Efeito da ginástica funcional sobre a pressão arterial, frequência cardíaca e duplo produto em mulheres

Leonardo Pinheiro Botelho^{1,5*}, Rodrigo Gomes de Souza Vale⁴, Samária Ali Cader^{1,4,5}, Gilmar Weber Senna^{2,3}, Maria Celeste Vega Gomes^{1,5} e Estélio Henrique Martin Dantas^{1,4,5}

¹Programa Euroamericano de Pós-graduação Stricto Sensu, Av. Salvador Allende, 6700, 22780-160, Recreio dos Bandeirantes, Rio de Janeiro, Rio de Janeiro, Brasil. ²Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil. ³Centro de Ciências da Saúde, Universidade Católica de Petrópolis, Petrópolis, Rio de Janeiro, Brasil. ⁴Programa de Pós-graduação Stricto Sensu em Ciência da Motricidade, Universidade Castelo Branco, Rio de Janeiro, Brasil. ⁵Universidade Católica Nossa Senhora de Assunção, Assunção, Paraguai. *Autor para correspondência. E-mail: leonar.pinheiro@ig.com.br

RESUMO. Objetivo do estudo foi verificar efeitos do treinamento funcional sobre a pressão arterial sistólica (PAS) e diastólica (PAD), freqüência cardíaca (FC) e duplo produto (DP) de 24 mulheres inexperientes (25 \pm 5 anos; 53 \pm 6 kg; 164 \pm 5 cm; IMC = 23,09 \pm 2,64; 22,99 \pm 3,38% de Gordura). Realizou-se uma aula de treinamento funcional e uma seqüência controle. As variáveis foram observadas antes, logo após, 10, 20, 30, 40, 50 e 60 minutos após o treinamento. A ANOVA observou diminuições significativas na PAS, a partir do vigésimo minuto (Δ % = 8,00%, p = 0,001) e na PAD, iniciando no décimo minuto (Δ % = 5,80%, p = 0,0002) em relação ao repouso. No momento logo após, a PAD obteve redução no trigésimo (Δ % = 5,85%, p = 0,0004) e qüinquagésimo minuto (Δ % = 4,14%, p = 0,006). Ocorreu um aumento na FC logo após a sessão (Δ % = 40,02%, p = 0,0001) e reduções a partir de 40 minutos após (Δ % = 7,95%, p = 0,01). O DP reduziu a partir de 20 minutos após o exercício (Δ % = 13,5%, p = 0,0002). O treinamento funcional reduziu significantemente a PAS, PAD, FC e DP após um treinamento em mulheres jovens.

Palavras-chave: treinamento funcional, pressão arterial, frequência cardíaca, hipotensão, saúde.

ABSTRACT. Acute effects of functional gymnastic training on blood pressure, heart beat rate and heart beat-pressure product in females. The effects of functional training sessions on systolic (SBP) and diastolic (DBP) blood pressure, heart beat rate (HR) and heart beat-pressure product (HPP) in 24 untrained women (25 \pm 5 years; 53 \pm 6 kg; 164 \pm 5 cm; 23.09 \pm 2.64 kg m⁻²; 22.99 \pm 3.38% body fat) were investigated. The subjects participated on a functional training class following by a control follow-up. Variables were registered prior to training exercise, and 10, 20, 30, 40, 50 and 60 minutes after training. Whereas ANOVA reported a significant decrease (p < 0.05) in SBP as from the twentieth minute (Δ % = 8.00%, p = 0.001), decrease in DBP started at the tenth minute (Δ % = 5.80%, p = 0.0002). Significant decreases were observed at the thirtieth (Δ % = 5.85%, p = 0.0004) and fiftieth (Δ % = 4.14%, p = 0.006) minute. HR increase was reported immediately after the test (Δ % = 40.02%, p = 0.00) and presented significant decreases as from the fourth minute (Δ % = 7.95%, p = 0.01). Decreases in HPP rates were observed at twenty minutes after the exercise (Δ % = 13.5%, p = 0.0002). Data analysis show that functional training sessions triggered significant reductions on SBP, DBP, HR and HPP in young females.

Keywords: functional training, blood pressure, heart beat rate, hypotension, health.

Introdução

A elevação da pressão arterial (PA), doença conhecida como hipertensão arterial sistêmica (HAS), é um dos principais fatores de risco não-dependente e crônico para a doença coronariana (ACSM, 2004; SBC, 2007).

Para que ocorram mudanças no quadro, medidas farmacológicas e não-farmacológicas anti-

hipertensivas devem ser aplicadas para controlar a HAS. O controle dessa doença está associado ao tratamento farmacológico e mudanças no estilo de vida, sendo o exercício físico uma das práticas mais recomendadas (BARBOSA et al., 2005; FORJAZ et al., 2006).

Neste sentido, a prescrição de exercícios concebidos especificamente para enfatizar a estabilidade tem aumentado em popularidade

120 Botelho et al.

(WILLARDSON; BURKETT, 2006). A estabilidade das regiões lombo-pélvicas do corpo é dependente da ativação coordenada dos músculos que tenham origem nas vértebras lombares, como os eretores musculares da coluna vertebral, e pelve com os músculos reto abdominal, transversos, oblíquos externos e internos do abdome (BROWN, 2006; WILLARDSON, 2007).

A Ginástica Funcional (GF) é considerada um tipo de treinamento que objetiva melhorar as capacidades físicas funcionais para transferência dos benefícios e adaptações para a vida cotidiana ou para determinado gesto esportivo. Este treinamento pode estimular a propriocepção e desenvolver as capacidades físicas, nas quais se destacam a resistência muscular, força muscular, flexibilidade, coordenação, equilíbrio estático e dinâmico, que associadas ou não podem promover adaptações corporais (ARRUDA; COURACCI, 2004; LAGALLY et al., 2009).

Atividades consideradas funcional, utilizadas por meio de implementos materiais como bolas, discos de equilíbrio, camas elásticas entre outros, podem estimular o equilíbrio do indivíduo. Isto pode promover melhorias sinestésicas, proprioceptivas e controle da força (RUIZ; RICHARDSON, 2005; THOMPSON et al., 2007). Com isso, a GF pode ser uma forma alternativa de treinamento que busca diminuição de pressão arterial, prevenções de lesões e benefícios na qualidade de vida do indivíduo (BEHM et al., 2005; MIRANDA et al., 2005; WILLARDSON, 2007).

O comportamento da frequência cardíaca (FC) tem sido utilizado para a análise tanto diagnóstica (LIAO et al., 2002), quanto prognóstica (LAUER et al., 1999) de indivíduos com doença cardiovascular conhecida, assim como para a prescrição e o controle do treinamento físico. No entanto, as medidas mais frequentes de controle da FC são realizadas na condição de repouso ou nas transições entre repouso-exercício e exercício-repouso (ALMEIDA et al., 2004).

Quando a PA e FC são analisadas, destaca-se o duplo produto (DP) como melhor indicador não-invasivo para se avaliar o trabalho do miocárdio durante o repouso ou esforços. O DP é bastante eficiente como indicador de sobrecarga cardíaca em exercícios resistidos (MCCARTNEY, 1999; POLITO et al., 2004). O DP tende a aumentar durante os exercícios, mas seu comportamento depende do tipo de exercício, intensidade, duração e as condições ambientais realizados sobre o trabalho (FARINATTI; ASSIS, 2000). O DP é uma variável, cuja correlação com o consumo de oxigênio

miocárdico faz com que seja considerado o mais fidedigno indicador do trabalho do coração durante esforços físicos contínuos em atividades com ênfase aeróbia (GOBEL et al., 1999). Isso não impede que o DP tenha valor na apreciação da sobrecarga imposta ao músculo (LEITE; FARINATTI, 2003).

Diante do exposto, o objetivo deste estudo foi verificar os efeitos agudos do protocolo de GF sobre a PA, FC e DP em até 60 min. de recuperação em mulheres normotensas.

Material e métodos

Amostra

O estudo caracteriza-se como uma pesquisa de natureza experimental, que é geralmente reconhecido como sendo o mais científico de todos os tipos de pesquisa em que o pesquisador pode manipular os tratamentos para provocar o acontecimento das diversas situações (THOMAS et al., 2007).

Participaram do experimento 24 indivíduos do gênero feminino (idade: 25 ± 5 anos; massa corporal: 53 ± 6,2 kg; estatura: 164 ± 5,1 cm; IMC: 23,09 ± 2,64; %Gordura: 22,99 ± 3,38%). Todas as participantes eram residentes da cidade de Petrópolis, Estado do Rio de Janeiro, normotensas, ativas e praticantes de musculação e/ou ginástica localizada, de três a cinco vezes por semana, há no mínimo três meses.

Foram excluídos do estudo indivíduos que possuíam qualquer tipo de comprometimento osteomioarticular ou quaisquer referências de problemas de saúde e tinham experiência prévia na GF. Também não foi permitido o uso de substâncias ergogênicas; medicação que afetasse os valores de PA em repouso ou durante o exercício; consumo de cafeína ou álcool no dia da coleta dos dados e atividade cotidiana que exigisse grande demanda energética, assim como qualquer tipo de atividade física 48h antes do estudo.

Antes das coletas, os voluntários responderam negativamente o questionário *Physical Activity Readiness Questionnare* (PAR-Q) (SHEPARD, 1988), cujas respostas foram confirmadas por uma avaliação médica e os participantes da pesquisa assinaram o Termo de Consentimento Livre e Esclarecido, conforme a Resolução 196/96 do Conselho Nacional de Saúde e a Declaração de Helsinki (WMA, 2008). O estudo foi submetido e aprovado pelo Comitê de Ética em Pesquisa do Instituto Euroamericano de Educação e Motricidade Humana (protocolo nº 08/2009).

Protocolo de ginástica funcional com bola

Foram necessários três encontros para a seleção dos sujeitos em estudo. Para maior controle na coleta da PA, a amostra foi dividida nos segundo e terceiro encontros em quatro subgrupos com seis sujeitos por sessão. A aferição da PA foi realizada durante quatro dias consecutivos, por três avaliadores experientes que apresentaram um coeficiente de correlação (r) interavaliador igual ou superior a 0,92. Os encontros são descritos a seguir.

No primeiro encontro foi realizada a avaliação da massa corporal e da estatura, utilizando uma balança mecânica com estadiômetro, precisão de 100 g e capacidade para 150 kg, da marca Filizola (Brasil), e feito o cálculo do índice de massa corporal (IMC), recomendações seguindo as prescritas International Standards for Anthropometric Assessment (MARFELL-JONES et al., 2006). Logo após, foi realizada uma série de cada exercício do protocolo de GF para a familiarização dos indivíduos com a intervenção.

No segundo encontro, a aferição da PA e FC foi realizada nos indivíduos em repouso na condição de grupo-controle (GC), utilizando o método oscilométrico (FARINATTI; POLITO, 2003), com o aparelho Omron MX3 Plus oscillometric (CHINA) (COLEMAN et al., 2005). Os indivíduos na condição de GC permaneceram sentados durante 60 min. em sala com ambiente de pouca iluminação, silencioso e arejado, realizando a aferição da PA a cada 10 min.

No terceiro encontro, foi realizada uma sessão do protocolo de GF. Na execução dos exercícios, os sujeitos foram instruídos a não realizar a manobra de Valsalva. A aferição da PA e FC, antes e depois do treinamento, foi mensurada da mesma forma do segundo encontro. Houve aferição da PA e FC 10 min. antes do início do protocolo de GF. Após a execução de 40 min. do protocolo e imediatamente após o término da sessão de GF, a PA e FC foram aferidas com duração de 60 min. em ciclos de 10 min., perfazendo um total de seis medidas.

O nível de esforço do treinamento foi controlado utilizando a escala OMNI-RES (LAGALLY; ROBERTSON, 2006). Foi pedido que após o final de cada fase de exercício, que os voluntários registrassem na escala sua sensação percebida pelo esforço realizado. Assim, foram verificadas a média (\overline{X}) e o desvio-padrão (DP) a cada final de fase do protocolo em que: Fase 1 $(\overline{X} = 5,35; DP = 0,78); Fase 2$ $(\overline{X} = 6,47; DP = 0,80); Fase 3 <math>(\overline{X} = 6,5; DP = 0,87); Fase 4 <math>(\overline{X} = 6,54; DP = 0,80); Fase 5 <math>(\overline{X} = 3,83; DP = 0,43).$

A sessão de treinamento de GF foi dividida em cinco fases durante 40 min. a seguir:

Fase 1 (Aquecimento e zone 1 – ritmo e coordenação): constitui-se de aquecimento geral com movimentos dinâmicos de solturas sem a bola aproximadamente por 2 min. Em seguida, foi realizado zone 1 estimulando ritmo e coordenação por meio de movimentos em pé com variações de quiques com a bola de maneira uni e bilateral, finalizando na posição sentada sobre a bola totalizando 5 min. de prática.

Fase 2 (Bloco 1 em 3 fases): foi dividida em três fases (neuro) na qual cada fase foi distribuída aproximadamente por 5 min., totalizando 15 min. de treino. Cada fase foi realizada por meio de exercícios caracterizados funcionais dentre eles: abdominais, peitorais (flexão) com apoio das pernas na bola, específicos glúteos e posterior de coxa (leg press).

Fase 3 (Zone 2): circunduções com a bola em pé, em seguida, variações com agachamentos unilaterais e exercícios de agilidade de pernas passando sobre a bola posicionando-se sentado de frente (ida e volta) totalizando 3 min. de prática.

Fase 4 (Bloco 2 em 3 fases): foi dividida em três fases (controle e equilíbrio), na qual cada fase foi distribuída aproximadamente por 5 min., totalizando 15 min. de treino. Cada fase foi realizada por meio de exercícios caracterizados funcionais dentre eles: posição ântero/posterior, agachamento unilateral com leve rotação do tronco com a bola com isometria no final das repetições (executando a mesma série para o outro lado), joelhos apoiados no solo e antebraço na bola movimentando-o para frente e para trás finalizando com isometria, decúbito ventral na bola com pés apoiados no solo realizando a extensão da coluna com elevação de bracos.

Fase 5 (Alongamento sentado na bola): realização de exercícios de alongamento e relaxamento dos grupamentos exercitados no treinamento por 2 min.

Análise estatística

O Programa software Statistica versão 7.0 (Statsoft, Tulsa, USA) foi usado para o tratamento dos dados que foram apresentados como média e desviopadrão. Os testes de Shapiro-Wilk e de Levene foram utilizados para verificar a normalidade e a homogeneidade de variância dos dados da amostra, respectivamente. Os resultados obtidos da PA, FC e DP foram analisados utilizando a Anova de dupla entrada para medidas repetidas com a utilização do Post Hoc de Bonferroni para identificar as possíveis diferenças entre as variáveis do estudo. O estudo considerou como nível de significância estatística o valor de p < 0,05.

122 Botelho et al.

Resultados

Os resultados das variáveis pressão arterial sistólica (PAS) e pressão arterial diastólica (PAD) podem ser observados nas Tabelas 1 e 2. Não foram encontradas diferenças significativas em nenhum momento avaliado (p > 0,05) na PAS entre o GF e o GC (Tabela 1). No entanto, observou-se redução significativa (p < 0,05), a partir do 20° min. em relação ao repouso (momento pré) e também logo após a sessão de exercícios do protocolo GF (momento pós). Essa diminuição perdurou até e inclusive a última aferição (Δ % = 8,00%, p = 0,001).

Tabela 1. Análise da PAS em diferentes momentos nos dois grupos distintos. Dados expressos pela média (± desvio-padrão).

	GF	GC	
Pré	$114,9 \pm 5,47$	$114,95 \pm 5,68$	
Pós	$115,8 \pm 8,1$	$114,35 \pm 5,98$	
10 min.	$109,2 \pm 5,2$	$114,5 \pm 7,46$	
20 min.	$105,7 \pm 23,74*\dagger$	$113,55 \pm 7,22$	
30 min.	$107,4 \pm 6,54*\dagger$	$113,55 \pm 7,22$	
40 min.	$107,0 \pm 5,51*†$	$114,2 \pm 7,20$	
50 min.	$106,6 \pm 6,1*\dagger$	$113,6 \pm 5,81$	
60 min.	$107,0 \pm 5,81*†$	$113,35 \pm 5,33$	

GF- Grupo Funcional; GC – Grupo-controle; PAS – Pressão arterial sistólica (mm Hg- 1); $^*p < 0.05$ comparado com o momento Pré; $^*p < 0.05$ comparado com o momento Pós; $^*p < 0.05$ comparado com o momento 10 min.

Para a PAD (Tabela 2) foram significativamente (p < 0,05) menores a partir do décimo minuto, em relação ao repouso da GF (Δ % = 5,80%, p = 0,0002). Contudo, para a mesma variável, apenas verificaram-se outras diferenças significativas (p < 0,05) no 30° (Δ % = 5,85%, p = 0,0004) e 50° min. (Δ % = 4,14%, p = 0,006), em que a PAD se mostrou reduzida em relação ao momento logo após o treinamento de GF.

Tabela 2. Análise da PAD em diferentes momentos nos dois grupos distintos. Dados expressos pela média (± desvio-padrão).

	GF	GC	
Pré	$72,3 \pm 6,54$	$72,35 \pm 6,66$	
Pós	$70 \pm 6,45$	$70,83 \pm 6,04$	
10 min.	$68,15 \pm 6,4*$	$70,3 \pm 6,48$	
20 min.	$68,6 \pm 5,5*$	$69,4 \pm 5,53$	
30 min.	65,9 ± 5,72*†	$68,8 \pm 5,87$	
40 min.	$67,1 \pm 6,34*$	$70,45 \pm 6,27$	
50 min.	$66,45 \pm 5,38\dagger$	$71,05 \pm 7,17$	
60 min.	68,1 ± 7,08*	$71,5 \pm 6,03$	

GF- Grupo Funcional; GC – Grupo-controle; PAD – Pressão arterial diastólica (mm Hg^i); $\star p < 0.05$ comparado com o momento Pré; $\dagger p < 0.05$ comparado com o momento Pós. # p < 0.05 comparado com o momento 10 min.

Na variável analisada FC (Tabela 3), ocorreram aumentos significativos logo após o término da atividade em relação a todas as verificações da mesma sequência e também na comparação ao respectivo momento realizados na sequênciacontrole (Δ % = 40,02%, p = 0,0001). Diminuições importantes foram avaliadas a partir do 20° min. em

relação ao décimo minuto, durando por todas as verificações posteriores. A partir do 40° min. reduções da FC foram observadas em relação ao repouso (Δ % = 7,95%, p = 0,01).

Tabela 3. Análise da FC em diferentes momentos nos dois grupos distintos. Dados expressos pela média (± desvio-padrão).

	GF	GC
Pré	78,7 ± 6,68†	$78,85 \pm 6,69$
Pós	$110,2 \pm 14,40*^+$	$78,1 \pm 7,60$
10 min.	$83,05 \pm 9,08 \dagger$	$76,6 \pm 5,88$
20 min.	74,8 ± 7,49†#	$77,3 \pm 6,52$
30 min.	73,6 ± 7,82†#	$76,65 \pm 5,87$
40 min.	72,9 ± 7,01*†#	$78,6 \pm 5,96$
50 min.	71,95 ± 6,97*†#	$76,6 \pm 6,41$
60 min.	$71,5 \pm 7,48*†#$	$76,75 \pm 6,17$

Na variável analisada DP (Tabela 4), ocorreram aumentos significativos logo após o término da atividade em relação a todas as verificações da mesma sequência e também na comparação ao respectivo momento realizado na sequência-controle. Diminuições importantes foram avaliadas a partir do 20° min. em relação ao 10° min., durando por todas as verificações posteriores. Foram observadas reduções da DP em relação ao repouso (Δ % = 13.5%, p = 0.0002) a partir do 40° min.

Tabela 4. Análise do Duplo-Produto em diferentes momentos nos dois grupos distintos. Dados expressos pela média (± desviopadrão).

	GF	GC	
Pré	9069,7 ± 1018,2†	9116,38 ± 1056,5	
Pós	12445,9 ± 1773,2# ⁺	$8975,41 \pm 116013$	
10 min.	9075,9 ± 1043,4†	$8753,0 \pm 939,21$	
20 min.	7986,7 ± 1017,4*†#	$8775,73 \pm 858,74$	
30 min.	7939,6 ± 1017,4*†#	$8725,52 \pm 972,46$	
40 min.	7890,1 ± 817*†#	$8956.0 \pm 870,9$	
50 min.	7753 ± 830,5*†#	$8709,38 \pm 1071,93$	
60 min.	7755,7 ± 853,5*†#	$8745 \pm 942,16$	

GF- Grupo funcional; GC – Grupo-controle; *p < 0.05 comparado com o momento Pré; †p < 0.05 comparado com o momento Pós. # p < 0.05 comparado com o momento 10 min.; † comparado ao GC.

Discussão

Os achados do presente estudo demonstram que a FC apresentou reduções a partir do 20º min. de seus valores em relação ao momento anterior a intervenção da GF. A FC permaneceu reduzida verificações todas durante posteriores, consolidando que este efeito hipotensivo relativo a esse tipo de atividade tem duração de 60 min. É importante observar que embora não tenha diferença significativa entre o GF e o GC, uma tendência de redução da FC na sequência de treinamento deve ser destaque, sendo esta ratificada pela não-ocorrência de diferenças significativas no GC em relação a todos os momentos de verificação da mesma sequência.

O DP em estudo apresentou reduções, a partir do 20° min. de seus valores em relação ao momento anterior a intervenção da GF. O DP permaneceu reduzido durante todas as verificações posteriores, consolidando que este efeito hipotensivo relativo a esse tipo de atividade tem duração de 60 min. O treinamento funcional com suas características diferenciadas promove efeito hipotensivo tanto para a PAS como para a PAD, assim como ocorre no treinamento aeróbico (FARINATTI; ASSIS, 2000; MORICE et al., 2002; PESCATELLO et al., 2004; SENETIKO et al., 2002), caracterizado no treino apresentado do presente estudo.

Os resultados obtidos no presente estudo demonstram que a PAS e a PAD apresentaram reduções significativas, a partir dos 20 e 10° min., respectivamente, em seus valores quando comparados ao momento anterior à intervenção da GF. A PAS e PAD permaneceram reduzidas durante todas as verificações posteriores, indicando efeito hipotensivo que perdurou até 60 min. após a sessão de GF. Essa diminuição explica-se pelo mecanismo barorreflexo associado à perfusão sanguínea na região, que se encontrava obstruída durante o esforço (MACDONALD JR, 2002; SIMÃO et al., 2005a).

Simão et al. (2005b) investigaram a influência isolada da intensidade do exercício contrarresistência sobre a hipotensão pós-exercício. Concluíram que pode existir redução significativa na PAS até 40-60 min., independentemente da intensidade do esforço. Com isso, a carga foi reduzida à metade, enquanto que o número de repetições dobrou. Essa estratégia proporcionou sequência muito intensa e com poucas repetições e outra sequência muito leve, porém com mais repetições. No presente estudo, ocorreu uma resposta similar, porém com tempo menor tanto para PAS quanto PAD, obtendo assim a diminuição de seus valores após o treinamento com 20 min. (PAS) e 30 e 50 min. (PAD), ambos com reduções significativas.

Após o término da sessão de GF, as médias de PAS e PAD se apresentaram mais baixas que as médias da situação anterior à intervenção. O mesmo foi observado no estudo de Polito et al. (2003), no qual verificaram o efeito hipotensivo em indivíduos normotensos, em decorrência dos exercícios resistidos. Foi verificado que os exercícios resistidos exercem efeito de redução da pressão arterial, e que a magnitude das cargas utilizadas revelou tendência para manter o período de redução da PAS. Os dois tipos de treinamento, o de força e o funcional (GF) obtiveram respostas hipotensivas.

Roltsch et al. (2001) realizaram um estudo sobre o efeito hipotensivo relativo ao treinamento de força,

não encontrando diferenças nos níveis da PA anterior e posterior ao treinamento de força realizado por normotensos de ambos os gêneros. Resultados similares sobre esta variável foram encontrados no presente estudo utilizando-se uma sessão de GF. Isto fortalece a ideia dos benefícios sobre os parâmetros fisiológicos que a GF pode proporcionar às pessoas.

Tem sido proposto que o efeito do exercício aeróbico sobre a PA deve-se mais ao efeito agudo da última sessão de exercício, do que das adaptações cardiovasculares ao treinamento (MORICE et al., 2002). Forjaz et al. (2004) verificaram redução significativa da PAS e PAD depois de uma sessão de exercício aeróbico nas intensidades de 50 e 75% do consumo de oxigênio atribuindo esta diminuição à resistência vascular periférica. Ainda não estão totalmente claros os mecanismos referentes ao efeito hipotensivo pós-exercício, mas alguns aspectos podem explicar esta possível queda em repouso. Dentre elas, os mecanismos do sistema nervoso simpático (SENETIKO et al., 2002), o efeito dos barorreceptores (MACDOUGALL et al., 1985) e a liberação de óxido nítrico e a hiperemia decorrente da contração muscular (OSADA et al., 2003). No entanto, estas variáveis não foram investigadas, o que limita algumas considerações com alterações da PA no presente estudo. Contudo, a redução da resistência vascular por substâncias endoteliais parece ter relevante participação no fenômeno, independentemente do comportamento do débito cardíaco e da atividade nervosa simpática (MACDONALD JR, 2002).

Conclusão

Os dados deste experimento indicam diminuição aguda nos níveis de PAS e PAD, FC e DP na amostra de indivíduos normotensos até 60 min. após o protocolo de GF. O estudo sugere que a GF pode ser uma estratégia terapêutica não-farmacológica e de modificação do estilo de vida para a prevenção, tratamento e controle da PA, FC e DP em mulheres normotensas. Outros estudos com esta atividade devem ser realizados para esclarecer estes resultados e estendê-los a outros exercícios, incluindo o controle de variáveis potencialmente intervenientes, como massa muscular, intensidade, velocidade de execução, volume de treinamento e população treinada.

Referências

ACSM-American College of Sports Medicine. Exercise and hypertension. **Medicine Science of Sports and Exercise**, v. 36, n. 3, p. 533-553, 2004.

124 Botelho et al.

ALMEIDA, M. B.; RICARDO, D. R.; ARAÚJO, C. G. S. Validação do teste de exercício de 4 segundos em posição ortostática. **Arquivos Brasileiros de Cardiologia**, v. 83, n. 82, p. 155-159, 2004.

ARRUDA, M. C.; CORAUCCI, N. B. **Treinamento funcional resistido**. 1. ed. Rio de janeiro: Revinter, 2004. BARBOSA, E. G.; BUNDCHEN, D. C.; RICHTER, C. M.; BARBOSA, L. C.; PEREIRA, A. M. R.; VIECILI, P. R. N. Avaliação do custo-efetividade de um programa de exercício físico para hipertensos: avaliação da dosagem medicamentosa. **Arquivos Brasileiros de Cardiologia**, v. 85, supl. 4, p. 131, 2005.

BEHM, D. G.; LEONARD, A. M.; YOUNG, W. B.; BONSEY, W. A. C.; MACKINNON, S. N. Trunk Muscle Electromyographic Activity with Unstable and Unilateral Exercises. **Journal of Strength and Conditioning Research**, v. 19, n. 1, p. 193-201, 2005.

BROWN, T. Core training progression for athletes. **NSCA's Performance Training Journal**, v. 5, n. 5, p. 12-18, 2006.

COLEMAN, A.; FREEMAN, P.; STEEL, S.; SHENNAN, A. Validation of the Omron MX3 Plus oscillometric blood pressure monitoring device according to the European Society of Hypertension international protocol. **Blood Pressure Monitoring**, v. 10, n. 3, p. 165-168, 2005.

FARINNATI, P. T. V.; ASSIS, B. F. C. B. Estudo da freqüência cardíaca, pressão arterial e duplo-produto em exercícios contra-resistência e aeróbio contínuo. **Revista Brasileira de Atividade Física e Saúde**. v. 5, n. 2, p. 5-16, 2000

FARINATTI, P. T. V.; POLITO, M. D. Considerações sobre a medida da pressão arterial em exercícios contraresistência. **Revista Brasileira de Medicina do Esporte**, v. 9, n. 1, p. 25-33, 2003.

FORJAZ, C. L.; CARDOSO, C. G. J. R.; REZK, C. C.; SANTAELLA, D. F.; TINUCCI, T. Post-exercise hypotension and hemodynamics: the role of exercise intensity. **Journal of Sports Medicine and Physical Fitness**, v. 44, n. 1, p. 54-62, 2004.

FORJAZ, C. L. M.; CARDOSO, C. G. J.; ARAÚJO, E. A.; COSTA, L. A. R.; TEIXEIRA, L.; GOMIDES, R. S. Exercício físico e hipertensão arterial: riscos e benefícios. **Revista Brasileira de Hipertensão**, v. 9, n. 3, p. 104-112, 2006.

GOBEL, F. L.; NORSTROM, L. A.; NELSON, R. R.; JORGENSEN, C. R.; WANG, Y. The rate-pressure product as an index of myocardial oxygen consumption during exercise in patients with angina pectoris. **Circulation**, v. 57, n. 3, p. 549-556, 1999.

LAGALLY, K. M.; ROBERTSON, R. J. Construct validity of the OMNI resistance exercise scale. **Journal of Strength and Conditioning Research**, v. 20, n. 2, p. 252-256, 2006.

LAGALLY, K. M.; CORDERO, J.; GOOD, J.; BROWN, D. D.; MCCAW, S. T. Physiologic and metabolic responses to a continuous functional resistande exercise workout. **Journal of Strength and Conditioning Research**, v. 23, n. 2, p. 373-379, 2009.

LAUER, M. S.; FRANCIS, G. S.; OKIN, P. M.; PASHKOW, F. J.; SNADER, C. E.; MARWICK, T. H. Impaired chronotropic response to exercise stress testing as a predictor of mortality. **JAMA**, v. 281, n. 6, p. 524–529, 1999.

LEITE, T.; FARINATTI, P. Estudo da freqüência cardíaca, pressão arterial e duplo-produto em exercícios resistidos diversos para grupamentos musculares semelhantes. **Revista Brasileira de Fisiologia do Exercício**, v. 1, n. 2, p. 29-49, 2003.

LIAO, D.; CARNETHON, M.; EVANS, G. W.; CASCIO, W. E.; HEISS, G. Lower heart rate variability is associated with the development of coronary heart disease in individuals with diabetes. **Diabetes**, v. 51, n. 12, p. 3524-3531, 2002.

MACDONALD, JR. Potential causes, mechanisms, and implications of post exercise hypotension. **Journal of Humans Hypertension**, v. 16, n. 4, p. 225-236, 2002.

MACDOUGALL, J. D.; TUXEN, D.; SALE, D. G.; MOROZ, J. R.; SUTTON, J. R. Arterial blood pressure response to heavy resistance exercise. **Journal of Applied Physiology**, v. 58, n. 3, p. 785-790, 1985.

MARFELL-JONES, M.; OLDS, T.; STEWART, A.; CARTER, L. **International standards for anthropometric assessment**. 1st. ed. Potchefstroom: International Society for the Advancement of Kinanthropometry (ISAK), 2006.

MCCARTNEY, N. Acute responses to resistance training and safety. **Medicine and Science in Sports and Exercise**, v. 31, n. 1, p. 31-37, 1999.

MIRANDA, H.; SIMÃO, R.; LEMOS, A.; DANTAS, B. H. A.; BAPTISTA, L. A.; NOVAES, J. Análise da freqüência cardíaca, pressão arterial e duplo-produto em diferentes posições corporais nos exercícios resistidos. **Revista Brasileira de Medicina do Esporte**, v. 11, n. 5, p. 295-298, 2005.

MORICE, M. C.; SERRUYS, P. W.; SOUSA, J. E.; FAJADET, J.; BAN HAYASHI, E.; PERIN, M.; COLOMBO, A.; SCHULER, G.; BARRAGAN, P.; GUAGLIUMI, G.; MOLNAR, F.; FALOTICO, R. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. **New England Journal of Medicine**, v. 346, n. 23, p. 1773-1780, 2002.

OSADA, T.; KATSUMURA, T.; MURASE, N.; SAKO, T.; HIGUCHI, H.; KIME, R. Post-exercise hyperemia after ischemic and non-ischemic isometric handgrip exercise. **Journal of Physiological Anthropology and Applied Human Science**, v. 22, n. 6, p. 299-309, 2003.

PESCATELLO, L. S.; FRANKLIN, B. A.; FAGARD, R.; FARQUHAR, W. B.; KELLEY, G. A.; RAY, C. A. American College of Sports Medicine position stand. Exercise and hypertension. **Medicine and Science in Sports and Exercise**, v. 36, n. 3, p. 533-553, 2004.

POLITO, M. D.; SIMÃO, R.; NÓBREGA, A. C. L.; FARINATTI, P. T. V. Pressão arterial, freqüência cardíaca e duplo-produto em séries sucessivas do exercício de força com

diferentes intervalos de recuperação. **Revista Portuguesa de Ciência e Desporto**, v. 4, n. 3, p. 7-15, 2004.

POLITO, M. D.; SIMÃO, R.; SENNA, G. W.; FARINATTI, P. T. V. Efeito hipotensivo do exercício de força realizado em intensidades diferentes e mesmo volume de trabalho **Revista Brasileira de Medicina do Esporte**, v. 9, n. 2, p. 74-77, 2003.

ROLTSCH, M. H.; MENDEZ, T.; WILUND, K. R.; HAGBERG, J. M. Acute resistive exercise does not affect ambulatory blood pressure in young men and women. **Medicine and Science in Sports and Exercise**, v. 33, n. 6, p. 881-886, 2001.

RUIZ, R.; RICHARDSON, M. T. Functional balance training using a domed device. **Journal of Strength and Conditioning Research**, v. 27, n. 1, p. 50-55, 2005.

SBC-Sociedade Brasileira de Cardiologia. V Diretrizes brasileiras de hipertensão arterial. **Arquivos Brasileiros de Cardiologia**, v. 89, supl. 3, p. 24-78, 2007.

SENETIKO, N. A.; CHARKOUDIAN, N.; HALLIWILL, J. R. Influence of endurance exercise training status and gender on post-exercise hypotension. **Journal of Applied Physiology**, v. 92, n. 6, p. 2368-2374, 2002.

SHEPARD, R. J. PAR-Q. Canadian home fitness test and exercise screening alternatives. **Sports Medicine**, v. 5, n. 3, p. 185-195, 1988.

SIMÃO, R.; FLECK, S. J.; POLITO, M. Effects of resistance exercises on blood pressure in normotensive individuals using different intensities, volumes and methodologies. **Journal of Strength and Conditioning Research**, v. 19, n. 4, p. 152-156, 2005a.

SIMÃO, R.; FLECK, S.; POLITO, M. D.; MONTEIRO,

W. D.; FARINATTI, P. T. V. Effects of resistance training intensity, volume, and session format on the post exercise hypotensive response. **Journal of Strength and Conditioning Research**, v. 19, n. 4, p. 853-858, 2005b.

THOMAS, J. R.; NELSON, J. K.; SILVERMAN, S. J. **Métodos de pesquisa em atividade física**. 5. ed. Porto Alegre: Artmed: 2007.

THOMPSON, C. J.; COBB, K. M.; BLACKWELL, J. Functional training improves club head speed and functional fitness in older golfers. **Journal of Strength and Conditioning Research**, v. 21, n. 1, p. 131-137, 2007.

WILLARDSON, J. M. Core Stability Training: applications to Sports conditioning programs. Brief Review. **Journal of Strength and Conditioning Research**, v. 21, n. 3, p. 979-985, 2007.

WILLARDSON, J. M; BURKETT, L. N. The effect of rest interval length on bench press performance with heavy vs. light loads. **Journal of Strength and Conditioning Research**, v. 20, n. 2, p. 396-399, 2006.

WMA-World Medical Association. **Declaration of Helsinki**. Ethical Principles for Medical Research Involving Human Subjects. 59th ed. Seoul: WMA General Assembly, 2008.

Received on February 21, 2010. Accepted on July 27, 2010.

License information: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.