Drugs that interfere with the results of laboratory tests: an integrative review of the literature

Medicamentos que interferem nos resultados de exames laboratoriais: uma revisão integrativa da literatura

Sandna Larissa Freitas dos Santos Romênio Nogueira Borges Karla Bruna Nogueira Torres Barros

Abstract

Objective: To gather scientific knowledge about the use of drugs that cause interference in the results of laboratory tests. This is an integrative review of the literature that used Lilacs, SciELO and Medline as databases and to search for articles; the keywords in Portuguese and English were selected using Bireme's (DeCS) tests: tests Laboratory interactions, drug interactions and interferences. Research published in English, Portuguese or Spanish was published in the form of articles, reviews, dissertations and theses published between 2009 and 2016. Interference caused by medication is a major problem because the patient may be in use of several prescribed drugs, and mainly by self-medication. Among the most commonly used medications, paracetamol causes an increase in alkaline phosphatase and bilirubin, as well as some corticosteroids, such as hydrocortisone that elevates chlorine through salt and water retention. In hematological examinations the reduction of erythrocytes can be provoked by the use of acyclovir, amitripilina, captopril, cimetidina or levodopa. It emphasizes the importance of an effective clinical evaluation of the patient, so that the use of medicines is seen and thus, guarantee quality in the results of the laboratory tests.

Keywords Laboratory; Laboratory test; Drug

INTRODUÇÃO

A quality test result depends on the success of all processes involving the laboratory examination, since the collection of material to review and release the result. In the study of metabolism and the action of drugs in the body, it is known that this process leads to some changes in the organic operation itself and also produce metabolites (active or not). The metabolites have the aid of the circulatory system for transport (on excretion and/or site of action) of the urinary system (on excretion), among other systems.⁽¹⁾

In laboratory diagnostic tests used in most cases of blood and urine, the tests search the type and quantity of substances that indicate or quantify for definition of the diagnosis of a particular disease. These substances and medicines are chemical origin and often resemble in structure. The diagnostic equipment and even chemical reagents using this information to identify and quantify, although not so accurate to differentiate them. Thus, any medicine can be identified as another substance, leading to an erroneous result.⁽²⁾

The verification of the quality of the sample according to the material and the tests requested by the doctor is extremely important, because pre-analytic factors may interfere in the results significantly such as medicine, hemolysis, lipemia, hyperbilirubinemia, collection time, practice, time of fasting, alcohol consumption and cigarette use.⁽³⁾

It is worth mentioning that the drugs interferes with the harmonious organic operating during the period of use or prolonged use, which this lack of control can also lead to altered lab results, positively or negatively. With that, a high consumption of drugs by the population with both order preventive as the most diverse pathologies, dressing andyess, the study aims to present the drugs that cause interference results in the context of the webbing.

¹Graduada em Farmácia pelo Centro Universitário Católico de Quixadá – Quixadá-CE, Brasil. ²Discente do curso de Farmácia pelo Centro Universitário Católico de Quixadá – Quixadá-CE, Brasil. ³Farmacêutica, Docente do Curso de Farmácia pelo Centro Universitário Católico de Quixadá – Quixadá-CE, Brasil.

Instituição: Centro Universitário Católico de Quixadá – Quixadá-CE, Brazil.

Recebido em 15/05/2017 Artigo aprovado em 12/04/2018 DOI: 10.21877/2448-3877.201800581

MATERIAL AND METHODS

The present study uses as integrative literature review method, which presents the objective to gather and summarize scientific knowledge already provided on the use of medicines that cause interference on the results of laboratory tests, allowing to evaluate and condense the evidence available in order to contribute to the development of knowledge on the subject.

For the development of this integrative review the following steps were covered: defining the guiding question (problem) and aims of research; establishment of criteria for inclusion and exclusion of publications (sample selection); Search in the literature; analysis and categorization of studies, presentation and discussion of results.⁽⁴⁾ To guide the research, formulated the following question: what medicines cause interference on the results of laboratory tests?

The search was conducted in the following databases: Latin American literature and Caribbean Health Sciences (Lilacs), electronic library Scientific Electronic Library Online (SciELO), Medline - Medical Literature Analysis and Retrieval System online and VHL-Virtual Health Library. For the search of the articles were used keywords in Portuguese and English selected by consulting the health sciences descriptors (DeCS) of Bireme: laboratory tests, drug interactions and interference. Inclusion criteria were: research that cover the use of medications that cause interference in laboratory results, types of these interactions and approaches of innovations, which were published in English, Portuguese or Spanish; in the form of articles, reviews, dissertations and theses published from 2009 to 2016. As exclusion criteria: jobs that do not submit abstracts in their entirety in the databases and the library surveyed, it was in previous years and publications with duplicity.

The productions that established the criteria were selected for this study, and analyzed in their entirety. And so, proceeded with the analysis and organization of publications, in order to describe the results, showing the knowledge produced on the theme proposed.

RESULTS AND DEBATES

The laboratory tests that are used for several purposes in diagnosis of diseases, provide results should be interpreted with the concomitant problems identified in the clinical evaluation of the patient. Thus, the decision of the medical clinic with the help of the examination, confirms or excludes the diagnosis, and thus, set the appropriate therapeutic alternative. In addition, the test can also be used in diagnostic monitoring, that is, the professional has the monitoring of therapy and the development of Pathology.⁽¹⁾

However, there is no absolutely precise examination, several factors that may interfere with test results such as:

patient preparation (such as time of day, fasting or fed, drug injection, smoking), the sample collection form (such as venipuncture method, suitable for collection, identification of the sample), the sample handling (transport, processing, storage), analysis (such as accuracy of the method, accuracy of the method, automation), the issue of the results (with erroneous calculations, printed or verbal communication without clarity), effect of medicines.⁽⁵⁾

The interference caused by medicines constitutes a big problem, because the patient may be in use of multiple prescription drugs, and especially by self-medication. These drug interference can be divided into: *in vivo* physiological effects of the drug and its metabolites, and *in vitro* effects resulting from a physical-chemical property in analytical processes.^(6,7) Table 01 presents examples of various medicines with their respective changes in laboratory tests.

The *in vivo* physiological effects can manifest themselves when the drugs induce lesions in tissues or organs, such as the anfoterencina B-induced Nephrotoxicity by medicines that alter organ functions such as simvastatin that increases levels of alanine aminotransferase and aspartate aminotransferase, by the effect of competition for medicines, as the offset of the thyroxine-binding proteins by phenytoin, and the interaction between medications, like amiodarone which increases the effect of Digoxin which, in turn, raising your serum concentration. The *in vitro* effects are manifested in interference of medicine with the method of analysis, as for example, ascorbic acid which in large quantity reduces the level of glucose in serum glucose oxidase method.^(7,8)

Even with analysis technologies that have changed over the decades, it is still susceptible to interference by medicines for both enzymatic and immunological methods methods. With the knowledge of these interferences, new methods and apparatus to quantify or identify substance, are entered into the world market. These means of analysis are previously tested and have manuals that indicate the type of medicine interference. These tests follow a study that has a selection of medicine through eligibility criteria. They include in such judicious, items such as: high serum concentration of medicine, knowledge of interference in the method, the frequency of use of the medicine, the *in vivo* relevance, recent documentation.⁽⁹⁾

It is important to note that a medication may interfere with the determination of an analyte specifically for a methodology, without interfering the results of tests for the same analyte accomplished through other methods. As an example, the dosage of glucose in the urine, when performed by enzymatic methods, have their values reduced by Ascorbic acid and levodopa. However, if you used method with Benetict solution, glucose levels can be increased with the use of Ascorbic acid, chloral hydrate and cefalosporima.⁽¹⁾

Medicine	Indication	Laboratory	Changes	Mechanism of action
Paracetamol	Antipyretic	Alkaline phosphatase	Increase	High dosage associated with ???
	Analgesic1	Bilirubin Glucose Chlorine Uric acid Sodium Bicarbonate Calcium Chlorine	Increase Decrease Increase Decrease Decrease Decrease Increase	Hepatic injury due to high dosage
Acetazolamide	Ocular hypotensive; Diuretic	Bilirubin Uric acid Glucose Ammonia Alkaline phosphatase Sodium Bicarbonate Calcium	Increase Increase Increase Increase Decrease Decrease Decrease	
Acyclovir	Initial treatment and prophylactic treatment of mucosal and cutaneous herpes infection	Urea Alkaline phosphatase Bilirubin Creatinina	Increase Increase Increase Increase	Leukopenia Reversible renal failure
Amitriptyline	Antidepressant	Alkaline phosphatase	Increase	
Ascorbic acid	Food supplement	Bilirrubin Urinary glucose	Increase False (+) False (-)	Reagent cupric sulfate Glucose oxidase method
Baclofen	Relaxing skeletal muscle	Glucose Ammonia Bilirubin	Increase Increase Decrease	
Corticosteroids Dexamethasone Hydrocortisone Betamethasone Methylprednisolone Prednisone Prednisolone	Anti-inflammatory steroid	Chlorine Glucose Phosphor Potassium Sodium Amylase Cholesterol Protein Thyroxine	Increase Increase Decrease Increase Increase Increase Increase Decrease	Salt-water Retention Gluconeogenesis Glucose spending Renal loss Salt-water Retention
Buspirone	Anxiolytic	AST ALT	Increase Increase	
Calcitriol	Food supplement	Cholesterol Magnesium Urea	Increase Increase Increase	
Captopril	Antihypertensive	Direct coombs Cholesterol Urinary acetone Potassium Urea Creatinine	Increase Decrease False (+) Increase Increase Increase	Use of the reagent based on sodium nitroprusside Hypoaldosteronism
Cephalexin	Antibiotic	Urinary glucose	False (+)	Reagent cupric sulfate
Chlorpropamide oral	Antidiabetic	Direct coombs Cholesterol Sodium	Positive Decrease Decrease	Uncontrolled increase secretion of ADH5
Cimetidine	Antiulceroso	AST ALT	Increase Increase	
Cyclosporine	Immunosuppressant	Potassium	Increase	Decreased excretion
Diazepam	Anxiolytic	Urinary glucose	False (-)	Method of glucose oxidase
Diltiazem	Antianginal	Bilirubin Uric acid	Increase Increase	Leads to the appearance of the drop

Medicine	Indication	Laboratory	Changes	Mechanism of action
nalapril	Antihypertensive	Potassium	Increase	Hypoaldosteronism Decreased renal excretion
thambutol	Antitubercular agent	Uric acid	Increase	
urosemida	Antihypertensive	Magnesium	Decrease	Diuretic action
	Diuretic	Potassium	Decrease	Diuretic action
	Brailotto	Sodium	Decrease	Diuretic action
		Ammonia	Increase	
		Amylase	Increase	
		Uric acid	Increase	
Gentamicin	Antibiotic	Magnesium	Decrease	Urinary loss of potassium, magnesium
		Potassium	Decrease	Renal tubular toxicity
		Protein	Increase	, ,
		Urea	Increase	
		AST	Increase	
		Alkaline phosphatase	Increase	
		Creatinine	Increase	
		Sodium	Decrease	
		Calcium	Decrease	
libenclamide	Antidiabetic oral	Prothrombin time Sodium	Decrease Decrease	
dapamide	Antihypertensive diuretic	Glucose	Increase	
		Uric acid	Increase	
		Chlorine	Decrease	
		Magnesium	Decrease	
		Potassium	Decrease	
		Sodium	Decrease	
sulin	Antidiabetic	Potassium	Decrease	
		Catecholamine	Increase	
evothyroxine	Repositor hormone	Glucose	Increase	
		Calcium	Increase	Promoter mobilization
lannitol	Laxative	Sodium	Decrease	Diuretic effect
letformin	Antidiabetic oral	Bicarbonate	Decrease	Acidosis
		Iron	Decrease	Bad absorption of vit. B12
etronidazole	Antifungal	Glucose	Decrease	
meprazole	Antiulcerous	Gastrin	False	
vacillin	Antibiotic	Urinary protein	False (+) False (+)	
opicillin	Antibiotic			
Penicillin	Anubiolic	Albumin	Decrease	
		Urinary protein	Increase	
		Protein	False (+)	
		Urinary protein	False (+)	
		Direct Coombs	Positive	
iroxicam	Anti-inflammatory	Chlorine	Increase	
		Sodium	Increase	
eserpine	Antihypertensive	Catecholamine	Decrease	
isperidone	Antipsychotic	Potassium	Decrease	Hypokalemia
		Sodium	Decrease	Hyponatremia
pironolactone	Anti -hypertensive diuretic	Potassium	Increase	
		Digoxin	False ?	
		Sodium	Decrease	Diuretic Effect
		Protein	Increase	
ulfamethoxazole	Antibiotic	Uric acid	Increase	
ancomycin	Antibiotic	Urea		
ancomycin alsartan			Increase	Nephrotoxicity
alcorton	Antihypertensive	Potassium	Increase	

Source:Barros; Barros⁽¹⁰⁾; Santos; Torriani⁽³⁾

There are many drugs that interfere in laboratory tests, both *in vitro* as *in vivo*, being the latest also called adverse reactions to medicines. An example of analytical interference is the false increase of the values of fructosamine in serum for patients using the captopril. As an example of interference by physiological effect can cite the enalapril and hydrochlorothiazide that cause changes in dosages of uric acid in serum. Other interference by physiological effect is observed in the use of propranolol and/or levothyroxine on examination of thyroxine (T4) free serum.⁽¹¹⁾

It should be emphasized also that several classes of medications, besides the possibility of causing dyscrasias, can interfere with laboratory tests and, consequently, the clinical diagnosis. Hematologic changes induced by drugs can be avoided through measures such as monitoring of medicines, consisting of a pharmacovigilance practice that can be optimized through the mutual cooperation of different health professionals, always seeking the welfare of the patients.⁽¹²⁾ Table 02 presents examples of hematologic changes that some medications can cause.

Studies show that the antihypertensive drug class represents complications for the profile lipid. The use continuous of diureticos thiazide (e.g.hydrochlorothiazide and chlorthalidone) raises the levels of total cholesterol (TC), the lipoproteina of low density (LDL) and lipoproteins of very low density (VLDL-C). However, the levels of lipoproteins of high density (HDL) does not suffer changes. The patients with hipertension and diabetes type 2 that make use of these medicaments are at risk before their interference in lipid metabolism.⁽¹³⁾

Exam	Interference	Examples of medicines	
Protombina time	Increases	allopurinol, cimetidine, diclofenac, dypirone, erythromycin, fluconazole, isoniazid, methyldopa	
	Decreases	acetylsalicylic acid, azathioprine, doxycycline, penicillin, rifampicir	
Fibrinogen	Increases Decreases	salicylates, pyrazinamide atenolol, prednisone, sinvastantina	
Globular sedimentation speed	Increases Decreases	carbamezepina, cyclosporine, dexamethasone, misoprostol budesonide, cortisone, trimethoprim	
Mean Corpuscular hemoglobin concentration	Increases Decreases	acyclovir multivitamin	
Red cells	Increases Decreases	danazol, erythropoietin, hydrochlorothiazide acyclovir, amitripilina, captopril, cimetidine, levodopa, prilocaine, piroxicam	
Mean corpuscular hemoglobin	Increases Decreases	oral contraceptives acetylsalicylic acid	
Hematocrit	Increases Decreases	atropine, clozapine, carvediol, cefoxitin enalapril, dypirone, phenytoin, losartan, ofloxacino, theophyllir	
Hemoglobin	Increases Decreases	interferon, ivermectin, hydroxyurea ampicillin, acetazolamide, ketoprofen, clozapine	
Platelets	Increases Decreases	cefazolin, danazol, lithium, meropenem, miconazole albendazole, amioridona, azathioprine, buspirone	

Source: Ferreira (12)

It is vital that drug interventions in laboratory tests are evaluated through clinical studies that have purpose to quantify the impact of variations in patient care and laboratory professionals know the limitations of the methodologies employed and the appropriate instructions.

CONCLUSION

Good practices in clinical and toxicological analysis are important to identify, reduce and/or eliminate the sources of potential errors in laboratory diagnosis. This will require continuing education of working professionals in clinical and toxicological analysis. One must be careful with the use of vitamins by the patient, since many of them may interfere with laboratory tests, such as Ascorbic acid which can cause false-negative results for determination of glucose, cholesterol, triglycerides and uric acid.

It is observed that many variables can interfere with the performance of the analytical phase and, consequently, the accuracy and precision of the results of the examinations, vital to medical conduct and, ultimately, for the well-being of the patient.

With that stresses the importance of enhancing the knowledge of professionals to be transmitted the required information to the population and to reduce the occurrence of these interferences.

Resumo

Objetivo: Obter conhecimento científico sobre o uso de drogas que causam interferência nos resultados de testes laboratoriais. Trata-se de uma revisão integrativa da literatura que utilizou bancos de dados da Lilacs, da SciELO e Medline, e, para a busca de artigos, foram selecionadas as palavras-chave em Português e Inglês utilizando-se os testes da Bireme (DeCS): testes interações laboratoriais, interações medicamentosas e interferências. A pesquisa publicada em Inglês, Português ou Espanhol foi publicada sob a forma de artigos, resenhas, dissertações e teses publicadas entre 2009 e 2016. A interferência causada pela medicação é um grande problema porque o paciente pode estar usando várias drogas prescritas e automedicação. Entre os medicamentos mais utilizados, o paracetamol provoca um aumento da fosfatase alcalina e bilirrubina, bem como alguns corticosteroides, como a hidrocortisona, que eleva o cloro devido à retenção de sal e água. Nos exames hematológicos, a redução dos eritrócitos pode ser provocada pelo uso de aciclovir, amitripilina, captopril, cimetidina ou levodopa. Enfatiza-se a importância de uma avaliação clínica efetiva do paciente, de forma que o uso de medicamentos seja observado e, assim, seja possível garantir a gualidade nos resultados dos testes laboratoriais.

Palavras-chave

Laboratório; Teste de laboratório; Medicamento

REFERÊNCIAS

- Sobral APO, Pereira PF. Interfering the pre-analytics phase in relation to the preparation of patients in Clinical Laboratory Tests. NewsLab. 2012, 111:18.
- Guimarães C, Wolfart M, Brisolara MLL, Caroline Dani C. O Laboratório clínico e os erros pré-analiticos. Porto Alegre. Revista do Hospital das Clínicas de Porto Alegre. 2011.
- Santos L, Torriani MS, Barros E. Medicamentos na Prática da Farmácia Clínica. Porto Alegre: Artmed ed., 2013. 1.120p.
- Mendes KDS, Silveira RCCP, Galvão CM. Integrative literature review: A research method to incorporate evidence in health care and nursing. Texto Contexto Enferm, Florianópolis, 2008 Out-Dez; 17(4): 758-64. Available at: http://www.scielo.br/pdf/tce/v17n4/18.pdf. Access in: 27 Apr 2016. (Artigo em Português).
- Shcolnik W. Erros laboratoriais e segurança do paciente: Revisão Sistemática. Dissertação (Mestrado) – Escola Nacional de Saúde Pública Sergio Arouca, Rio de Janeiro, 2012, defendida e aprovada em 27 de fevereiro de 2012.
- Golan DE, Tashjian Junior AH; Armstrong EJ; Armstrong AW. Principles of pharmacology: the pathophysiologic basis of pharmacotherapy. 2a. ed. Rio de Janeiro: Guanabara Koogan, 2009. 952 p. Monografia em Português.
- McPherson R, Pincus M.R. Henrys clinical diagnosis and management by laboratory methods. 22 ed. Philadelphia: Elsevier; 2011.
- Fletcher BC, et al.Study of drugs used by patients in clinical analysis laboratory and their interferences in laboratory tests: a literature review. Electronic journal of Pharmacy, 2009,6(1):33-43.
- Félix JT, Baloch LDC, Veras HNH. Study of drugs used by patients in a clinical laboratory and possible changes in laboratory tests. Emagazine Science,3 (1), set, 2015.
- 10. Barros EJ, Barros HMT. Medicines in clinical practice. Porto Alegre: Porto Alegre: Artmed; 2010.
- Sharma, Santiago Almeida Ce, LC. Laboratory exams interference caused by antihypertensive drugs used in Brazil. View. Eletrôn. Health Updates. Salvador, 2016, 3 (3), 101-113. Jan/jun.
- Ferreira AL, Rocha CP, Vieira LM, Dusse LMS, Junqueira DRG, Carvalho MG. Alterações hematológicas induzidas por medicamentos convencionais e alternativos. Rev. Bras. Farm. 2013;94(2):94-101.

 Santos FBF, Balzaneli ES, D'Andrade MRP. Avaliação do perfil lipídico de pacientes diabéticos e hipertensos tratados com captopril. J. Bras. Patol. Med. Lab. São Paulo. 2009;45(3):207-12.Available from http://www.scielo.br/scielo.php?script= sci_arttext&pid=S1676-24442009000300005&lng=en&nrm=iso>

> Correspondência Sandna Larissa Freitas dos Santos Av. Placido Castelo, 1909, Central Quixadá-CE, Brasil