided diagnosis model of early identification of patients
with high SCD propensity. We emphasize three innovative
points over which the proposed application is developed:
using a dataset with a wide diversity of clinical data for
CCC patients, including clinical notes, heart tests, treatments
and classifiers, and a strong heterogeneity concerning the
temporal distance between the most recent exams and
the SCD event (which may reach months or even years);
comparison of  the performance of  nine Machine
Learning models in different scenarios concerning the
application of feature selection techniques and resampling
methods; and, finally, the use of  the parameters of  the
models to rank the clinical features concerning the
prediction of  SCD events.

Methodology
The proposed methodology can be divided in 4 steps:

data resampling, attribute normalization, selection, and
classification. First, data resampling is necessary due to
the significant difference in number of the samples labeled
as SCD and non-SCD. For this, both oversampling and
undersampling techniques were applied to the data in
order to improve the predictive power of the final
classifier(15). For oversampling, Synthetic Minority
Oversampling Technique (SMOTE)(16) was adopted,
which generates synthetic samples for the minority class
from the existing samples. For undersampling, random
under sampling was adopted, which removes samples
from the majority class randomly.

After this, all attributes are rescheduled between 0 and
1 to ensure there is no discrepancy in magnitudes. Then,
redundant or unnecessary attributes, which can impair the
interpretation and results of the models, are removed.
For this, the K-Best method was applied for feature

selection. K-Best chooses a number K of best features
according to a score from an evaluation metric. In this
approach, the metrics below were chosen:

1 Chi2: The Chi-Squared statistic, calculated by the
formula:

Table 2 - Comparison between all approaches.

 work Sample 
Size 

Lead with 
unbalanced 

Use 
Clinical 
Data 

Present 
precision/sensitivity/sensibility/f1-
score 

Use State of 
Art Machine 
Learning? 

1 [10] 333/43 NO YES NO NO 
2 [11] 11/11 NO YES YES NO 
3 [12] 62/20 NO NO YES NO 
4 Proposed 

Work 
232/78 YES YES YES YES 

where O is the observed frequency, and E is the
expected frequency of  a category.

2 f_classif: This method calculates the F-value based
on Analysis of  Variance (ANOVA). This calculation is done
by dividing the variance into groups via the internal variance
of  these groups.

Lastly, the remaining attributes are used as input to the
classification algorithm. In this approach, the selected
algorithms are: K-Nearest Neighbors (KNN), Gradient
Boosting (GB), Logistic Regression (LR), Naive Bayes
(NB), Support Vector Machines (SVM), Balanced Random
Forest (BRF), Multilayer Perceptron (MLP), Bagging
Classifier (BGC) and Extra Trees Classifier (ETC).

An overview of  the proposed sequence of  steps is
shown in Figure 1, which represents an implementation
of  this methodology using Scikit-Learn library for Python
[Müller, 2016].

Figure 1 - Example of Pipeline for KNN using Scikit-
Learn library and imblearn pipeline(17)

EXPERIMENTS AND RESULTS

In order to evaluate the performance of  the proposed
methodology, four experiment scenarios were done with
several state-of-the-art machine learning algorithms: in Scenario
1, there was no feature selection or data resampling; in Scenario
2, there was feature selection, but there was no data resampling;
in Scenario 3, there was data resampling but no feature
selection. Finally, in Scenario 4, there was both data resampling
and feature selection. Table 3 summarizes each scenario and
its best performing algorithm.
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Regarding the training methodology, 80% of  samples
were randomly selected for the training set and 20% for
the testing set in a stratified way, to ensure the same
proportion of  classes in the training and testing sets. Within
the training set, a stratified 5-fold method was used to
estimate the hyperparameters, among those mentioned
below.

1 GradientBoosting
1.a.i.a Learning rate: 0.01, 0.025, 0.05, 0.075, 0.1,

0.15, 0.2
1.a.i.b Number of estimators: 10, 30, 70, 100
1.a.i.c Minimum number of samples to split a

node: 12 equally spaced samples from 0.1 to 0.5
1.a.i.d Minimum number of samples to be a leaf:

12 equally spaced samples from 0.1 to 0.5
1.a.i.e Maximum number of features: binary

logarithm, square root
1.a.i.f Maximum depth: 3, 5, 8
1.a.i.g Function to measure the quality of a split:

mean squared error, Friedman mean squared error
1.a.i.h Subsamples for fitting: 0.5, 0.618, 0.8, 0.85,

0.9, 0.95, 1
1 Balanced Random Forest
1.a.i.a Number of estimators: 100 equally spaced

samples from 151 to 1200
1.a.i.b Minimum number of samples to split a

node: 5, 7, 10, 14
1.a.i.c Minimum number of samples to be a leaf:

4, 6, 8, 12
1.a.i.d Maximum number of features: binary

logarithm, square root, all features
1.a.i.e Maximum depth: 10 equally spaced samples

from 10 to 1200
1.a.i.f Function to measure the quality of a split:

Gini index, information gain
1 Multilayer Perceptron
1.a.i.a Learning rate: constant, adaptative
1.a.i.b Hidden layer sizes: (200, 50, 30), (100, 50,

10), (100, 50), (200, 100), (500, 250), (20, ), (50, ), (100, ),
(10, ), (200, )

1.a.i.c Activation function: hyperbolic tangent,
rectified linear unit

1.a.i.d Solver for weight optimization: stochastic
gradient descent, Adam

1.a.i.e Regularization parameter: 0.0001, 0.005, 0.05
1 Logistic Regression
(a) Regularization parameter: 0, 0.01, 0.1, 1.0, 10, 100
2 K-Nearest Neighbors
(a) Number of neighbors: 3, 5, 7, 9, 11
3 Support Vector Machine
1.a.i.a Kernel: RBF, linear
1.a.i.b Gamma (only RBF): 2i”15, for i from 0 to 19,

step 2

1.a.i.c Regularization parameter: 2i”5, for i from 0
to 21, step 2

1 Gaussian Naive Bayes: No hyperparameters
2 Bagging Classifier
1.a.i.a Base estimator: Logistic Regression, K-

Nearest Neighbors, GradientBoosting, Gaussian NB
1.a.i.b Number of estimators: from 1 to 10
1 Extra Trees Classifier
1.a.i.1.a Criterion: Entropy, Gini index
1.a.i.1.b Maximum depth: None and 10 equally

spaced samples from 10 to 1200
1.a.i.1.c Maximum number of features: None, binary

logarithm, square root, auto
1.a.i.1.d Minimum number of samples to split a

node: 5, 7, 10, 14
1.a.i.1.e Minimum number of samples to be a leaf:

4, 6, 8, 12
1.a.i.1.f Number of estimators: from 1 to 10
It is important to note that the resampling, feature

selection and normalizing techniques were applied using
only the training test as base, i.e. there is no resampling in
the test, and the values used to normalize the testing set
were extracted from the training set. For the data
resampling techniques, the used hyperparameters were:

1. SMOTE
(a) Final resampling ratio of the minority class over

the majority class: 30%,
40%, 50%, 60%
2. Random Undersampling
(a) Final resampling ratio of the majority class over the

minority class: 130%, 120%, 110%, 100%
After performing the experiments, the results were

grouped and tabulated. Table 4 presents the mean and
standard deviation of  Accuracy, ROC curve, F1 score,
Precision and Sensitivity for each algorithm, after 30 runs
over the data set for the first scenario. As can be seen,
excepting Naive Bayes, all algorithms presented accuracy
rate greater than 80% but, due to the data imbalance, the
sensitivity was affected in most classifiers, except in NB
and BRF, which had 83.33±9.62% and 84.58±9.49%,
respectively.

The addition of feature selection without any data
balancing methodology did not provide a significant
improvement to the results, as shown in Table 5. NB and
BRF had a slight improvement in their sensitivity at the
cost of  their accuracy/specificity, suggesting that the
classifier does not increase its predictive power. We can
only hypothesize that the poor distribution of data
negatively affects the feature selection.

In scenario 3, according to Table 6, the addition of
oversampling and undersampling techniques resulted in
the significant improvement of  algorithms’ performance
except BRF and NB, which had a reduction in sensitivity,
probably due to some interference in its own internal

Table 3 - Selected Scenarios

 Feature Selection Resampling Algorithm 
Scenario 1 No No BRF 
Scenario 2 Yes No BRF 
Scenario 3 No Yes KNN/BRF 
Scenario 4 Yes Yes BRF 
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balancing methodology. Note, however, that BRF, SVM,
LR and KNN obtained sensitivity over 80%.

In addition, MLP stood out for presenting the best
accuracy with 86.83±4.47% and F1 score 74.67±8.13%.
This suggests that data balancing is more important than
feature selection to better generalize the data prediction.

Lastly, Table 7 presents the results of  the last scenario.
Except for the NB classifier, which had a significant
improvement in almost every metric (probably because
feature selection helps improve independence between the
attributes, a hypothesis assumed by NB), no significant
improvement was observed in the mean of  any of  the
metrics used for the other classifiers. For this group of
experiments, the best algorithm was BRF, with a result of
70.04 ± 3,6%, very similar to the result obtained in the
first scenario, 72.76 ± 6.77%. However, it is noted that
the standard deviation decreased drastically for all metrics
used. A hypothesis for this is that the reduction of attributes
can help to reduce data variance, resulting in better model
consistency. Similar results can be observed for the
remaining algorithms.

Among the four scenarios presented, BRF was the
algorithm that outperformed the others in most scenarios.
However, in scenario 3, SVM and LR performed very
close to BRF, and KNN outperformed BRF with a better

Table 4 - Scenario 1: No resampling and no feature selection

Table 5 - Scenario 2: Feature selection and no resampling

Table 6 - Scenario 3: Resampling and no feature selection

  Accuracy ROC Curve F1 Precision Sensitivity 
 Mean STD Mean STD Mean STD Mean STD Mean STD 
BRF 83.76% ± 4.8% 84.03% ± 5.09% 72.76% ± 6.77% 64.38% ± 8.17% 84.58% ± 8.49% 
NB 72.59% ± 7.34% 76.13% ± 6.66% 61.06% ± 7.15% 48.62% ± 7.24% 83.33% ± 9.62% 

GBC 87.3% ± 4.45% 81.73% ± 6.13% 73.69% ± 8.98% 78.44% ± 10.34% 70.42% ± 11.12% 
KNN 86.08% ± 4.24% 80.78% ± 6.61% 71.53% ± 9.51% 74.31% ± 9.16% 70.0% ± 12.76% 
LR 85.34% ± 4.08% 78.91% ± 5.76% 69.29% ± 8.24% 75.44% ± 10.92% 65.83% ± 12.25% 

MLP 85.61% ± 3.68% 79.57% ± 5.37% 70.14% ± 7.77% 75.46% ± 10.34% 67.29% ± 11.8% 
SVM 84.92% ± 4.2% 78.69% ± 5.65% 68.8% ± 8.22% 73.59% ± 9.63% 66.04% ± 11.8% 
BGC 86.35% ± 3.27% 80.55% ± 4.78% 71.75% ± 6.72% 76.82% ± 9.96% 68.75% ± 10.51% 
ETC 86.77% ± 3.55% 80.69% ± 5.65% 72.09% ± 7.99% 78.56% ± 10.29% 68.33% ± 12.38% 

 
 Accuracy ROC Curve F1 Precision Sensitivity 

Mean STD Mean STD Mean STD Mean STD Mean STD 
BRF 81.27% ± 1.28% 83.39% ± 1.07% 70.42% ± 1.54% 58.85% ± 1.89% 87.71% ± 1.14% 
NB 61.9% ± 0.0% 70.35% ± 0.0% 53.85% ± 0.0% 38.89% ± 0.0% 87.5% ± 0.0% 

GBC 85.03% ± 2.45% 80.62% ± 4.33% 70.67% ± 5.72% 69.91% ± 3.73% 71.67% ± 8.33% 
KNN 80.95% ± 0.0% 70.74% ± 0.0% 57.14% ± 0.0% 66.67% ± 0.0% 50.0% ± 0.0% 
LR 85.71% ± 0.0% 82.18% ± 0.0% 72.73% ± 0.0% 70.59% ± 0.0% 75.0% ± 0.0% 

MLP 83.86% ± 0.73% 78.54% ± 1.44% 68.04% ± 1.93% 68.39% ± 0.94% 67.71% ± 2.88% 
SVM 82.54% ± 0.0% 75.93% ± 0.0% 64.52% ± 0.0% 66.67% ± 0.0% 62.5% ± 0.0% 
BGC 81.64% ± 1.85% 74.98% ± 3.08% 62.86% ± 4.26% 64.66% ± 3.95% 61.46% ± 6.37% 
ETC 80.32% ± 2.45% 73.69% ± 2.54% 60.86% ± 3.86% 62.1% ± 5.95% 60.21% ± 5.31% 

 
 Accuracy ROC Curve F1 Precision Sensitivity 

Mean STD Mean STD Mean STD Mean STD Mean STD 
BRF 86.03% ± 4.54% 85.0% ± 5.72% 75.12% ± 7.53% 69.58% ± 8.72% 82.92% ± 11.0% 
NB 75.34% ± 5.91% 74.82% ± 8.41% 59.3% ± 13.86% 50.36% ± 12.39% 73.75% ± 18.74% 

GBC 85.82% ± 4.86% 83.49% ± 5.58% 73.94% ± 7.81% 70.78% ± 9.87% 78.75% ± 10.33% 
KNN 86.24% ± 3.87% 85.42% ± 5.06% 75.54% ± 6.59% 69.58% ± 7.48% 83.75% ± 10.06% 
LR 85.66% ± 4.87% 84.62% ± 4.99% 74.74% ± 7.18% 69.19% ± 9.42% 82.5% ± 9.2% 

MLP 86.83% ± 4.47% 83.54% ± 6.02% 74.67% ± 8.13% 74.68% ± 10.88% 76.88% ± 13.04% 
SVM 85.98% ± 3.91% 84.56% ± 5.32% 74.67% ± 7.03% 69.69% ± 7.93% 81.67% ± 10.88% 
BGC 85.19% ± 4.53% 82.99% ± 7.01% 72.54% ± 9.02% 69.24% ± 9.11% 78.54% ± 15.46% 
ETC 83.12% ± 5.57% 81.75% ± 5.41% 70.61% ± 7.48% 65.08% ± 9.81% 78.96% ± 10.82% 

F1 score considering all experiments.
Here, we face a trade-off of interpretability/accuracy

of  results. BRF presents more consistent results, and also
presents coefficients for the weights that can be used to
interpret the importance of each feature, while KNN
presents minimally superior results, but does not present
any easy way to interpret the features. In order to verify
the real difference between KNN and BRF, and to see if
the better effectiveness of KNN justifies their lack of
interpretability, we applied the Kolmogorov-Smirnov test
to compare both of classifiers and assess if the
performance of  any classifier is significantly different
based on their F1-score.

For a p-value 0.03458, we can not reject the null
hypothesis that the two empirical data distributions are
the same with 95% level confidence. Thus, the indicated
algorithm is the BRF, which obtained superior or
statistically similar results in all scenarios.

In order to better interpret the results, we summarized
a table containing all the feature coefficients provided by
the BRF, and also we formulated a ranking for all analyzed
features. The rank consists of  the weighted average of
the features’ coefficients of the 4 classifiers obtained in
the 4 scenarios presented. The extracted coefficients and
ranks from BRF are presented in Table 8, where 0.0"
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Table 7 - Scenario 4: Resampling and feature selection

Table 8 - Normalized attribute weight coefficients for the main models ranked

 
 Accuracy ROC Curve F1 Precision Sensitivity 

Mean STD Mean STD Mean STD Mean STD Mean STD 
BRF 82.12% ± 2.04% 82.24% ± 3.06% 70.04% ± 3.6% 61.03% ± 3.31% 82.5% ± 6.44% 
NB 72.91% ± 5.88% 75.8% ± 5.72% 59.7% ± 10.09% 49.38% ± 8.19% 81.67% ± 18.78% 

GBC 80.79% ± 5.33% 79.71% ± 4.27% 67.53% ± 5.82% 60.6% ± 7.74% 77.5% ± 7.45% 
KNN 81.8% ± 2.76% 81.69% ± 3.01% 69.46% ± 3.77% 61.04% ± 4.81% 81.46% ± 7.43% 
LR 80.79% ± 3.96% 79.98% ± 3.29% 67.64% ± 4.68% 60.17% ± 7.08% 78.33% ± 6.71% 

MLP 82.28% ± 4.11% 80.43% ± 4.44% 68.86% ± 6.24% 62.78% ± 7.22% 76.67% ± 6.55% 
SVM 81.9% ± 4.12% 81.62% ± 4.58% 69.56% ± 6.19% 61.32% ± 6.87% 81.04% ± 8.12% 
BGC 80.74% ± 4.54% 80.91% ± 3.68% 68.44% ± 5.29% 59.62% ± 7.04% 81.25% ± 6.36% 
ETC 81.8% ± 2.66% 81.69% ± 2.63% 69.51% ± 3.52% 60.89% ± 4.64% 81.46% ± 5.31% 

 
 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Score Ranking 
Holter – Non-Sustained 
Ventricular Tachycardia 

0.40925743 0.15267842 0.14246527 0.15267842 0.17929491425398647 1 

Total Ventricular 
Extrasystoles 

0.10960927 0.15148947 0.14723054 0.15148947 0.14696716603599536 2 

Left Ventricular Systolic 
Diameter 

0.03674904 0.10134342 0.08076052 0.10134342 0.08883627806210703 3 

Syncope 0.00249959 0.08604691 0.09936974 0.08604691 0.08171139343906424 4 
Left Ventricular Diastolic 
Diameter 

0.03237515 0.10480306 0.05127252 0.10480306 0.08135053957410422 5 

Supraventricular 
Extrasystoles 

0.05034312 0.04543784 0.06812225 0.04543784 0.05336466353264556 6 

Primary Change 0.01187713 0.06092105 0.05098271 0.06092105 0.0530220621022198 7 
Left Atrial Diameter 0.05081418 0.05134889 0.03801602 0.05134889 0.04767526615226073 8 
ECG – Ventricular 
Extrasystoles 

0.02560497 0.04011265 0.0520354 0.04011265 0.0425433270367147 9 

Interventricular 
Conduction Disturbance 

0.02570511 0.03955867 0.03899984 0.03955867 0.038225456651444306 10 

Inactive Electrical Area 0.07287255 0.01891564 0.04698278 0.01891564 0.03366404364940776 11 
Diastolic Dysfunction 0.02371363 0.03142102 0.03236045 0.03142102 0.031150614767228225 12 
Holter – Ventricular 
Extrasystoles 

0.00755758 0.02153298 0.01889865 0.02153298 0.019381599417631977 13 

Chronic Kidney Failure 0.01335745 0.01305777 0.02402586 0.01305777 0.01657875761418014 14 
Average Heart Rate 0.05771106 0.0 0.0197916 0.0 0.012446962286701103 15 
Cardiac insufficiency 0.00904056 0.0115332 0.0197892 0.0 0.010485695181165527 16 
Segmental Deficit 0.0 0.01341656 0.00716877 0.01341656 0.01014230625890852 17 
Gender 0.00540964 0.01189868 0.007859 0.01189868 0.01005296295900673 18 
Sedentary Lifestyle 0.00573929 0.00786285 0.01172643 0.00786285 0.008887360307147102 19 
Body Mass Index 0.01612447 0.01490231 0.00751533 0.0 0.008497855657897097 20 
ECG – Non-Sustained 
Ventricular Tachycardia 

0.01166123 0.00374021 0.00793616 0.00374021 0.0059374862657359025 21 

Systemic Arterial 
Hypertension 

0.00490441 0.00459214 0.00617821 0.00459214 0.005156149580690402 22 

Holter – Atrioventricular 
Conduction Disturbance 

0.00098582 0.00365439 0.00635823 0.00365439 0.004223614390267675 23 

Type 2 Diabetes Mellitus 0.00417701 0.00386169 0.00421512 0.0 0.0028979345914201555 24 
Sinus Node Dysfunction 0.00207107 0.00221521 0.00338666 0.00221521 0.002579453522876169 25 
Holter – Atrial 
Fibrillation/Flutter 

0.00339937 0.00106094 0.0038891 0.00106094 0.0021970594000050815 26 

ECG – Atrioventricular 
Conduction Disturbance 

0.00248463 0.00146184 0.00131983 0.00146184 0.0015447859680376619 27 

Ventriculoperitoneal 
Shunt 

0.00067337 0.00113219 0.00065296 0.0 0.000609867545382944 28 

Pacemaker 0.00224245 0.0 0.00069086 0.0 0.0004596520343358914 29 
History – Atrial 
Fibrillation/Flutter 

0.00103943 0.0 0.0 0.0 0.0001147717614314631 30 

Pulmonary Embolism 0.0 0.0 0.0 0.0 0.0 31 
Sustained Ventricular 
Tachycardia 

0.0 0.0 0.0 0.0 0.0 32 

Other Heart Diseases 0.0 0.0 0.0 0.0 0.0 33 
Tabagism 0.0 0.0 0.0 0.0 0.0 34 
Cancer 0.0 0.0 0.0 0.0 0.0 35 
Alcoholism 0.0 0.0 0.0 0.0 0.0 36 
Pause > 3s 0.0 0.0 0.0 0.0 0.0 37 
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represents a zero value importance assigned to the vari-
ables that were not selected in the feature selection step.

Random Forest is composed of  several decision trees,
evaluating multiple scenarios with or without a certain
feature. The importance coefficient measures the loss of
accuracy in trees that do not contain a certain feature. In
other words, this is an average of the importance (loss of
accuracy when not present) of that feature among all
decision trees. That means, we can interpret the average
of  the coefficients of  the 4 BRF’s for the different
scenarios as an approximation of the composition of all
decision trees of  these scenarios.

According to the Table 8, we can see the huge
importance of the variables: Holter Non-Sustained
Ventricular Tachycardia and Total Ventricular Extrasystoles,
followed by Left Ventricular Systolic Diameter, History -
Atrial Fibrillation/Flutter and Left Ventricular Diastolic
Diameter, indicating that the variables are strongly related
in the identification of sudden death in patients with
Chagas. In addition, although on a smaller scale, the other
attributes still added relevant information with the
exception of  the following variables: Sustained Ventricular
Tachycardia, Pause > 3s, Alcoholism, Tabagism, Cancer,
Pulmonary Embolism and Other Heart Diseases, which
had zero importance in all scenarios.

CONCLUSION

The main contribution of this paper is to provide a
series of computer-aided diagnosis models using a
significant dataset, as well as a proper and original balancing
system and metrics. In addition, these models contain
different interpretation levels about clinical variables which
can be used as an adjuvant in the SCD risk assessment in a

wide spectrum of patients treated contemporaneously with
CCC. All algorithms were evaluated for accuracy, precision,
sensitivity and F1 score. KNN, BRF, LR and SVM pre-
sented the best results for sensitivity without reduction in
other metrics. Another important finding was that, look-
ing at the weight coefficients of each attribute provided
by the models, we noticed that the variables Holter - Non-
Sustained Ventricular Tachycardia, Total Ventricular Ex-
trasystoles, Left Ventricular Systolic Diameter, Syncope,
History - Atrial Fibrillation/Flutter and Left Ventricular
Diastolic Diameter had great impact on the decision of
sudden cardiac death. Also, we provide a rank for 37 vari-
ables about their importance for the prediction of sud-
den death in patients with Chagas.

In addition, 4 methodologies were presented for
evaluating the effectiveness of feature selection and data
resampling techniques for this approach. It was found that
the combination of SMOTE with random under sampling
ensures a better result for sensitivity. On other hand, feature
selection slightly affected sensitivity and precision negatively.
However, it contributed to a drastic reduction in variance
of  the results. For future studies, we will extract relevant
features from the electrocardiogram signals improving the
predictive performance of  the current model and also
propose a real-time diagnostic system.
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