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RESUMO 

SILVA, J.C. Efeitos de um novo derivado tiazolidínico (GQ-11) no processo 
de reparo tecidual em modelos de resistência à insulina e isquemia-
reperfusão. 2019. 120p. (Tese de Doutorado) – Faculdade de Ciências 

Farmacêuticas, Universidade de São Paulo, São Paulo; Università degli Studi di 
Genova, Genova, 2019. 

 
 

As tiazolidinadionas (TZDs) compreendem uma classe de fármacos 

hipoglicemiantes que reduzem a resistência à insulina pelos tecidos periféricos. 

Dados preliminares in vivo obtidos em nosso grupo de pesquisa mostraram que 

um dos novos derivados tiazolidínicos, GQ-11, além de aumentar a resposta à 

insulina, pode inibir citocinas pró-inflamatórias, o que a torna uma alternativa 

terapêutica promissora no reparo tecidual, em especial, nos casos de 

descompensação metabólica como ocorre na resistência à insulina e na 

isquemia/reperfusão. Nesse contexto, o objetivo deste trabalho foi investigar os 

efeitos da GQ-11 nas etapas do processo de reparo tecidual em três modelos: 

resistência à insulina utilizando camundongos db/db, epiderme humana 

reconstruída em matriz de colágeno glicado e isquemia/reperfusão induzida por 

clampeamento da aorta em ratos Wistar. 

No contexto de resistência à insulina, o tratamento com GQ-11 induziu a 

expressão de mediadores anti-inflamatórios como IL-10, TGF- e Arg-1 e 

diminuiu a expressão de citocinas pró-inflamatórias em lesões de camundongos 

db/db e em macrófagos, além de aumentar a capacidade de re-epitelização e a 

deposição de colágeno. Além disso, o tratamento também induziu a proliferação 

de queratinócitos e a diferenciação de fibroblastos em epiderme humana 

reconstruída em matriz de colágeno glicado. 
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No modelo de isquemia-reperfusão, o mesmo efeito anti-inflamatório da 

GQ-11 foi observado ao lado de efeitos anti-oxidantes através da regulação de 

enzimas como catalase, GPx e diminuição de TBARS. O imageamento dos 

animais através de tomografia por emissão de pósitrons (PET) demonstrou 

menor captação de 18F-FDG (18F-fluordesoxiglicose), indicando diminuição do 

processo inflamatório decorrente da reperfusão pós clampeamento aórtico. 

Dessa forma, conclui-se que GQ-11, um agonista dual de PPAR/, tem 

efeito anti-inflamatório importante, podendo ser um candidato à fármaco com 

possível aplicação no reparo tecidual no diabetes e na prevenção da síndrome 

de isquemia-reperfusão desenvolvida após procedimentos cirúrgicos. 

 
 
PALAVRAS-CHAVE: Tiazolidinadionas, Inflamação, Reparo Tecidual, 

Isquemia/Reperfusão. 
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ABSTRACT 

SILVA, J.C. Modulation of Inflammation and angiogenesis by a new 
thiazolidine compound (GQ-11) in visceral ischemia. 2019. 120p. (PhD 
thesis) – Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São 
Paulo; Università degli Studi di Genova, Genova, 2019. 

 

The thiazolidinediones (TZDs) class comprises drugs with hypoglycemic 

effects, reducing insulin resistance in peripheral tissues. Our group has 

demonstrated in preliminary in vivo studies that a new TZD, GQ-11, improves 

insulin resistance as well as modulates cytokines involved in inflammatory 

process, suggesting an interesting approach for therapeutic alternatives in tissue 

repair, especially in metabolic decompensation cases, as insulin resistance and 

ischemia-reperfusion. In this context, the aim of this study was to investigate GQ-

11 effects in tissue repair in three different models: insulin resistance in db/db 

mice, reconstructed human epidermis (RHE) in glycated collagen matrix and 

ischemia/reperfusion induced by aorta clamping in Wistar rats. 

In insulin resistance context, GQ-11 treatment upregulated the expression 

of anti-inflammatory mediators, such as IL-10, TGF- and Arg-1, downregulated 

the expression of pro-inflammatory cytokines both in db/db mice wounds and in 

macrophage, besides increasing re-epithelization and collagen deposition. In 

addition, the treatment also induced keratinocytes proliferation and fibroblasts 

differentiation in RHE. 

In ischemia-reperfusion model, the same anti-inflammatory effect was 

observed along with anti-oxidant properties through regulation of enzymes, such 

as catalase and GPx, as well as by decreasing TBARS formation. Animals 

imaging by positron emission tomography (PET) indicated significant less 18F-
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FDG uptake in animal treated with GQ-11 compared to controls, suggesting 

decrease of the inflammation process related to reperfusion after aorta clamping. 

Concluding, the dual PPAR/ agonist GQ-11 has an important anti-

inflammatory effect, suggesting a new approach to tissue repair management in 

diabetes and in prevention of ischemia-reperfusion syndrome post-surgery. 

 

KEYWORDS: Thiazolidinediones, Inflammation, Tissue Repair, 

Ischemia/Reperfusion 
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ABBREVIATION LIST 

 

AGEs: Advanced Glycation End-products 

AGE-R1/R2/R3: Advanced Glycation End-products Receptor 1/2/3 

CCL-2: CC chemokine monocyte chemoattractant protein 

DM: Diabetes Mellitus 

ECM: Extracellular Matrix 

HIF: Hypoxia-Inducible Factor 

HUVEC: Human Umbilical Vein Endothelial Cell 

ICAM-1: Intracellular Adhesion Molecule -1 

IGF-1: Insulin-like Growth Factor-1 

IL-1β: Interleukin 1β 

IL-6: Interleukin-6 

IL-10: Interleukin-10 

I/R: Ischemia-Reperfusion 

IRS: Ischemia/Reperfusion Syndrome 

LDLr: Low-Density Lipoprotein Receptor 

LPSF: Laboratory of Drug Design and Synthesis 

NF-κB: Nuclear Factor κB 

PGC-1α: Peroxisome proliferator-activated receptor  coactivator 1-α 

PHD: Oxygen-sensing Prolylhyldroxylase 

PON: Paraoxinase 

PPAR: Peroxisome Proliferator-Activated Receptors 

RAGE: Receptor for Advanced Glycation End-products 

ROS: Reactive Oxygen Species 

RXR: Retinoid X Receptor 

SIRT-1: Sirtuin 1 

SOD: Superoxide Dismutase 

TNF-α: Tumor Necrosis Factor-α 

TGF-: Transforming Growth Factor- 

TZDs: Thiazolidinediones 

VCAM-1: Vascular Cell Adhesion Molecule -1 

VEGF: Vascular Endothelial Growth Factor 
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1. INTRODUCTION 

The thiazolidinediones (TZDs) comprise a class of hypoglycemic drugs 

used in type 2 diabetes treatment, lowering glucose levels in blood through insulin 

sensitizing effects in peripheral tissues. Their classic insulin sensitizing effect is 

mediated by activation of alpha (), gamma () and/or beta/delta (/) isoforms of 

peroxissome proliferator-activated receptors (PPARs), acting as parcial, full or 

dual agonists (NOLAN et al., 1994; BERGER et al., 1999; HAUNER, 2002). 

Besides hypoglycemic effect of TZDs, some clinical studies have linked its 

treatment to some pleiotropic effects, such as anti-inflammatory and pro-

angiogenic potential. Many studies have been reported modulation of pro-

inflammatory factors by TZDs, such as Interleukin-6 (IL-6), Tumor Necrosis 

Factor- (TNF-) and CC Chemokine Monocyte Chemoattractant Protein (CCL-

2), in association to its PPAR agonism  (PASCERI et al., 2000, RUAN et al., 

2003; GLASS et al., 2010). Importantly, PPAR agonists may also improve 

endothelial dysfunction and angiogenesis independently of the insulin sensitizing 

action in normoglycemic patients, especially due to induction of Vascular 

Endothelial Growth Factor (VEGF) and VEGF receptors expression besides 

repression of cell adhesion molecules expression (GENSCH et al., 2007, 

YAMAKAWA et al., 2000). 

Although these beneficial effects, prolonged use of TZDs was also 

associated to important side effects such as fluid retention, body weight gain, 

peripheral edema, severe hepatotoxicity and cardiovascular risk (LEBOVITZ, 

2002; PATEL, 2009; HERNANDEZ et al., 2011, LOKE, et al., 2011,  NISSEN; 

WOLSKI, 2010, GRAHAM et al., 2010). Thus, the search for new thiazolidine 
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derivatives with therapeutic efficacy without inducing the reported side effects has 

been encouraged. 

GQ-11 is a new TZD derivative, with dual agonism (PPAR/), synthesized 

by the Laboratory of Drug Design and Synthesis (LPSF), affiliated to the 

Therapeutic Innovation Research Group (GPIT - http://www.ufpe.br/gpit) at 

Federal University of Pernambuco (UFPE) under the supervision of Prof. Dr. Ivan 

da Rocha Pitta. Importantly, GQ-11 showed promising therapeutic effects in 

obesity-induced metabolic alterations in Low-Density Lipoprotein Receptor 

(LDLr)-/- mice, as it improves chronic inflammation and lipid profile besides its 

hypoglycemic potential with no weight gain or adipogenesis induction (SILVA et 

al., 2018). Moreover, in a previous study (Rudnicki M. et al, personal 

communication) it was observed that GQ-11 increased endothelial cell (Human 

Umbilical Vein Endothelial Cell - HUVEC) migration and VEGF expression, 

indicating pro-angiogenic effects in contrast to rosiglitazone anti-angiogenic 

action. The evidence of GQ-11 anti-inflammatory and pro-angiogenic actions 

suggest that it may be helpful to control and regulate processes with exacerbated 

inflammation and endothelial dysfunction. 

 

2. OBJECTIVES 

Considering this scenario, the aim of this study was to investigate the 

effects of GQ-11 on inflammation of tissue repair in different models that are 

described in three chapters.  

In the first chapter, we describe preliminary data showing GQ-11 anti-

inflammatory effects. In the second chapter, we show GQ-11 effects on tissue 

repair on an in vivo model of wound healing at insulin resistance conditions with 

http://www.ufpe.br/gpit
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db/db mice while in the third chapter, GQ-11 effects are described on fibroblasts 

and keratinocytes proliferation and differentiation using an in vitro model of 

reconstructed human epidermis with glycated collagen. Finally, in the fourth 

chapter, we describe GQ-11 effects on Ischemia/Reperfusion Syndrome (IRS) 

damage induced in Wistar rats by supraceliac aorta clamping. 

 

3. REVIEW 

3.1. PPARs and inflammation  

PPARs are mainly located in cell nucleus, where generally 

heterodimerizes to Retinoid X Receptor (RXR), to reach its nuclear activity, like 

other nuclear receptors, with different function domains: N-terminus 

(transcriptional activation-related), DNA-binding (RXR heterodimer-related), a 

mobile domain to adequate rotation of C-terminus and finally C-terminus domain 

(permitting co-factor interactions) (SCHULMAN et al., 1998). For that reason, it 

is understood that PPARs do not act by themselves, but in association to co-

factors which remodel cromatin structure aiming to promote or inhibit gene 

transcriptions. In absence of binders (fatty acids and derivatives), PPARs create 

co-repressor complexes, such as NCoR, RIP140 or SMRT, suppressing gene 

transcription through histona deacetilases recruiting. In binders presence, co-

activators such as p300, CBP or SRC-1, they bind to amino-terminus co-activator 

PPAR-1 (PGC-1), acetylating and remodeling chromatin, reinforcing gene 

transcription through chromatin condensation decrease, as observed below 

(ONATE et al., 1995).  
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Figure 1. Activation of PPARs, co-activactors and signaling pathways (MORENO et. al., 2010). 

 

Depending on cell type, binder-induced conformations change and a 

specific complex is formed between receptor and its co-activators and co-

repressors, permitting the adjustment of physiological response. This also explain 

the diversity of gene expression changes when a nuclear receptor is activated by 

different binders (ONATE et al., 1995).  

Modulation of PPARs action is mediated through ERK MAPK, AMPK or 

PGC-1 phosphorylation signaling events. PPARs phosphorylation can up or 

downregulate its activity, considering that activation of Peroxisome proliferator-

activated receptor  coactivator 1-α (PGC1-) expression is Sirtuin-1 (SIRT-1)-

mediated, while its inhibition is mediated by GCN5 acetylation. AMPK or p38 

MAPK 6 phosphorylation increase PGC- 1 stability through arginine 

methylation. PGC-1 activation enable PPAR binding, finally creating an RXR 

and/or other receptor complex, allowing co-activators recruitment to chromatin 

acetylation and promoting target genes DNA codification to be transcript 
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(MORENO et al., 2010). From these complexes, emerge the many evidences 

that PPARs play a key role in lipid synthesis and catabolism regulation and insulin 

resistance (YU & REDDY, 2007). 

Among known PPAR isoforms, PPAR is mainly expressed in liver, also 

found in skeletal muscle, heart and endothelium, with lipid catabolism compounds 

such as oxidation, binding and free fatty transport and inflammation factors 

mediation (KERSTEN; DESVERGNE; WAHLI, 2000). PPAR is mainly 

expressed in adipose tissue, bowel,  cells and endothelium and is more related 

to adipogenesis, through differentiation and maturation of adipocytes (AKBIYIK 

et al., 2004, WILLSON et al., 2000). Different PPAR isoforms are codified by 

different genes in different tissues, interacting to specific binders and promoting 

different genes regulation (RICOTE & GLASS, 2007; BALAKUMAR et al., 2007). 

Regarding inflammation, several studies reported PPAR ability to 

stimulate monocyte differentiation to macrophages. Monocytes recruitment to 

injury or tissue repair sites, and their activation into resident macrophages, 

represent both initiation of inflammation – where macrophages execute host first 

protection – and its own resolution (RICOTE et al., 1998; GELMAN et al., 1999). 

Active silencing of inflammatory genes (TNF-α, IL-6, CCL-2, PAI-1) and 

transcription factors (Nuclear Factor κB: NF-κB), induced by PPAR activation, is 

an important demonstration of its involvement in the control of macrophage 

inflammatory response (SU et al., 1999; GLASS et al., 2010). 

Besides PPAR role in inflammation process, PPARα also was described 

to exert anti-inflammatory effects in systemic inflammation. Some reports showed 

that treatment with PPARα agonists downregulates IL-6 and Interleukin 1β (IL-

1β) both in vitro and in vivo (GERVOIS et al., 2004; MANSOURI et al., 2008). At 
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the same time, treatment with IL-1β decreases expression of PPARα and its 

target genes, suggesting a negative crosstalk between inflammation induced by 

IL-1β and PPARα expression (STIENSTRA et al., 2007). In addition, in vivo 

studies also reported that pre-treatment with PPARα agonists prevents 

upregulation of IL-1, IL-6 and TNF-α in plasma, as well as of Intracellular 

Adhesion Molecule -1 (ICAM-1) and Vascular Cell Adhesion Molecule -1 (VCAM-

1) in aorta, suggesting an important role in regulation of systemic inflammation, 

even with a not well clear mechanism (MANSOURI et al., 2008). The ability to 

upregulate anti-inflammatory genes is also described, such as Il-1ra and IκBa, 

inhibitors of NFκB, suggesting a cooperation between PPAR transactivation and 

repression of inflammatory genes (KLEEMAN et al., 2003). Thus, finding a dual 

agonist of PPAR/ might represent to find a strong anti-inflammatory agent 

acting in different targets to control systemic or local inflammation. 

 

3.2. Tissue repair process 

The term “tissue repair” is used to define restoration of the architecture 

and function of tissues when damaged by injuries. It includes two different 

processes: regeneration and replacement. “Regeneration” refers to the process 

where the growth of new cells completely restores the damaged sites to their 

normal state. The “replacement” process occurs when the markedly damaged or 

non-regenerable tissues are repaired by connective tissue implantation, a 

process known as scarring. 

The tissue repair by regeneration involves three sequential stages: 

inflammation, proliferation and remodeling (MARTIN, 1997; SINGER; CLARK, 

1999). Immediately after lesion, a local clot created by blood compounds provides 
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matrix to neutrophils, monocytes and macrophages influx, characterizing the 

inflammatory stage. Initially, a dynamic flux of neutrophils, with high phagocytic 

capacity will remove possible infections and debris, and monocytes, to be 

differentiated in macrophages, part of an early inflammation state, aiming 

specially to protect the recent damaged site. Besides intense phagocytosis, 

upregulation of pro-inflammatory cytokines by macrophages, such as TNF-, IL-

6 and IL-1 is described, possibly inducing some cell types proliferation. These 

macrophages behavior will be extended to a later inflammation state and 

proliferation stage, characterized by phenotypic transitions, which will base new 

tissues growth. Both Interleukin-10 (IL-10), VEGF and Transforming Growth 

Factor- (TGF-) upregulation will play key roles in neovascularization, 

extracellular matrix (ECM) synthesis and cell differentiation and maturation 

between later inflammation and proliferation stages (WERNER; GROSE, 2003; 

MIRZA; KOH, 2014). 
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Figure 2. Cells involved in normal and deficient tissue repair process and its biomarkers (CLARK; 

KAUSTABH; TONESSEN, 2007). 

 

Finally, remodeling stage is characterized by ECM collagen deposition, 

where the new tissue acquires traction and resistance. Balanced healing stages, 

including development and resolution of inflammatory process, determines tissue 

repair and maintenance. However, specific metabolic conditions induce cell 

dysfunction and exacerbated pro-inflammatory cytokines production, leading to 

impaired healing and delaying tissue rescue/repair, increasing the risk of 

complications, such as member amputations and death (SPRAVCHIKOV et al., 

2001). 

3.3. Tissue repair and inflammation in insulin resistance 

Diabetes Mellitus (DM) is characterized by hyperglycemia caused by 

either insulin release deficiency (DM1) and/or insulin resistance (DM2), with a 

worldwide prevalence of 9,3% (ADA, 2016). Both genetic and environmental 
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factors are implicated in its incidence and etiology (RANA et al., 2007). Current 

DM therapies include insulin administration to DM1 patients and hypoglycemic 

drugs to DM2. Some therapeutic interventions aim to improve insulin sensitivity 

associated to anti-inflammatory and hypolipidemic effects (BERGER et al., 1999; 

HAUNER, 2002). 

In DM pathophysiology, persistent hyperglycemia might generate chains 

of non-enzymatic glycation – Maillard reaction – or even glucose autoxidation, 

resulting in reactive oxygen species (ROS) and advanced glycation end-products 

(AGEs) formation. AGEs constitute a variety of substances obtained from 

reducing sugars – capable of acting as a reducing agent due to a free aldehyde 

group or a free ketone group – or oxidized lipids interactions with lysine and 

arginine residues, amine groups from phospholipids and even nucleic acids, 

resulting in structure and function alterations (HORI et al, 2012). These 

alterations specifically contribute to important DM complications, such as 

retinopathies, cardiopathies, nephropathies and neuropathies (BROWNLEE et al, 

1988; NORTON et al, 1996). 

AGEs have direct and indirect actions through specific cell receptors in 

many cell types such as T cells, monocytes/macrophages, fibroblasts, smooth 

muscle cells and neurons. Among different AGE receptors, we can highlight 

RAGE – extensively characterized in oxidative stress -, AGE-R1, AGE-R2 and 

AGE-R3 (URIBARRI et al., 2007; VLASSARA et al., 2008). 

In other hand, several reports also show that tissue repair process is 

impaired in insulin resistance conditions. It has been shown that skin lesions of 

patients with insulin resistance remain at a chronic inflammatory state of healing 

or have delayed transition to later healing stages. Exacerbated local cells influx, 
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imbalanced macrophage phenotypic transitions and increased production of pro-

inflammatory mediators orchestrate an imbalance of activator and inhibitor 

factors, preventing ECM synthesis and remodeling, essential to normal healing 

process (MARHOFFER et al., 1992, NOVAK, et al., 2013, MIRZA et al., 2014). 

Impaired functions of neutrophils and macrophages also occur, including cell 

adhesion, chemotaxis, phagocytosis and cytokines production and secretion, 

besides dysfunctional angiogenesis (MARHOFFER et al., 1992). Importantly, 

macrophages role in diabetic tissue repair impairment shows to be substantial to 

new therapies development. 

In early inflammatory stages, although monocytes/macrophages 

predominantly assume pro-inflammatory attributes, they do not seem to be fully 

analogues of classic M1 macrophages phenotype, assuming AG-1 upregulation 

– usually correlated to alternative phenotypes – besides TNF-, IL-1 and IL-6 

upregulation. Pro-inflammatory cytokines release in early inflammation is 

essential to efficient tissue repair when is balanced, actively participating in 

keratinocytes, fibroblasts and myoblasts proliferation. In this sense, appropriate 

pro-inflammatory cytokines release seems to be strictly involved in the ability of 

transition between inflammation and proliferation stages (KOH et al., 2005; 

BRYER & KOH, 2007). 

As inflammation stage down-grade and proliferation progress – 

characterized more by differentiation and cell maturation than proliferation per se 

– macrophages acquire a new cytokine expression profile of anti-inflammatory 

and growth factor features, such as IL-10, TGF-β and even Insulin-like Growth 

Factor-1 (IGF-1) (KOH et al., 2005). Some studies show that cytokines 

expression regulation are mediated not only by PPAR but also by exposure to 
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already released cytokines (ARNOLD et al., 2007). Cell maturation and collagen 

production, particular from proliferation stage, are mainly controlled through TGF-

 expression (BRYER & KOH, 2007). In remodeling stage, macrophages function 

does not seem to be very clear, in spite of TGF- expression support and its 

relation to fibrosis (MIRZA & KOH, 2011). 

In diabetes-related impaired processes, macrophages sustain a pro-

inflammatory phenotype, prolonging inflammation stage, with exacerbated TNF 

and IL-1 release, contributing to cell death and tissue damage, consequently 

arresting the stage transition to cell proliferation. Among the many factors 

implicated in inflammation resolution, PPARs modulate inflammation by binding 

to responsive elements, activating or inhibiting anti-inflammatory genes 

expression. It is known that PPAR activity promotes expression of genes related 

to mitochondrial biogenesis, oxidative stress metabolism and alternative 

activation in macrophages (LERKHE & LAZAR, 2005). Some studies using mice 

with macrophage specific PPAR-/- showed prolonged inflammation in tissue 

repair (MIRZA et al., 2015) 

Therefore, the use of drugs that control expression and/or secretion of pro-

inflammatory cytokines and chemokines involved in inflammatory stage of 

healing process – as PPAR agonists - is an interesting therapeutic approach. 

3.4. Ischemia/reperfusion (IR), inflammation and oxidative stress. 

Ischemia-Reperfusion (I/R) is defined as a pathological condition 

characterized by restriction of blood supply followed by flow restoration and 

subsequent re-oxygenation, representing the major challenge during organ 

transplantation and general cardiothoracic surgery (ELTZCHIG & ECKLE, 2011). 
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In its pathophysiology, not only the initial restriction of blood supply leads to a 

severe imbalance of metabolic demand but also the blood flow restoration 

exacerbates tissue injury and inflammation responses, contributing to a wide 

range of conditions (RYAN et al., 2011; ELTZCHIG & CARMELIET, 2011). 

Metabolic substrates such as glucose and oxygen are necessary for 

mitochondrial ATP production. Conditions with deficient oxygen concentration 

and reduced aerobic glycolysis, cells switch to anaerobic metabolism, resulting 

in production of lactic acid following reduced cytosolic pH. An acid 

microenvironment within the cytosol helps cells survive to ischemia. Time is an 

essential component in reaching this imbalanced state and varies depending on 

the tissue. Cardiac cells can tolerate 20 minutes of ischemia before necrosis and 

hepatocytes or renal cells more than 30 minutes, while neuronal cells can tolerate 

no more than 20 minutes. Some tissues, such as skeletal muscle cells can 

tolerate 2 hours of ischemia (JENNINGS, 2013; ZHAO, 2009; ZHAO et al., 2003). 

Ischemia condition is also associated to the inhibition of oxygen-sensing 

prolylhyldroxylase (PHD) and paraoxonase (PON) enzymes, once they require 

oxygen as a cofactor, which in turn leads to a post-translational activation of 

hypoxia and inflammatory signaling cascades, controlling transcription factors 

such as hypoxia-inducible factor (HIF) and NF-κb, sequentially inducing IL-6 and 

TNF-α (SEMENZA, 2007, KARHAUSEN et al., 2004; KAELIN & RATCLIFFE, 

2008). Particularly, at this point it is reported increased permeability of capillaries 

and arterioles, following increased diffusion and fluid filtration across the tissues 

by activated endothelial cells, associated by itself to increased ROS and 

decreased Nitric Oxide (NO) production (RODRIGUEZ-LARA et al., 2016; 

POWERS et al., 2006). 
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In response to tissue damage, exacerbated free radicals release, oxidative 

stress induction as well as pro-inflammatory cytokines expression and activation 

of cell death programs are carried by reperfusion after ischemia. Therefore, the 

critical points of I/R are inflammation, headed by TNF-α and IL-6, and oxidative 

stress, headed by production of pro-oxidant elements, depletion of Superoxide 

Dismutase (SOD), accumulation of free radicals and redox signaling disruption 

(BOUWMEESTER T et al., 2004; HOUSENLOY DJ & YELLON DM, 2006). 

The increase of cytokines/inflammatory mediators is followed by a 

substantial increase of leukocytes, neutrophils and macrophages recruitment 

besides important expression increase of ICAM-1 in endothelial cells. Finally, I/R 

damage causes cell necrosis by cytoskeletal proteolysis and membrane 

lipoperoxidation-induced structural lesions (ABDUL-HUSSIEN et al., 2010). 

PPAR agonists have been related to I/R protective effects through 

inhibition of intracellular cell adhesion molecules expression, reduction in 

neutrophil and macrophages infiltration, modulating inflammatory response and 

subsequent reduction of oxidative stress in endothelium, playing the main role in 

inflammatory process modulation during reperfusion (PANE et al., 2017). 

Consistently, previous studies also showed anti-inflammatory effects promoted 

by GQ-11, through TNF-α, CCL-2 and IL-1β modulation in obese mice (SILVA et 

al., 2018). Evidences suggest that IL-1β plays a key role in pathophysiology of 

hepatic I/R injury, some of them attesting that neutrophils and macrophages can 

contribute to the cytokine maturation, independently of inflammasome 

(SADATOMO et al., 2017). 

Many studies support inflammation and oxidative stress as interdependent 

and connected processes, which co-exist in inflamed sites. Here we understand 
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that inflammatory conditions induce ROS formation, leading to exacerbated 

oxidative damage. At the same time, increased ROS and oxidative stress 

products enhance pro-inflammatory responses. Therefore, regulation of both 

processes are important targets in the search for I/R treatments. Some studies 

recommend aggressive use of nonsteroidal anti-inflammatory drugs in these 

cases. However, prolonged use of these drugs is related to cardiovascular 

morbidity and mortality (JENNINGS, 2013; ZHAO et al., 2003). Moreover, 

commercial TZDs are related to important side effects – as discussed before - 

suggesting that alternative PPAR agonists could be important mediators in these 

conditions. 
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4. CHAPTER I: “GQ-11: A new PPAR agonist improves obesity-

induced metabolic alterations in LDLr-/- mice”. 
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Abstract
Background Obesity and insulin resistance/diabetes are important risk factors for cardiovascular diseases and demand safe
and efficacious therapeutics.
Objective To assess the effects of a new thiazolidine compound—GQ-11—on obesity and insulin resistance induced by a
diabetogenic diet in LDL receptor-deficient (LDLr−/−) mice.
Methods Molecular docking simulations of GQ-11, PPARα and PPARγ structures were performed. Male C57BL/6J LDLr
−/− mice fed a diabetogenic diet for 24 weeks were treated with vehicle, GQ-11 or pioglitazone or (20 mg/kg/day) for
28 days by oral gavage. Glucose tolerance test, insulin, HOMA-IR, adipokines (leptin, adiponectin) and the lipid profile
were assessed after treatment. Adipose tissue was analysed by X-ray analysis and morphometry; gene and protein expression
were evaluated by real-time PCR and western blot, respectively.
Results GQ-11 showed partial agonism to PPARγ and PPARα. In vivo, treatment with GQ-11 ameliorated insulin sensi-
tivity and did not modify subcutaneous adipose tissue and body weight gain. In addition, GQ-11 restored adipokine
imbalance induced by a diabetogenic diet and enhanced Glut-4 expression in the adipose tissue. Improved insulin sensitivity
was also associated with lower levels of MCP-1 and higher levels of IL-10. Furthermore, GQ-11 reduced triglycerides and
VLDL cholesterol and increased HDL-cholesterol by upregulation of Apoa1 and Abca1 gene expression in the liver.
Conclusion GQ-11 is a partial/dual PPARα/γ agonist that demonstrates anti-diabetic effects. Additionally, it improves the
lipid profile and ameliorates chronic inflammation associated with obesity in atherosclerosis-prone mice.

Introduction

Obesity, along with insulin resistance, represents one of the
biggest issues in public health worldwide [1]. Societal
changes and the global nutrition transition in addition to less
physical activity have driven the increase in adiposity in the
obesity epidemic [2]. For a long time, adipose tissue was
known simply as an energy storage site, but more recently,
its endocrine function has been well established and char-
acterized by the secretion of adipokines, which affect sev-
eral biological processes in the adipose tissue and distant
organs, such as the liver, brain and heart. In particular,
adipokines modulate insulin sensitivity, metabolic regula-
tion and inflammation [3, 4].

Inflammation is considered a hallmark of obesity. Sev-
eral studies in experimental models and human populations
demonstrate that chronic, low-grade inflammation char-
acterized by increased pro-inflammatory cytokines is
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associated with insulin resistance [3–5]. Notably, pro-
inflammatory cytokines, such as the chemokine monocyte
chemotactic protein-1 (MCP-1), are upregulated in adipose
tissue by a high-fat diet prior to the development of sys-
temic insulin resistance [6]. Thus, since inflammation in
adipose tissue likely contributes to systemic inflammation
and metabolic abnormalities induced by obesity, it might
represent an important target for pharmacological approa-
ches to treat obesity and insulin resistance.

Thiazolidinedione (TZDs) drugs are insulin-sensitizing
agents commonly used for the treatment of type 2 diabetes.
These drugs are synthetic ligands of peroxisome proliferator-
activated receptors γ (PPARγ), which are ligand-activated
nuclear receptors involved in the regulation of lipid and
glucose metabolism [7]. Indeed, activation of PPARs affects
the expression of target genes such as adiponectin and apoA1
and increases glucose transporter type 4 (GLUT-4) translo-
cation to the cell membrane [8], promoting adipose and
whole-body homeostasis of fatty acids and triacylglycerols,
glucose control and insulin sensitivity [9]. In addition to these
effects on lipid and glucose metabolism, TZDs also show
anti-inflammatory properties in diabetic patients [10, 11].
However, long-term use of TZDs might have important
adverse effects, mainly weight gain and bone loss, which has
stimulated the search for new TZDs with preserved efficacy
and minimal side effects [12–14]. Therefore, the aim of this
study was to investigate the pharmacological potential of
GQ-11, a new thiazolidine compound, as a novel anti-diabetic
drug candidate in a diet-induced obesity (DIO) model using
low-density lipoprotein receptor-deficient (LDLr−/−) mice.

Material and methods

Materials

GQ-11 [(Z)-5-((1H-indol-3-yl)methylene)-3-(4-methylben-
zyl)thiazolidine-2,4-dione] (Fig. 1a) was synthesized as
previously described [15] in the Laboratory of Drug Design
and Synthesis of the Federal University of Pernambuco
(Recife, Pernambuco, Brazil). Synthesis details are provided
in the Supplementary Information (SI—1.1). Rosiglitazone
(RSG) was obtained from Cayman Chemical (Ann Arbor,
MI, USA) and fenofibrate (FNFB) and pioglitazone (PIO)
were purchased from Sigma-Aldrich (St Louis, MO, USA).
Tissue culture media, serum, supplements and other
reagents were purchased from Life Technologies (Carlsbad,
CA, USA) unless otherwise stated.

Molecular modelling

Molecular docking studies were carried out using GOLD
5.1 software [16] aiming to predict the binding mode of
GQ-11 and RSG for comparison. The 3D structures of
PPARγ and PPARα used in this study were obtained from
the Protein Data Bank under ID 4CI5 [17]; they were pre-
pared by removing crystallographic ligand and water
molecules and adding hydrogen atoms. The binding site
was defined as 5 Å around a crystallographic ligand. A
genetic algorithm was employed to generate 100 poses for
each studied ligand, and all torsions and ring flipping were
allowed in pose calculations. GOLDScore was used as the

Fig. 1 GQ-11 is a partial/dual PPAR agonist that shows distinct
binding interactions with PPARα and PPARγ. a Chemical structure of
GQ-11. b Molecular docking studies of GQ-11 to PPARγ and PPARα.
Docking simulation was performed with 3D structures of PPARγ and
PPARα (Protein Data Bank under ID 4CI5) in GOLD 5.1 software

aiming to predict the binding mode of GQ-11 and compared to RSG
and FNFB. c In vitro activation of PPARγ and PPARα by GQ-11.
RSG or FNFB was used as classical PPARγ and PPARα, respectively.
PPARS activation was evaluated by luciferase reporter assay using the
human cell line HEK-293. RSG Rosiglitazone, FNFB fenofibrate
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scoring function in order to rank the most suitable poses,
and the highest ranked pose inside the most populated
cluster (poses were clustered according to default RMSD
values) was selected in order to analyse the most repre-
sentative binding mode.

Transcriptional transactivation assay

The detailed transcriptional transactivation assay is descri-
bed in the Supplementary Information (SI—1.2); pCMX
expression plasmids for PPARα and PPARγ and the mini-
mal promoters containing multiple binding sites for PPAR
and the GAL4 response element (UAS-LUC) (kindly pro-
vided by Dr. A. Castrillo, Instituto de Investigaciones
Biomédicas Alberto Sols, Consejo Superior de Investiga-
ciones Científicas-CSIC) were used [18].

Animals and treatment

Male homozygous C57BL/6J LDLr−/− mice (22–25 g at the
beginning of the study) were purchased from Jackson
Laboratory (Bar Harbor, ME, USA). The study protocols
were approved by the Ethics Committee for Animal Studies
of the Faculty of Pharmaceutical Sciences, University of
São Paulo (Protocol Number: 377/2012) and followed the
rules of the Guide for the Care and the Use of Laboratory
Animals [19] published by the US National Institutes of
Health (NIH Publication No. 85-23, updated in 2011). The
mice were maintained in plastic cages at 22 °C on a 12 h
light–dark cycle and given free access to food and water
during all the experiments. The mice were fed a diabeto-
genic diet containing 36% fat and 36% carbohydrate for
24 weeks, as previously described [20]. After this period,
mice were randomly allocated into three groups (n= 6 per
group—no randomization method was used) and received
oral treatment with vehicle (NaCl 0.9 and 0.025% Tween
20, control group), PIO (20 mg/kg/day) or GQ-11 (20 mg/
kg/day) for 4 weeks. Sample size calculation was based on
evidence from previous preclinical studies for testing TZDs
anti-diabetic effects [20–22]; no sample size calculations
were performed. Glucose tolerance tests and HOMA-IR
were performed after 4 weeks of treatment, as previously
described [23, 24]. Detailed methods are described in
Supplementary Information (SI—1.3 and 1.4) as well as the
diabetogenic diet (SI, Table 1).

Determination of bone mineral density and
subcutaneous adipose tissue

Mice were anesthetized with 3% isoflurane in oxygen,
placed in a prone position into MSFX-Pro equipment
(Bruker BioSpin Corporation, Billerica, MA, USA) and
then subjected to a whole-body scan using dual-energy X-

ray absorptiometry. Images were obtained in accordance
with the settings described (SI, Table 2). Bone mineral
density analysis was performed on images obtained per-
pendicularly to the left femur at a specific region drawn
between the femur and hip. Bone density was calculated
using an algorithm provided by the Bruker Molecular
Imaging software.

Biochemical determinations

Blood was collected by cardiac puncture and serum was
separated by centrifugation. Triglycerides (TG), total cho-
lesterol (TC), high-density lipoprotein cholesterol (HDL-C)
and low-density lipoprotein cholesterol (LDL-C) were
determined using commercial kits (Labtest, Lagoa Santa,
MG, Brazil). As previously described [25], very low-
density lipoprotein cholesterol (VLDL-C) levels were esti-
mated by the Friedewald formula [26]. Glucose concentra-
tions were measured using Accu-Chek Performa (Roche
Diagnostics Corporation, Indianapolis, IN, USA). Serum
interleukin-10 (IL-10) and MCP-1 were measured by flow
cytometry using the Cytometric Bead Array (CBA)
inflammatory kit (BD, East Rutherford, NJ, USA). Serum
adipokines and insulin were measured by enzyme-linked
immunosorbent assay (ELISA) with commercial kits at the
end of the treatment period (EMD Millipore Mouse ELISA
Kit, Billerica, MA, USA).

Adipocyte size measurements

Subcutaneous adipose tissue was collected after euthanasia,
fixed for 24 h in 4% formalin solution, paraffin-embedded
and sectioned. The sections were stained with haematoxylin
and eosin. Adipocytes were analysed/measured with ImageJ
software (NIH-Fiji, Bethesda, MD, USA) and Adiposoft
plugin (University of Navarra, Pamplona, Spain) in six
representative images per mouse.

Quantitative real-time PCR analysis

Total RNA was isolated from murine epididymal adipose
tissue (eWAT) and liver using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA), and 1 µg of RNA was reverse-
transcribed into cDNA using the high-capacity cDNA
reverse transcription kit, according to the manufacturer’s
instructions (Applied Biosystems, Foster City, CA, USA).
Quantitative real-time PCR was performed in an ABI 7500
Fast Real-Time PCR using SYBR green master mix
(Applied Biosystems, Foster City, CA, USA) and specific
primer pairs as listed (SI, Table 3). Expression levels of
each target gene were normalized to Rpl-4 rRNA relative
expression as internal efficiency controls. The mRNA fold
change was calculated using the 2(−Delta Delta C(t)) method
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[27], and the values are expressed as fold increases relative
to the control group.

Western blot

The total protein of eWAT was extracted with RIPA buffer
(Sigma-Aldrich, St Louis, MO, USA) with a protease,
proteasome and phosphatase inhibitor cocktail. Next, 20 μg
of total protein was resolved by 12% sodium dodecyl
sulfate–polyacrylamide gel electrophoresis and transferred
onto a polyvinylidene fluoride membrane using the Bio-Rad
transfer system (Bio-Rad, Richmond, CA, USA). The
membranes were blocked with 5% non-fat-milk in TBST
for 2 h at room temperature with gentle shaking and incu-
bated overnight at 4 °C with primary antibodies against IL-
10, MCP-1 (Abcam, Cambridge, UK, 1:1000 #AB189392
and 1:2000 #AB7202, respectively), and β-actin (Sigma-
Aldrich, St Louis, MO, USA, 1:40,000). After washing,
membranes were incubated with a secondary antibody
(sheep anti-rabbit IgG 1:3000, horseradish peroxidase-con-
jugated; Amersham Biosciences, Piscataway, NJ, USA).
Membranes were developed using enhanced chemilumi-
nescence reagents (Bio-Rad, Richmond, CA, USA).

Statistical analyses

Statistical analyses were performed using GraphPad Prism
software, version 5.0. One-way analysis of variance

(ANOVA) followed by Tukey’s test was used to calculate
statistical significance as appropriate. All data in this study
are expressed as mean ± standard deviation (S.D.). P values
< 0.05 were considered significant. No blinding was
adopted for analysis of the results.

Results

GQ-11 is a partial/dual PPAR agonist that shows
distinct binding interactions with PPARα and PPARγ

To explore if GQ-11 might interact with and activate
PPARs, a docking study was conducted, and the interac-
tions of GQ-11 with PPARs were compared to RSG and
fenofibrate. As illustrated in Fig. 1b, while RSG forms
hydrogen bonds with PPARγ polar residues His323 and
Tyr473, GQ-11 interacts with the hydrophobic residues
Phe282 and Leu469 of PPARγ arm I and forms a hydrogen
bond with Ser289. Furthermore, we assessed the binding
affinity of GQ-11 for PPARα. Our in-silico docking simu-
lations demonstrated that GQ-11 interacts with PPARα at
the H3 region via a non-classic hydrogen bond—a hydro-
gen bond with Ala333—and forms additional hydrophobic
interactions with Met330, Leu344 and Met355 of the Arm
II region and with Met220 of the Arm III region.

Next, we evaluated whether GQ-11 stimulated the
transcriptional activity of PPARs using a gene reporter

Fig. 2 GQ-11 ameliorates insulin resistance in LDLr−/− mice with
diet-induced obesity. After 20 weeks of a diabetogenic diet, low-
density lipoprotein receptor-deficient (LDLr−/−) mice were treated by
oral gavage with vehicle (0.9% NaCl and 0.025% Tween 20), pio-
glitazone (PIO, 20 mg/kg/day) or GQ-11 (20 mg/kg/day) for 28 days,
and insulin-mediated glucose homeostasis was assessed. a Fasting

glucose, b glucose tolerance test (GTT), c area under the curve (AUC)
of GTT, d serum insulin levels, e HOMA-IR analysis for insulin
resistance. Data are expressed as mean± S.D. of six mice per group.
Statistical analyses were performed using ANOVA/Tukey’s multiple
comparison tests. *P< 0.05, **P< 0.01 and ***P< 0.001 vs. control
group (vehicle treatment). PIO pioglitazone
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assay with HEK-293 cells. Compared to RSG treatment,
GQ-11 induced weak transactivation of PPARγ (Fig. 1c),
indicating that GQ-11 is a partial agonist of PPARγ.
Similar results were obtained with PPARα and confirm
that GQ-11 exhibited weak PPARγ and PPARα agonistic
activities.

GQ-11 improves hyperglycaemia and insulin
sensitivity in a mouse model of DIO

As TZDs are mainly used for the treatment of insulin
resistance, we studied the effects of GQ-11 on insulin-
mediated glucose homeostasis using a mouse model of

Impact of GQ-11 on obesity and insulin resistance



DIO, which was previously described and validated [20].
Similar to treatment with PIO, GQ-11 ameliorated insulin
resistance compared to control mice, as indicated by
decreased fasting glucose (Fig. 2a), improved glucose tol-
erance (Fig. 2b, c) and lower serum insulin levels after
treatment period (Fig. 2d). Accordingly, lower HOMA-IR
values were also observed in PIO and GQ-11-treated mice
(Fig. 2e), supporting the hypothesis that GQ-11 has anti-
diabetic properties.

GQ-11 does not increase body weight and adiposity

Considering that increase in body weight is an important
adverse effect reported with TZD use, we analysed the
effects of GQ-11 on body weight gain and adiposity after
28 days of treatment. Fig. 3a shows that PIO-treated mice
gained more weight than did those mice treated with GQ-
11. Food intake was not altered by either PIO or GQ-11
treatments (Fig. 3b), indicating that body weight gain was
not caused by changes in food consumption. Notably, while
PIO treatment was also associated with an increase in
subcutaneous adipose tissue, GQ-11 did not modify adipose
mass compared to the control group (Fig. 3c). This finding
is illustrated by X-ray imaging of adipose tissue (Fig. 3d).
The morphometric analysis of the subcutaneous adipose
tissue revealed smaller adipocytes with PIO treatment
(Fig. 3e, f). In contrast, as showed by HE staining and size
analysis, no differences were observed between the GQ-11
and control groups, indicating that GQ-11 did not impact
adipocyte morphology or adipose tissue expansion.

TZDs can disrupt the Wnt/β-catenin pathway leading to
decreased β-catenin expression, which has been associated
with increased adipogenesis [28]. Thus, we examined the
expression of the β-catenin gene in the eWAT of obese
mice. In fact, PIO down-regulated β-catenin mRNA

expression, but no differences in β-catenin mRNA levels
were observed between the GQ-11 and the control groups
(Fig. 3g), which suggests that PIO interferes in the Wnt/β-
catenin pathway. Considering that disruption of this path-
way by PPARγ agonists can also affect osteogenesis, the
bone density of treated mice was evaluated by X-ray. We
found that GQ-11 did not affect bone density values
whereas a decline in bone density was detected with PIO
treatment (Fig. S1).

GQ-11 alters the levels of adipokines and Glut-4

To explore whether the improvements in insulin sensitivity
are associated with changes in the adipokines, we examined
the effects of GQ-11 on adiponectin and leptin levels. As
shown in Fig. 4a, b, GQ-11 increased adiponectin mRNA
expression in eWAT what was accompanied by elevated
adiponectin levels in blood serum. In contrast, leptin tran-
scription was suppressed by both TZDs in adipose tissue
and decreased in blood serum. Alterations in Glut-4 gene
expression can also affect not only adipose tissue but also
systemic insulin sensitivity. For this reason, we assessed
whether GQ-11 might affect Glut-4 expression in adipose
tissue. As shown in Fig. 4a, GQ-11 and PIO upregulated
Glut-4 gene expression in eWAT. Thus, TZDs regulate
expression of adipokines and Glut-4 at the transcriptional
level, which results in an increase in serum levels of adi-
ponectin, with a concomitant reduction in leptin and ulti-
mately reflects in improved whole-body insulin sensitivity.

GQ-11 ameliorates chronic inflammation associated
with obesity

To study the effects of GQ-11 on the inflammatory state of
obese mice, we analysed the mRNA and protein levels of
anti- and pro-inflammatory cytokines in eWAT as well as
their systemic levels. Fig. 5a, b show that both mRNA and
protein levels for IL-10 were elevated in adipose tissue
under GQ-11 treatment. In addition, MCP-1 transcription
and protein expression were down-regulated in adipose
tissue from GQ-11-treated mice compared to controls.
Moreover, the serum concentration of MCP-1 was lower
whereas IL-10 levels were higher under GQ-11 treatment
(Fig. 5c) in relation to controls. Conversely, no significant
effects were observed with PIO treatment. Therefore, these
data suggest that, unlike PIO, GQ-11 can ameliorate the
local and systemic inflammation induced by obesity.

GQ-11 improves the lipid profile in obese mice

As insulin resistance is associated with dyslipidaemia, we
also investigated the lipid profile of mice treated with GQ-
11. As illustrated in Fig. 6a, b, both PIO and GQ-11

Fig. 3 Effects of GQ-11 treatment on body weight, food intake and
adiposity in LDLr−/− mice with diet-induced obesity. Low-density
lipoprotein receptor-deficient (LDLr−/−) mice received a diabetogenic
diet for 20 weeks and were subsequently treated by oral gavage with
vehicle (0.9% NaCl and 0.025% Tween 20), pioglitazone (PIO, 20 mg/
kg/day) or GQ-11 (20 mg/kg/day) for 28 days. a Body weight gain was
measured at the end of the study protocol. b Food intake was deter-
mined weekly, and the graph shows food consumption at the begin-
ning (grey bars) and the end of the study protocol (black bars). c
Subcutaneous adipose tissue was evaluated by dual-energy X-ray
absorptiometry at the end of the experiment. d Representative images
obtained by X-ray for the control, PIO and GQ-11 treatments showing
delimitation areas of subcutaneous adipose tissue (e). Representative
HE–stained images of subcutaneous adipocytes (magnification ×4). f
Adipocyte size was measured using ImageJ/Adiposoft. g β-Catenin
mRNA expression in eWAT was evaluated by real-time PCR. Data are
expressed as mean± S.D. of six mice per group. Statistical analyses
were performed using ANOVA/Tukey’s multiple comparison tests. *P
< 0.05 and ***P< 0.001 vs. control group (vehicle treatment). PIO
pioglitazone
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treatments exerted no effect on total cholesterol and LDL-
cholesterol, whereas both induced a decrease in VLDL
cholesterol. Moreover, triglycerides were also decreased in
the blood plasma of GQ-11-treated mice (Fig. 6a). Impor-
tantly, a significant increase in HDL-cholesterol was
induced by GQ-11 in contrast to PIO that decreased HDL-
cholesterol by 27.5% compared with the control (Fig. 6b).

To gain insight into the underlying mechanisms of
increased HDL-cholesterol induced by GQ-11, we further
investigated the mRNA expression of genes involved in
lipid metabolism in the liver. Unlike PIO, GQ-11 upregu-
lated the mRNA levels of apolipoprotein A-I (Apoa1), ATP-
binding cassette transporter (Abca1) and class B scavenger
receptor type 1 (Srb1) (Fig. 6c, d). No changes were
observed in Abcg8 transcript levels (Fig. 6d). These findings
suggest that GQ-11 might interfere with HDL biogenesis or
clearance.

Discussion

In this study, we demonstrate that GQ-11, a novel thiazo-
lidinedione, is a weak dual agonist of PPARγ and PPARα
with anti-diabetic properties. GQ-11 improved important
metabolic alterations provoked by DIO, such as insulin
resistance, inflammation and dyslipidaemia. Our data also
indicate that treatment with GQ-11 does not cause further
increases in body weight gain and adiposity. Thus, our

findings support the notion that GQ-11 is a potential novel
drug candidate for the treatment of obesity-related meta-
bolic complications.

It has been proposed that the anti-diabetic effect of
PPARγ agonists could be mediated through improvements
in the adipokine imbalance induced by obesity—especially
on leptin and adiponectin levels [29, 30]. Consistent with
other TZDs drugs, GQ-11 showed glucose-lowering and
insulin-sensitizing properties which were associated with an
increase of adiponectin and decrease of leptin levels.
Additionally, GQ-11 glucose-lowering effects can be also
mediated by the upregulation of Glut-4 expression in adi-
pose tissue, which is a key regulator of whole-body glucose
homeostasis [31] and a target of TZDs effects [8, 32].

Although GQ-11 presents similar anti-diabetic properties
as compared to PIO, our data provide evidence that this
novel TZD also has distinct biological effects. First, GQ-11
presented an anti-inflammatory effect, which can be related
to the metabolic improvement observed with this TZD. In
the adipose tissue, increased MCP-1 expression leads to
exacerbated recruitment of macrophages and the induction
of classical activation (M1), contributing to insulin resis-
tance development [33]. In contrast, IL-10, an anti-
inflammatory cytokine expressed by alternatively activated
macrophages (M2), ameliorates insulin resistance [34].
Thus, by diminishing MCP-1 and increasing IL-10 levels,
GQ-11 may reduce inflammation promoting greater insulin
sensitivity. Second, GQ-11 improved lipid profile by

Fig. 4 GQ-11 induces adiponectin and Glut-4 expression and down-
regulates leptin in LDLr−/− mice with diet-induced obesity. a adipo-
nectin, leptin and Glut-4 mRNA expression were quantified by real-
time PCR. b Levels of adiponectin and leptin were assessed in blood

serum by ELISA. Data are expressed as mean± S.D. of six mice per
group. Statistical analyses were performed using ANOVA/Tukey’s
multiple comparison tests. *P< 0.05 **P< 0.01 and ***P< 0.001 vs.
control group (vehicle treatment). PIO pioglitazone

Impact of GQ-11 on obesity and insulin resistance



decreasing VLDL cholesterol and increasing HDL-
cholesterol levels while PIO induced a substantial
decrease of HDL and increased triglycerides levels. These
divergent effects of these TZDs may be, at least partially,
due to their effects on hepatic lipid metabolism. Remark-
ably, GQ-11 upregulated mRNA levels of apoA1, Abca1
and Sr-b1 in the liver pointing to increased HDL metabo-
lism. In line with these data, previous studies demonstrate
that enhanced Abca1 expression might predict higher
secretion of cellular free cholesterol and phospholipids to
apoA1, increasing HDL biogenesis [35]. In contrast,
increased hepatic Sr-b1 was previously associated with
lower plasma HDL [33]. Of note, SR-B1 protein is mainly
regulated at a post-transcriptional level [36, 37], which
suggests that increased mRNA levels may not be reflected
in enhanced SR-B1 protein expression. Although the
mechanisms underlying improved lipid metabolism induced
by GQ-11 remain to be determined, one plausible expla-
nation implicates PPARα-mediated contribution, as activa-
tion of this transcription factor induces HDL synthesis and
the reverse cholesterol transport besides to decrease trigly-
cerides [38]. Considering that dyslipidaemia is a recognized
risk factor for cardiovascular disorders and non-alcoholic
fatty liver disease—commonly associated with obesity [39,
40]—our data indicate that GQ-11 may prevent future
events and co-morbidities in obesity and type 2 diabetes by
improving lipid metabolism.

It is also worth to highlight that GQ-11 did not affect
body weight gain. Excessive weight gain is associated with
use of classical TZDs leading to increased adiposity mainly
in subcutaneous adipose tissue [41]. PPARγ is considered to

be as the master regulator of adipogenesis [42, 43] and is
essential for preadipocytes differentiation. Given the
absence of effect on weight gain, adipocyte size or adiposity
observed in GQ-11-treated LDLr−/− mice, our data imply
that this new TZD might not affect adipogenesis. It is
known that the canonical Wnt/β-catenin pathway is
involved in the differentiation and proliferation of osteo-
blasts and adipocytes [28, 44], and its suppression, induced
by PPARγ activation, may induce not only adipogenesis but
also bone loss [45, 46]. Remarkably, GQ-11 preserved
mouse bone density in our study, which reinforces the
concept that this novel TZD may not affect differentiation
of mesenchymal stem cells that can ultimately reflect in
therapeutic benefits.

Finally, according to our findings, the distinct biological
profile observed with GQ-11 result from the different
binding interaction with PPARs. It is well established that
TZDs form strong hydrogen bonds with PPARγ residues
His323 (at helix 5), His449 (at helix 10) and Tyr473 (at
helix 12), leading to AF2 surface stabilization and con-
tributing to full agonism of PPARγ [46]. Consistent with
other partial agonists [47], GQ-11 makes interactions with
residues from helix 3 (Phe282) and helix 12 (Leu469) and
only hydrogen bond with the PPARγ residue Ser289 at
helix 3, which could reflect in weak PPARγ agonistic
activities. Notably, GQ-11 also interacts and weakly acti-
vates PPARα. Considering that concomitant activation of
PPARγ and PPARα can affect insulin sensitivity, inflam-
mation and lipid metabolism, it is conceivable that the
beneficial effects promoted by GQ-11 may, at least in part,
result from its partial dual agonism.

Fig. 5 Anti-inflammatory effects of GQ-11 treatment in LDLr−/− mice
with diet-induced obesity. a mRNA levels of interleukin 10 (Il-10) and
macrophage chemotactic protein-1 (Mcp-1) quantified by real-time
PCR. b Representative western blot of IL-10 and MCP-1 proteins in
eWAT. β-Actin was used as a loading control. c. Levels of IL-10 and

MCP-1 were measured in blood serum by ELISA. Data are expressed
as mean± S.D. of six mice per group. Statistical analyses were per-
formed using ANOVA/Tukey’s multiple comparison tests. *P< 0.05
and ***P< 0.001 vs. control group (vehicle treatment). PIO
pioglitazone
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Despite the link that we observed between PPARs
agonism and GQ-11 biological effects, we cannot fully
exclude that GQ-11 anti-diabetic effects may also be
mediated by inhibition of PPARγ phosphorylation
induced by Cdk5, activated by p35/25—targets of pro-
inflammatory cytokines [10]. As a consequence, its
phosphorylation consists of an important link between
adiposity and insulin resistance as well as obesity-related

health problems [5, 48]. Previous studies report that
inhibition of PPARγ phosphorylation by TZDs enhances
adiponectin secretion and improves glucose tolerance
[30]. Thus, additional studies determining whether GQ-11
anti-diabetic effects result from mechanisms independent
of classical receptor transcriptional agonism will be cru-
cial to expanding our knowledge of its mechanism of
action.

Fig. 6 Effects of GQ-11 treatment on plasma lipid profile and mRNA
levels in livers of LDLr−/− mice with diet-induced obesity. a Total
cholesterol and triglycerides. b Very low-density lipoprotein choles-
terol (VLDL-C), low-density lipoprotein (LDL-C) cholesterol and
high-density lipoprotein cholesterol (HDL-C). Lipid profile was
evaluated in blood serum at the end of the treatments. Hepatic mRNA

expression of Apoa1and Abca1 c and Abcg8 and Sr-b1 d was eval-
uated by real-time PCR. Data are expressed as mean± S.D. of six mice
per group. Statistical analyses were performed using ANOVA/Tukey’s
multiple comparison tests. *P< 0.05 and **P< 0.01 vs. control group
(vehicle treatment) #P< 0.05 vs. pioglitazone
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Altogether, this study reveals that GQ-11 is a weak dual
agonist of PPARγ and PPARα and presents glucose-
lowering and insulin-sensitizing properties in a mouse
model of DIO. The pleiotropic effects of GQ-11 on
inflammation and dyslipidaemia as well as the absence of
effects on body weight gain and bone density indicate that
GQ-11 can present some therapeutic advantages when
compared with classical TZDs. Thus, the GQ-11 effects
showed here provides important insights regarding the
pharmacological potential of GQ-11 as a promising novel
anti-diabetic drug candidate.
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Objective: Chronic wounds associated with diabetes are an important public
health problem demanding new treatments to improve wound healing and
decrease amputations. Monocytes/macrophages play a key role in sustained
inflammation associated with impaired healing and local administration of
peroxisome proliferator-activated receptor (PPAR)c agonists may modulate
macrophage, improving healing. In this study, we investigated the effects of
GQ-11, a partial/dual PPARa/c agonist, on macrophage function and wound
healing in diabetes.
Approach: Wounds were surgically induced at the dorsum of C57BL/6J and
BKS.Cg-Dock7m +/+ Leprdb/J (db/db) mice and treated with hydrogel (vehi-
cle), pioglitazone or GQ-11, for 7 or 10 days, respectively. After treatment,
wounds were analyzed histologically and by quantitative PCR (qPCR).
In addition, bone marrow-derived macrophages (BMDM) were cultured from
C57BL/6J mice and treated with vehicle, pioglitazone, or GQ-11, after chal-
lenge with lipopolysaccharide or interleukin-4 to be analyzed by qPCR and
flow cytometry.
Results: GQ-11 treatment upregulated anti-inflammatory/pro-healing fac-
tors and downregulated pro-inflammatory factors both in wounds of db/db
mice and in BMDM.
Innovation: Wounds of db/db mice treated with GQ-11 exhibited faster wound
closure and re-epithelization, increased collagen deposition, and less Mac-3
staining compared with vehicle, providing a new approach to treatment of dia-
betic wound healing to prevent complications.
Conclusion: GQ-11 improves wound healing in db/db mice, regulating the ex-
pression of pro- and anti-inflammatory cytokines and wound growth factors,
leading to increased re-epithelization and collagen deposition.

Keywords: wound closure, diabetes, biomarkers, cell biology

INTRODUCTION

Prevalence of diabetes among
adults >18 years of age is 8.8% world-
wide and is a major cause of blindness,
kidney failure, heart attacks, stroke,

and lower limb amputation.1 Chronic
wounds associated with diabetes is
an important health problem, affecting
up to 25% of diabetic patients, and
14–24% of these wounds will lead to
amputation.2
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Hyperglycemia and hyperlipidemia likely con-
tribute to many of the complications associated
with diabetes,3,4 and may contribute to several
characteristics of diabetic wounds: a persistent
inflammatory response with prolonged monocytes/
macrophages (Mo/Mp) accumulation, increased
pro-inflammatory cytokine release, and impaired
growth factor release as well as impaired angio-
genesis and extracellular matrix.5,6

Mo/Mp have been established as key regulators
of wound healing.7,8 In normal wound healing,
these cells adopt a pro-inflammatory phenotype
in the early stages of healing that is efficient for
killing pathogens and clearing the wound of dam-
aged tissue. During the later stages of healing,
they assume a pro-healing phenotype associated
with the release of anti-inflammatory cytokines
and growth factors that promote angiogenesis, cell
proliferation/differentiation, and collagen deposi-
tion as well as wound closure. Importantly, wound
macrophages in diabetic mice exhibit an impaired
phenotype transition resulting in a sustained pro-
inflammatory phenotype, which may be an impor-
tant contributor to the persistent inflammatory
response in diabetic wounds. Associated with the
impaired phenotype transition are increased levels
of interleukin (IL)-1b and tumor necrosis factor
(TNF)-a along with decreased levels of vascular en-
dothelial growth factor (VEGF) and transforming
growth factor (TGF)-b, which likely contribute to
impaired healing of wounds of diabetic mice.5,9,10

A number of factors have been postulated to induce
the switch of macrophages from pro-inflammatory to
noninflammatory and promote the resolution of in-
flammation.5,9,10

Among them, peroxisome proliferator-activated
receptors (PPARs) may help to resolve inflamma-
tion by transrepression of pro-inflammatory genes
and activation of anti-inflammatory genes expres-
sion in Mo/Mp and other cells.11 Importantly, local
administration of PPARc agonists to wounds of dia-
betic mice has been shown to promote a noninflam-
matory Mp phenotype and improve wound healing,
suggesting a promising approach to downregu-
late inflammation and improve healing in chro-
nic wounds.12

CLINICAL PROBLEM ADDRESSED

Common PPARc agonists such as thiazolidine-
diones (TZDs) are used to treat insulin resistance
associated with diabetes, and while they induce a
pleiotropic anti-inflammatory effect, they have
important adverse effects, including weight gain,
bone loss, and cardiovascular events,13,14 encour-

aging the search for new TZDs with preserved ef-
ficacy and reduced side effects. GQ-11 is a new
thiazolidine compound, exhibiting partial/dual
PPARa/c agonism with classical antidiabetic effects
of TZDs, improves lipid profile and reduces chronic
inflammation associated with obesity in mice with
reduced side effects.15 Therefore, the aim of this
study was to determine whether GQ-11 reduces in-
flammation and improves wound healing in diabetic
mice in basic research, providing better under-
standing of underlying mechanisms, improving
diabetic wound healing clinical trials and pur-
posing a new approach to diabetic wound healing
treatment to prevent its complications such as
amputations.

MATERIALS AND METHODS
GQ-11 synthesis

GQ-11 [(Z)-5-((1H-indol-3-yl)methylene)-3-(4-
methylbenzyl)thiazolidine-2,4-dione] was synthe-
sized as previously described,15 in the Laboratory
of Drug Design and Synthesis of the Federal
University of Pernambuco (Recife, Pernambuco,
Brazil).

Animals and treatment
Male homozygous C57BL/6J and BKS.Cg-Dock7m

+/+ Leprdb/J (db/db) mice were purchased from
Jackson Laboratory (Bar Harbor, ME) and main-
tained in the animal facility at College of Medicine
Research Building—University of Illinois at Chicago.
The study protocols were approved by the Animal
Care Committee of University of Illinois at Chicago
(No. 15-180) and followed the rules of the Guide for
the Care and the Use of Laboratory Animals, pub-
lished by the U.S. National Institutes of Health
(NIH).16 Mice were maintained in plastic cages at
22�C, 12 h light–dark cycle, and given free access to
food and water during all the experiments. Sample
size calculation was based on evidence from previous
preclinical studies for testing TZDs antidiabetic ef-
fects.15,17,18

At 10 weeks of age, animals were anesthetized
with isoflurane (3%), the skin shaved and cleaned
with 70% alcohol, and four full thickness wounds
were created on the dorsum using 8 mm biopsy
punch. On day 3 postinjury, after initial inflamma-
tory response was allowed to proceed normally, an-
imals were randomly allocated into three treatment
groups (n = 6/group): vehicle (F-127� Pluronic Gel,
Sigma-Aldrich, Cat No. P2443, 25% in phosphate-
buffered saline [PBS], 0.1% dimethyl sulfoxide
[DMSO]), pioglitazone (Sigma-Aldrich, Cat No.
E6910, powder, vehicle diluted, 2 mM), or GQ-11
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(powder, vehicle diluted, 2 mM). For each group,
50lL of drug or vehicle gel was applied topically with
a pipette on the wound surface. For C57BL/6J mice,
treatment was performed daily for 4 days and for db/
db mice, treatment was performed daily for 7 days. To
ensure the gel stayed on the wound and moist wound
healing, Tegaderm� film was applied over the wounds

and changed daily. As a control for gene expression
evaluation, a separate group with three C57BL/6J
mice was submitted to the same wounding proce-
dures. These control mice were euthanized and
wounds harvested for analysis on day 3 postsurgery.

For all experimental mice, wound closure was
assessed by digital images taken daily at a distance

Figure 1. GQ-11 increases anti-inflammatory cytokine expression and decreases pro-inflammatory cytokine expression in BMDM. (A) Fold change of Il-1b
and Tnf-a after challenge with LPS. (B) Fold change of Il-10, Arg-1, and Tgf-b after LPS challenge. (C) Fold change of Il-1b and Tnf-a after IL-4 challenge. (D)

Fold change of Il-10, Arg-1 and Tgf-b after IL-4 challenge. BMDM were pretreated for 24 h with vehicle (DMSO 0.01%), pioglitazone (PIO 10 lM), or GQ-11
(10 lM) and challenged with LPS (100 ng/mL) or IL-4 (20 ng/mL). mRNA expression of BMDM was quantified by qPCR. Negative controls [CTRL (-)] are
represented by nontreated and nonchallenged cells. Positive controls [CTRL (+)] are represented by nontreated but challenged cells. Data are expressed as the
mean – SD of biological triplicates. Statistical analyses were performed using ANOVA/Tukey’s multiple comparison tests. *p < 0.05. ANOVA, analysis of
variance; BMDM, bone marrow-derived macrophages; DMSO, dimethyl sulfoxide; IL, interleukin; LPS, lipopolysaccharide; mRNA, messenger RNA; qPCR,
quantitative PCR; SD, standard deviation; TGF, transforming growth factor; TNF, tumor necrosis factor.
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of 10 cm from the lesions and a scale was placed in
the field of view to calibrate the images. At the end of
the treatment period (7 days for wild type, 10 days
for db/db), animals were euthanized through cervi-
cal dislocation under isoflurane anesthesia (3%).
Wounds were harvested and prepared for messenger
RNA (mRNA) analysis or histological analysis.

Histology and hematoxylin-eosin/Trichrome
staining

Samples used for histology were fixed in 4%
paraformaldehyde (4�C) for 4 h and then immersed
in 15% sucrose for 48 h and in 30% sucrose for 24 h
(all at 4�C). After sucrose protection, wounds were
embedded in Optimum Cutting Temperature me-
dium (Thermo Fisher Scientific, Cat No. 2373571)
on dental wax to prevent folding, and frozen in 2-
methylbutane cooled with liquid nitrogen. Samples
were stored at -80�C until sectioning.

Frozen wounds were sectioned in a cryostat (Leica
Biosystems). Both chamber and specimen head
temperatures were set at -32�C. Sections (10 lm)
were collected on Superfrost Plus microscope slides
(Thermo Fisher Scientific, Cat No. 4951PLUS4) and
stored at -20�C. Each wound was sectioned from one
edge through the center of the wound, and sections
showing the largest wound diameter were deemed
to represent the center of the wound and used for
further analysis. Hematoxylin-eosin (HE) and Tri-
chrome staining were performed according to our
standard protocol.5,19

Immunohistochemistry
For Mac-3 staining, slides were defrosted for

30 min, washed in PBS for 5 min then immersed in
citrate buffer (pH = 6), warmed in a microwave for
5 min, and cooled for 25 min at room temperature.
Sections were then marked with PAP pen, washed
with PBS (twice, 2 min each), glycine (three times,
2 min each), and PBS again (twice, 2 min each).
Next, sections were incubated in hydrogen peroxide
(0.3%, 5 min), washed with PBS (twice, 2 min each),
and blocked with PBS-bovine serum albumin solu-
tion (0.2%, 30 min). After blocking, sections were
incubated with primary antibody against Mac-3
(2 h, room temperature—Biolegend, Inc., Cat No.
108501, dilution 1:50), washed with PBS (three
times, 2 min each), incubated with secondary anti-
body (30 min, at room temperature—Invitrogen,
Cat No. 11481782, 1:200 dilution), and washed
again with PBS (once, 30 min, room temperature).
Then, sections were incubated with horseradish
peroxidase (30 min, at room temperature), washed
with PBS (once, 10 min, room temperature), and
developed with DAB Kit (Vector Labs, Cat No.
SK4100) for 3 min, under microscope observation.

Sections were then washed with PBS for 2 min and
counterstained with QS Hematoxylin (Vector Labs,
Cat No. H3404,) for 5 s. A final wash in distilled
water was then performed before mounting sam-
ples in Vectashield� (Vector Labs, Cat No. H1000).

Image analysis for wound measurements
Images of the wounds surface were analyzed using

a Java-based image processing software (ImageJ,
NIH). The percentage of wound closure was calcu-
lated (% wound closure = [100 · (wound size ‘‘post-
surgery’’ – wound size ‘‘after treatment period’’)]/
wound size ‘‘postsurgery’’). Histology images were
acquired using a Nikon Instruments 80i microscope
with a 2 · /0.06 objective and a DS-QI1 digital cam-
era, and were analyzed using the NIS-Elements�

Advanced (Nikon Corporation) software. Data were
processed on Excel (Microsoft) and plotted on
GraphPad Prism for graphs and statistics. For his-
tology analysis, the percentage of re-epithelization
[(distance traversed by epithelium over wound from
wound edge/distance between wound edges) · 100]
was calculated for two sections per wound and was
averaged over sections to provide a representative
value for each wound. Average granulation thickness
was measured in the same sections by dividing the
wound bed area by wound length. In the slides
stained with Trichrome, the percentage of blue stain
was measured in granulation tissue area using NIS-
Elements Advanced (Nikon Corporation) software.

Cell culture
Bone marrow-derived macrophages (BMDM)

were isolated and differentiated as previously de-
scribed.20 In brief, femurs were harvested from
C57Bl/6J male mice, bone marrow was flushed, and
monocytes were seeded in 15 cm dishes and differ-
entiated with macrophage colony-stimulating fac-
tor (10 ng/mL) added to Roswell Park Memorial
Institute Medium high glucose (10% fetal bovine
serum, 100 U/mL penicillin, 100 lg/mL streptomy-
cin), for 7 days at 37�C, 5% carbon dioxide.

After differentiation, 6 · 104 cells were seeded in
24-well plates and after allowing 12 h for attachment,
cells were treated with vehicle (DMSO, Sigma-
Aldrich, Cat No. 276855, 0.01%), 10lM pioglitazone
(Sigma-Aldrich, Cat No. E6910), or 10lM GQ-11.
After 24 h treatment, cells were challenged with
100 ng/mL lipopolysaccharide (LPS) (Sigma-Aldrich,
Cat No. L2630) or 20 ng/mL IL-4 (Sigma-Aldrich, Cat
No. I1020). Cells and medium were collected in the
intervals of 3, 6, 12, and 24 h after challenge.

Cytokine assay
Levels of cytokines/chemokines secreted by

BMDM were measured in cell culture medium by
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cytometric bead array (CBA) Mouse Inflammation
Kit (BD Biosciences, Cat No.552364). Levels of
IL-6, IL-10, monocyte chemoattractant protein-1
(MCP-1), and TNF-a were measured following the
manufacturer instructions.

Quantitative PCR analysis
mRNA was isolated from wounds and from

BMDM using TRIzol Reagent (Invitrogen, Cat No.
15596026). One microgram of RNA was reverse-
transcribed into complementary DNA (cDNA) using
the high-capacity cDNA SuperScript Vilo� Kit, ac-
cording to the manufacturer’s instructions (Thermo
Fisher Scientific, Cat No. 11706050). Quantitative
PCR (qPCR) was performed in an ABI 7500 Fast
Real-Time PCR using SYBR green master mix
(Thermo Fisher Scientific, Cat No. 4385610)
and primers for Arg-Il-6, Il-10, Tgf-b, Tnf-a, Il-1b,
Vegf, PPARg, PPARa (primer sequences available
in Supplementary Table S1; Supplementary Data
available online at www.libertpub.com/wound). Ex-
pression levelsof eachtarget genewerenormalized to
Rpl-4 and mRNA relative expression as internal ef-
ficiency controls. The mRNA fold change was calcu-
lated using the 2(-Delta Delta C(t)) method,21 and
values expressed as fold increases relative to the
control group.

Statistical analyses
Statistical analyses were performed using

GraphPad Prism software, version 5.0. One-way
analysis of variance followed by Tukey’s test was
used to calculate statistical significance as appro-
priate. All data in this study are expressed as the
mean – standard deviation. Values of p < 0.05 were
considered significant.

RESULTS
GQ-11 decreases expression and release
of pro-inflammatory cytokines and induces
expression of anti-inflammatory cytokines
and growth factors in BMDM

We first sought to determine whether pretreat-
ment of cultured macrophages with pioglitazone
or GQ-11 altered responses to either LPS or IL-4.
When cells were challenged with LPS, pretreat-
ment with pioglitazone and GQ-11 blunted induc-
tion of the pro-inflammatory cytokines Il-1b and
Tnf-a (Fig. 1A). Importantly, both pioglitazone and
GQ-11 upregulated the expression of Il-10, Arg-1
and Tgf-b in BMDM challenged by LPS, indicating
that even in the presence of a strong inflammatory
stimulus these drugs can maintain a macrophage
anti-inflammatory phenotype (Fig. 1B). Accord-
ingly, pretreatment with pioglitazone and GQ-11

did not alter the expression of pro-inflammatory
cytokines when BMDM were challenged with
IL-4 (Fig. 1C), but upregulated the expression of
Il-10, Arg-1, and Tgf-b, compatible with the anti-
inflammatory phenotype (Fig. 1D).

When measuring cytokine/chemokine protein
levels in cell culture medium, pretreatment with
pioglitazone or GQ-11 blunted the release of the pro-
inflammatory cytokines IL-6, MCP-1, and TNF-a,
after thechallengewith LPS (Fig.2A).Although pro-
inflammatory cytokine release was below detectable
levels in the medium of cells challenged with IL-4,
pretreatment with pioglitazone or GQ-11 was able to
increase IL-10 release, after challenge with either
LPS or IL-4 (Fig. 2B, C).

GQ-11 increases expression
of anti-inflammatory cytokines and growth
factors in wounds of both nondiabetic
and diabetic mice

To determine whether GQ-11 can ameliorate
inflammation in vivo, we applied GQ-11 topically to
wounds in nondiabetic and diabetic mice. We first
assessed the effect of GQ-11 on expression of
PPARs in wound tissue, and found that GQ-11
treatment upregulated the expression of Ppar-a
and Ppar-g, and pioglitazone upregulated expres-
sion of Ppar-g, in wounds of both nondiabetic and
diabetic mice compared with vehicle control treat-
ment (Fig. 3A), confirming targeting of the PPAR
pathway by these drugs.

In addition, treatment with GQ-11 or pioglitazone
upregulated the expression of anti-inflammatory
cytokines and growth factors in wounds, including
Il-10, Tgf-b, and Vegf in both nondiabetic and dia-
betic mice compared with vehicle controls (Fig. 3B),
indicating that GQ-11 can induce anti-inflammatory
cytokines and growth factors associated with tissue
repair. Whereas there was no effect of either GQ-11
or pioglitazone treatment on expression of pro-
inflammatory cytokines in wounds of nondiabetic
mice compared with controls, GQ-11 downregulated
Il-6 in wounds of diabetic mice compared with con-
trol or pioglitazone groups (Fig. 3C). The lack of ef-
fect of GQ-11 on Il-1b and Tnf-a expression may be
due to the time point examined; the expression of
these cytokines was significantly lower in all
treatment groups at the time point examined
compared with the positive controls collected on
day 3 postinjury.

GQ-11 accelerates wound closure
in diabetic mice

To determine whether GQ-11-induced alter-
ations in gene expression were associated with
improved wound healing, we first assessed the
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effects of GQ-11 on wound closure using external
measurements. In nondiabetic mice, there was no
effect of GQ-11 on wound closure (Fig. 4A). How-
ever, in diabetic db/db mice, we observed a sub-
stantial increase of about 30% in wound closure on
day 10 postwounding in animals treated with GQ-
11, compared with pioglitazone or control groups
(Fig. 4B; Supplementary Table S2). Interestingly,
the improvement was only apparent at the later
stage of wound closure, indicating an effect during
the resolution of inflammation.

Wound healing was also assessed through his-
tological analysis. HE staining of wound cryosec-
tions allowed us to measure granulation tissue
thickness and re-epithelization. Again, no differ-
ence in either granulation tissue thickness or re-
epithelization was observed between treatment
groups in nondiabetic mice (Fig. 5A). In db/db mice,
treatment with GQ-11 significantly increased
re-epithelization to 83% compared with 45% for
controls and 59% for pioglitazone treatment, con-
sistent with the wound closure data. GQ-11 also
induced a trend of an increase in granulation tissue

thickness, but this did not reach statistical signif-
icance (Fig. 5B; Supplementary Table S2).

GQ-11 increases collagen deposition
in diabetic mice

In addition to measuring re-epithelization in
HE-stained cryosections, Trichrome staining al-
lowed collagen deposition in wounds to be assessed
in both nondiabetic and diabetic mice. Treatment
of wounds in nondiabetic mice did not alter colla-
gen deposition compared with controls (Fig. 5C). In
contrast, GQ-11 treatment of wounds in diabetic
mice increased collagen deposition by about 50%,
compared with control and pioglitazone groups
(Fig. 5D; Supplementary Table S2).

GQ-11 may decrease macrophage infiltration
in wounds of db/db mice

Qualitatively, we observed that in wounds of
both nondiabetic and diabetic mice, those treated
with GQ-11 showed less macrophage infiltration
compared with pioglitazone and vehicle in nondi-
abetic mice (Fig. 6A), and compared with vehicle in
diabetic mice (Fig. 6B). These findings indicate that

Figure 2. GQ-11 decreases pro-inflammatory cytokine release and increases anti-inflammatory cytokine release by BMDM. (A) Concentrations of IL-6, MCP-
1, and TNF-a protein of BMDM supernatant. (B) IL-10 concentration from supernatant of BMDM pretreated for 24 h with vehicle (DMSO 0.01%), pioglitazone
(PIO 10 lM), or GQ-11 (10 lM) and challenged with LPS (100 ng/mL). (C) IL-10 concentration in supernatant of BMDM pretreated for 24 h with vehicle (DMSO
0.01%), pioglitazone (PIO 10 lM), or GQ-11 (10 lM) and challenged with IL-4 (20 ng/mL). Total protein of BMDM supernatant was accessed by flow cytometry,
with a CBA. Negative controls [CTRL (-)] are represented by nontreated and nonchallenged cells. Positive controls [CTRL (+)] are represented by nontreated
but challenged cells. Data are expressed as the mean – SD of biological triplicates. Statistical analyses were performed using ANOVA/Tukey’s multiple
comparison tests. *p < 0.05. CBA, cytometric bead array; MCP-1, monocyte chemoattractant protein-1.
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Figure 3. GQ-11 increases the expression of anti-inflammatory cytokines and decreases the expression of pro-inflammatory cytokines in wounds of db/db
mice. (A) Fold change of Ppar-a and Ppar-g in wounds of nondiabetic and diabetic db/db mice. (B) Fold change of Il-10, Tgf-b, and Vegf in nondiabetic and db/
db mice. (C) Fold change of Il-6, Tnf-a, and Il-1b in nondiabetic and db/db mice. mRNA expression was quantified by qPCR. Data are expressed as the
mean – SD of six mice per group. Statistical analyses were performed using ANOVA/Tukey’s multiple comparison tests. *p < 0.05.
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GQ-11 may induce resolution of inflammation in
diabetic wounds.

DISCUSSION

Our previous studies indicated beneficial prop-
erties of a novel PPAR agonist (GQ-11) that may
represent a promising candidate for the therapy of
diabetes complications.15 In this study, our major
findings are that GQ-11 induces a pro-healing
phenotype both in cultured macrophages and when
applied topically to wounds of diabetic mice, which
resulted in accelerated re-epithelization and col-
lagen deposition.

GQ-11 is a dual, partial PPAR-c/a agonist, and
may influence wound healing through effects on in-
flammation. PPAR-c/a can affect inflammation direct
or indirectly.22 First, PPAR-c might modulate the
expression/activity of G protein-coupled receptors
(GPCRs) and transcriptional regulation of GPCRs
kinase-2 activity, inducing anti-inflammatory re-

sponses.23 Second, PPAR-a, whose activation stimu-
lates the expression of genes encoding cytochrome
P450 and b-oxidation enzymes, contributes to reso-
lution of inflammation, through leukotriene B4 ac-
tivity limitation.24 Importantly, the inhibition of
PPAR-c activity is related to sustained production of
IL-1b, whereas activation of PPAR-c induces a pro-
tective anti-inflammatory effect.25 Interestingly, it
has been shown that the inflammation repression
by PPAR-c is dependent on PPAR-a, through IjBa
induction, both in vitro and in vivo.26 Thus, a dual/
partial PPAR-c/a agonist may represent a promis-
ing approach to dampen inflammation and im-
prove wound healing, particularly in the setting of
diabetes. In this study, GQ-11 increased anti-
inflammatory and pro-healing factors expression,
including IL-10, Arg-1, Tgf-b, and Vegf, both in cul-
tured macrophages and in vivo in wounds (Figs. 1–3).
GQ-11 also downregulated pro-inflammatory cyto-
kines Il-1b and Tnf-a expression in strongly pro-
inflammatory cultured macrophages, but did not

Figure 4. GQ-11 improves wound closure in db/db mice. (A) Representative lesions at scapula of nondiabetic mice (postsurgery and after 7 days), decrease
of wound area along 7 days postsurgery and total wound closure. (B) Representative lesions at scapula of diabetic db/db mice (postsurgery and after 10 days),
decrease of wound area along 10 days postsurgery and total wound closure. Mice were submitted to surgical procedure to induce scapula lesions and were
treated at the 3rd day postsurgery with vehicle (CTRL—Pluronic Gel�), pioglitazone (PIO—2 mM), or GQ-11 (2 mM) for 4 days (nondiabetic mice) and 7 days (db/
db mice). Positive controls [CTRL (+)] are represented by wounds of nondiabetic mice at the 3rd day postsurgery without treatment. Data are expressed as the
mean – SD of six mice per group. Statistical analyses were performed using ANOVA/Tukey’s multiple comparison tests. *p < 0.05.
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affect expression of these cytokines in less in-
flammatory macrophages and during later stages
of wound healing. These findings corroborate
previous studies reporting anti-inflammatory ef-
fects of PPAR-c agonists.11,27,28

In the context of normal wound healing, pro-
inflammatory cytokines likely play important roles
in the early inflammatory stage of wound heal-
ing.29 We reported that loss of the NLRP3 in-
flammasome resulted in reduced IL-1b in wounds
of nondiabetic mice and delayed healing.30 In vivo
studies report that macrophages are the main
producers of IL-1b in wounds, both in nondiabetic
and diabetic animals, especially in the early in-
flammatory stage, when macrophages are polarized
to a pro-inflammatory phenotype.9,27,31 This pro-
inflammatory phenotype is also associated with
macrophage phagocytosis of apoptotic cells,32 which
in turn is thought to induce transition to a nonin-
flammatory healing-associated phenotype.8,33 The
transition from pro-inflammatory to noninflamma-
tory macrophage phenotypes is also important for
normal wound healing, where macrophages with

the latter phenotype release growth factors impor-
tant for the proliferative and remodeling stages of
wound healing.34 One such growth factor, TGF-b
binds to TGF-b receptor I and induces phosphory-
lation of Smad4 resulting in further downregulation
of pro-inflammatory genes and induction of fibro-
blast migration and proliferation.35 In addition, the
binding of Smad4 transcription factor induces the
Il-10 gene promoter, stimulating further Il-10 ex-
pression in macrophages.36 Thus, induction of such
a phenotype switch in wounds of diabetic mice by
GQ-11 may help to restore normal wound healing.

In the diabetic environment, a number of factors
may promote a chronic inflammatory response that
impairs wound healing. The persistent hypergly-
cemia observed in diabetes causes a set of glycation
reactions resulting in generation of advanced gly-
cation end-products (AGEs).37 In turn, AGEs have
direct and indirect actions in many cell types, in-
cluding the induction of oxidative stress through
the AGE Receptor (RAGE). Sustained activity of
a reactive oxygen species-mediated pathway—
induced either by RAGEs activation and/or im-

Figure 6. GQ-11 decreases macrophage infiltration in wounds of db/db mice. (A) Representative sections of Mac-3 staining in wounds of nondiabetic mice.
(B) Representative sections of Mac-3 staining in wounds of db/db mice. Mice were submitted to surgical procedure to induce scapula lesion and were treated
at the 3rd day postsurgery with vehicle (CTRL—Pluronic Gel), pioglitazone (PIO—2 mM), or GQ-11 (2 mM) for 4 days (nondiabetic mice) or 7 days (db/db mice).
Positive controls [CTRL (+)] are represented by wounds of db/+ mice at the 3rd day postsurgery without treatment. Histological sections were collected with
frozen samples with cryostat and staining was performed by immunohistochemistry with specific antibodies against Mac-3 (1:50). Magnification 10 ·.
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paired phagocytosis of apoptotic cells—
may activate the NLRP3 inflammasome/
IL-1b pathway inducing a pro-
inflammatory positive feedback loop and
contributing to the persistent inflamma-
tory response related to impaired heal-
ing.9,10 In addition, the activation of
many factors, such as RAGE and inflam-
mation mediators as MCP-1, contributes
to upregulation of nuclear factor-jB and
its target genes, including TNF-a,38 which may also
be involved in impaired wound healing. TNF-a can
induce cell cycle arrest and apoptosis through fork-
head box protein O1-dependent process39 resulting
in increased expression of pro-inflammatory cyto-
kines, setting up another inflammatory positive
feedback loop that impairs healing. GQ-11 may help
to break these pro-inflammatory positive feedback
loops and induce resolution of inflammation in dia-
betic wounds. When compared with pioglitazone,
the downregulation of Il-6 and Tnf-a observed in
wounds treated with GQ-11 might also be related to
decreased macrophage infiltration in the same
groups, since the animals treated with pioglitazone
did not show the same effect even upregulating Il-10
and Vegf.

Previous studies by Sakai et al.40 showed some
different results when analyzing the effects of
pioglitazone on wound healing. When comparing
both studies, we can observe a different pattern in
wound closure with greater re-epithelization on the
first 7 days in Sakai et al.’s study,40 whereas our
model showed greater re-epithelization from 7th
to 10th days. This difference could be related to
distinct drug solubilization and local delivery on
wounds as different vehicles were used in both
studies. For sure, new formulations to improve
drug delivery and efficacy are necessary for the
future development of a new wound healing ther-
apeutic agent for clinical use, especially with new
structures, such as GQ-11.

INNOVATION

Based on this, our findings suggest that wounds
in diabetic mice treated with GQ-11 were in later
stages of healing compared with controls, exhibiting
greater re-epithelization and increased collagen
deposition, likely transitioning into remodeling
stage of tissue repair. The effects on healing can be
attributed to the partial PPAR-c/a agonism of GQ-
11, which promoted cytokines modulation, leading
to healing improvement. The search for a new PPAR
agonist that shares classic TZDs therapeutic effects
with less adverse effects is a key to a new approach

in diabetic wound healing clinical trials to prevent
its complications, such as amputations.
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KEY FINDINGS

� Greater re-epithelization when compared with pioglitazone and control
groups.

� Increased collagen deposition when compared with pioglitazone and
control groups.

� Inflammation modulation when compared with pioglitazone and control
groups.
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Abstract 21 

 22 

Chronic wounds associated with diabetes show an important health and social concern, 23 

becoming a topic of interest worldwide. Recent advances in human-based in vitro models 24 

represent new tools for signaling investigations and drug screening to new therapeutic 25 

approaches. Local administration of a new dual PPAR agonist (GQ-11) showed to 26 

promote anti-inflammatory effects, ECM deposition and re-epithelization induction in 27 

diabetic mice, suggesting an interesting approach to improve chronic wounds management 28 

and induce healing. In this study we proposed to evaluate GQ-11 effects in Reconstructed 29 

Human Skin (RHE), in order to prioritize the use of a relevant human model. Our results 30 

showed that GQ-11 modulated proliferation (Ki-67 and Ck-14), differentiation (-SMA) 31 

and cell adhesion (Desmoglein-1) markers, confirming the promising and key approach to 32 

prevent diabetic wound complications, such as amputations. 33 

 34 
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 35 

 36 

Introduction 37 

 38 

 39 

Diabetes Mellitus (DM) – insulin-dependent (type 1) or independent (type 2) – is a chronic 40 

non-communicable disease (NCD) with 8.8% prevalence among adults over 18 years of age 41 

worldwide. As widely reported, chronic wounds associated with DM affects up to 25% of diabetic 42 

patients with 14-24% incidence of amputation (1, 2), representing an important health problem. 43 

Complications associated to diabetes are strictly related to persistent hyperglycemia (3, 4), 44 

contributing to a wide range of diabetic wound characteristics such as persistent inflammatory 45 

response with increased pro-inflammatory cytokine release and impaired growth factors and 46 

angiogenesis as well as extracellular matrix (ECM) depletion (5, 6). 47 

It is reported that reactions of non-enzymatic glycation and glucose autoxidation promoted 48 

in persistent hyperglycemia lead to Reactive Oxygen Species (ROS) and Advanced Glycation 49 

End-Products (AGEs) formation. The AGEs constitute a variety of substances composed between 50 

reducing sugars or oxidized lipids with lysine and arginine residues, resulting in structural and 51 

functional alterations in important receptors (7). These alterations will contribute to many DM 52 

complications, such as cardiopathies, nephropathies, retinopathies and neuropathies pathogenesis 53 

(8, 9). Nevertheless, the accumulation of AGEs has been considered one of the factors responsible 54 

for healing impairment through loss of elasticity, affected cells growth, differentiation and 55 

motility as well as cytokines response, enzymatic activity (as metalloproteinases) and hemostasis 56 

(10). 57 

Recent advances in human-based in vitro models represent new tools for drug screening 58 

and research to new therapeutic agents. The complexity of this strategy is relevant when 59 

considering to integrate immune cells and microfluidic platforms to study cell-type interactions 60 

and immune responses. Recently, our group reported the characterization of in vitro 61 

Reconstructed Human Epidermis (RHE) based of glycated collagen showing flattened epidermal 62 
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layers, reduced ECM deposition on dermis, altered ECM fibers pattern, poor keratinocytes 63 

stratification and differentiation as well as fibroblasts morphology alteration (11), representing an 64 

important new tool for research in aging and diabetic skin- related disturbances and diseases. 65 

Thiazolidinediones (TZDs), a class of PPARγ agonists, are commonly used to treat insulin 66 

resistance and despite of hypoglycemic and pleiotropic anti-inflammatory properties, prolonged 67 

use shows important adverse effects – such as weight gain, bone loss and cardiovascular events – 68 

encouraging the search for new TZDs with better efficacy and reduced side effects (12-15). GQ-69 

11 is a new thiazolidine compound with dual PPARα/γ agonism with classical TZD 70 

hypoglycemic effect besides lipid profile improve (14), reduce in obesity-induced metabolic 71 

alterations (14), macrophages modulation, re-epithelization promotion as well as collagen 72 

deposition increase in murine model of diabetic wound healing (16). 73 

Thus, local administration of GQ-11 in wounds of diabetic mice showed to promote anti-74 

inflammatory effects, ECM deposition and re-epithelization recovery, suggesting a promising 75 

approach to improve healing in diabetic wounds (16, 17). 76 

In order to prioritize the complexity of human epidermis and the dissimilarity between 77 

human and rodent models, we here propose to use RHE based of glycated collagen as a tool to 78 

observe GQ-11 effects in human cells proliferation, differentiation, as well as cell adhesion, 79 

aiming to better understand its general effects in a relevant human model.80 
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 81 

Results  82 

 83 

GQ-11 induces cell migration and proliferation 84 

The treatment with GQ-11 in incisions of RHE based on glycated collagen increased 85 

keratinocytes proliferation through the incision, as observed in Hematoxylin-Eosin staining 86 

(Fig.1A). Cell migration induce by GQ-11 was confirmed with HUVECs when compared to the 87 

control and Pioglitazone treatment (Fig.1B). 88 

The treatment with Pioglitazone - the full PPAR agonist - showed to upregulate Ppar, 89 

while GQ-11 upregulated both Ppar and Ppar in RHE, when comparing to negative or positive 90 

controls (Fig.1C).  91 

In order to investigate the mechanistic behind increased keratinocytes proliferation 92 

induced by the treatment, expression of Metalloproteinase-9 (MMP-9) and Forkhead box O1 93 

(FOXO1) were quantified. Consistently, incisions of RHE treated with GQ-11 showed both 94 

Mmp-9 and Foxo-1 downregulation when compared to negative and positive controls (Fig.1C). 95 

Pioglitazone treatment also downregulated Mmp-9 expression. 96 

 97 

GQ-11 induces epidermis keratinocytes proliferation 98 

In order to confirm proliferation grade of RHE keratinocytes treated with PPAR agonists, 99 

Cytokeratin 14 (Ck-14) and Ki-67 markers were labeled in histology samples. Both Pioglitazone 100 

and GQ-11 showed Ki-67 accumulation in basal epidermis, as well as Ck-14 throughout all 101 

epidermis (Fig.2A).  102 

Total Ki-67 and Ck-14 protein were upregulated and increased in RHE treated with either 103 

GQ-11 or Pioglitazone when comparing to controls (Fig.2B/C). 104 

 105 
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GQ-11 induces fibroblasts and keratinocytes differentiation 106 

Immunohistochemistry in RHE samples also indicated presence of alpha-Smooth Muscle 107 

Actin (-SMA) in dermis fibroblasts (Fig.3A). Despite of observation in histology samples, both 108 

total protein and expression did not differ from controls (Fig.3B/C). 109 

 110 

GQ-11 improves cell adhesion in basal epidermis 111 

To assess cell adhesion modulation in histology samples, it was evaluated the presence of 112 

Desmonglein-1 though immunohistochemistry. It was possible to observe presence of the protein 113 

only in basal epidermis of RHE treated with GQ-11 (Fig.4A). In addition, the treatment showed to 114 

upregulate the expression and also total protein of the marker when comparing to either 115 

Pioglitazone or controls, indicating cell adhesion improve (Fig.4B/C). 116 

 117 

Discussion  118 

 119 

Epidermis is the most important barrier against external environment and after injury its 120 

barrier function recovery is important to prevent chronic wounds and possible infections. Wound 121 

healing response is a wide process involving many cell types and is commonly described in stages 122 

of hemostasis, early/late inflammation, proliferation and remodeling. Cytokines and growth 123 

factors play synchronized and complimentary roles to regulate these stages, thus, any alterations 124 

in these factors caused by systemic conditions, such as diabetes/hyperglycemia, may impair 125 

healing process (18). Migration and proliferation of epidermal keratinocytes in the wound site is a 126 

key aspect of re-epithelization and is in part regulated by Matrix Metalloproteinases 9 (MMP9) 127 

and Forkhead box O1 (FOXO1) signaling (19, 20). Keratinocytes migration is facilitated through 128 

ECM degradation by MMPs, but MMPs exacerbated activity leads to wound healing delay, as 129 

observed in diabetic wounds (19, 21). At the same time, it was demonstrated that FOXO1 130 

promotes wound healing through TGF-β upregulation in normal skin wounds, but has the 131 
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opposite effect in diabetic wounds (22, 23). Nevertheless, the inhibition of MMP9 in diabetes 132 

rescues keratinocytes migration in a FOXO1-dependent manner due to its increased binding to 133 

MMP9 promoter and upregulation (20). 134 

Other recent study also showed the relation of PPARγ and FOXO1 downregulation in 135 

diabetes and PPARα in FOXO1 inactivation (24). Consistently, our findings showed that 136 

treatment with GQ-11 - a dual PPARa/g agonist - and Pioglitazone - a classic full PPARy agonist 137 

- induced keratinocytes proliferation besides PPARy upregulation and MMP9/FOXO1 axis 138 

downregulation (Fig.1). The dual agonism of GQ-11 and observed PPARα upregulation might 139 

also be related to the stronger FOXO1 inhibition observed in keratinocytes when compared to 140 

Pioglitazone (Fig.1C). The dual agonist also showed to induce migration in endothelial cells 141 

(Fig.1B), suggesting the strong relation between the treatment and cell migration induce. 142 

The proliferative grade of skin samples treated both with GQ-11 and Pioglitazone are also 143 

observed with Ck-14 expression (Fig 2A). While negative control exhibits a proliferative pattern 144 

in basal layers, glycated skin shows proliferative keratinocytes from basal to spinous layers, even 145 

when treated with PPAR agonists. In contrast, the expression of Ki-67 shows that the treatments 146 

induced proliferation of keratinocytes of basal layer (Fig. 2). 147 

In wound healing process, fibroblasts differentiation to myofibroblasts is a key role in 148 

proliferation to remodeling stages transition. Myofibroblasts express α-SMA, under regulation of 149 

TGF-β, participating in ECM synthesis and force generation, resulting in ECM reorganization and 150 

wound contraction. Moreover, myofibroblasts profile showed to stimulate a more activated 151 

epidermis, which in turn, upregulates TGF-β, feeding a cycle for myofibroblasts differentiation 152 

(25-28). In our results, we demonstrated that GQ-11 induced fibroblasts differentiation to 153 

myofibroblasts through α-SMA presence in dermis fibroblasts (Fig.3A). In fact, previously 154 

reports showed increased TGF-β and collagen deposition in wounds of diabetic mice treated with 155 

GQ-11 (15), what might indicate the GQ-11 role to the α-SMA mark found in human skin. 156 
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Besides cells proliferation and differentiation modulation, GQ-11 also showed to modulate 157 

cell-to-cell adhesion structures, as observed in Desmoglein-1 upregulation in dermis and 158 

epidermis junction (Fig.4). Desmogleins play a role in cell junction formation, maintaining the 159 

integrity of cell-to-cell structures. Several studies suggest that depleted Desmoglein-1 could 160 

aggravate inflammation in epidermis causing barrier defects and fragility (29-31). It was not 161 

observed Desmoglein-1 expression increase in glycated skin samples when compared to the 162 

negative control, suggesting that GQ-11 could be related to its upregulation. 163 

Altogether, previous studies showed GQ-11 modulation in macrophages polarization and 164 

cytokines profile (16), indicating anti-inflammatory effects and homeostasis induction in diabetic 165 

wound healing in mice. Here we demonstrate - considering both animals and human skin models - 166 

that GQ-11 role in impaired wound healing process might exert modulation in different cell types, 167 

such as macrophages, keratinocytes and fibroblasts probably attributed to its partial PPARα/γ 168 

agonism, regulating imbalanced growth factors and cytokines release. 169 

Finally, wound healing is a complex process involving several inter-related biological and 170 

molecular activities for achieving tissue regeneration and the biggest challenge is to prevent its 171 

complications and morbidities, such as amputations and in severe cases, mortality.  172 

Nowadays, chronic wounds show significant health, social and economic concerns on 173 

patients and society, becoming a topic of clinical interest worldwide. Improved management of 174 

wound healing is directly related to reduced risk of delayed healing and cost to health providers 175 

through hospital stays and nursing staff time spent with chronic wounds patients. 176 

We then conclude that diabetic wound healing management with PPAR agonists is a key 177 

new approach to prevent its complications. The search for safe TZDs with less adverse effects and 178 

the dual agonism attributed to GQ-11 showed important features for a potential element in 179 

diabetic wound management. Next challenges include new formulations and drug delivery 180 

improves, necessary to develop safe therapeutic agents for clinical purposes.  181 
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 182 

Materials and Methods 183 

 184 

 185 

Experimental Design 186 

 187 

The aim of this study was to reproduce RHE based on glycated collagen, performing 188 

incisions and applying different treatments to observe cell behavior in proliferation and 189 

differentiation aspects. Cells were donated from University of Sao Paulo Hospital (HU-USP), 190 

isolated and cultivated in separate lots. The study was conducted in triplicate and reproduced with 191 

two different lots of cells (n=3). 192 

 193 

GQ-11 synthesis 194 

GQ-11 [(Z)-5-((1H-indol-3-yl)methylene)-3-(4-methylbenzyl)thiazolidine-2,4-dione] 195 

was synthesized as previously described (14), in the Laboratory of Drug Design and Synthesis of 196 

the Federal University of Pernambuco (Recife, Pernambuco, Brazil). 197 

 198 

HUVECs culture and migration assay 199 

Human Umbilical Vein Endothelial Cells (HUVECs) were maintained in RPMI medium 200 

(Gibco, Life Technologies, Grand Carlsbad, CA). The cells were cultured at 37°C in an 201 

atmosphere at 5% CO2. Cells were seeded onto 50 mm imaging dishes and when in 100% 202 

confluence, a straight lesion was made in the center of the monolayer using a sterile 200 µL 203 

pipette tip, as previously described (32). The wells were subsequently washed twice with PBS to 204 

remove the dead cells and incubated with Vehicle (DMSO 0.01%, Sigma-Aldrich, St Louis, 205 

USA), Pioglitazone (2 mM, powder, DMSO diluted, Sigma-Aldrich, St Louis, USA) or GQ-11 206 

(2 mM, powder, DMSO diluted). The lesions were photographed using phase contrast 207 

microscopy on an inverted microscope (Nikon, Tokyo, Japan) after 24 hours of treatment. 208 

 209 
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 210 

Reconstructed human skin in glycated collagen matrix 211 

The reconstructed human skins were prepared in collaboration with Skin Lab of Clinical 212 

Analysis Department of University of Sao Paulo, according to previously described protocol (10).  213 

Briefly, normal human skin cells obtained from donated foreskin samples from HU-USP 214 

were isolated through cleaning, fragmentation and digestion with dispase II (Roche Life Sciences, 215 

Branford, USA), overnight at 4ºC. Dermis and epidermis were mechanically separated to 216 

keratinocytes and fibroblasts isolation. Keratinocytes were cultured in KGM Gold Bullet Kit 217 

medium (Lonza KBM, Walkersville, USA) and fibroblasts were cultured in DMEM (Gibco, Life 218 

Technologies, Grand Carlsbad, CA), supplemented with 10% fetal bovine serum and antibiotics. 219 

Cells were maintained in a humidified incubator at 37ºC, 5 - 7.5% CO2 and subcultured by 220 

treatment with 0.1% trypsin-EDTA when 80% confluency. Dermal compartment was prepared 221 

using commercial collagen glycated with sodium glyoxylate (Sigma-Aldrich, Sant Louis, MO) 222 

and sodium cyanoborohydride (Sigma-Aldrich, Sant Louis, MO) and human fibroblasts. After 223 

polymerization of collagen gel, human keratinocytes were seeded on the top of lattices and were 224 

kept submerged in an in-house prepared cultured medium for 24 hours. Subsequently, culture was 225 

raised and maintained at the air-liquid interface for 12 days to allow complete keratinocytes 226 

stratification and differentiation. Negative controls were cultured in non-glycated commercial 227 

collagen. 228 

 229 

Skin incision and GQ-11 treatment 230 

 231 

Incisions of reconstructed skins were induced after complete keratinocytes stratification 232 

and differentiation with a sterile 2 mm biopsy punch (Kolplast CI, Itupeva, SP, Brazil). Incisions 233 

were then treated with Vehicle (F-127® Pluronic Gel, Sigma-Aldrich, 25% in PBS, 0.1% 234 

DMSO), Pioglitazone (Sigma-Aldrich, powder, vehicle diluted 2 mM) or GQ-11 (powder, vehicle 235 
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diluted, 2 mM). For each group, 20 µL of gel was topically applied with a pipette on the surface 236 

and incubated for 24 hours. Negative controls were not treated. 237 

 238 

Hematoxylin-Eosin staining and immunohistochemistry 239 

After treatment period, skin samples were fixed in paraformaldehyde 4% for 1 hour, and 240 

dehydrated in increasing concentration of alcohols / xylol for paraffin inclusion in the 241 

Histopathology Unit ICB-USP. Paraffin sections (5 µm), were stained with hematoxylin-Eosin 242 

(HE). 243 

For immunohistochemistry, all paraffin sections were incubated at 55ºC for 20 minutes for 244 

deparaffinization and then rehydrated. Antigen recovery was performed by incubation in citrate 245 

buffer pH 6.0 for 5 minutes at 95ºC. Immunolabeling assay was carried out using mouse 246 

monoclonal antibodies anti-cytokeratin 14 (Abcam, Cambridge, UK), anti-Ki-67 (Dako Agilent 247 

#51161-2, Santa Clara, USA), desmoglein-1 (Abcam #ab12077, Cambridge, USA) and α-SMA 248 

(Sigma-Aldrich, St Louis, USA). 249 

A commercial kit with anti-mouse, -rabbit and -goat     immunoglobulin secondary 250 

antibodies (LSAB+System HRP, Dako Agilent, Carpinteria, CA, USA) was used according to 251 

manufacturer’s instructions and counterstained with hematoxylin. 252 

All images were obtained by optical microscopy analyzed by NS-Elements software 253 

(Nikon Instruments, Melville, NY, USA). 254 

 255 

Western Blotting 256 

 257 

Skin samples were homogenized with a bead tissuelyser (Qiagen, Hilder, Germany) in 258 

RIPA buffer (Thermo Scientific, Waltham, USA) containing phosphatase and protease inhibitor 259 

cocktails (Roche Life Sciences, Branford, USA). Western blots were probed with antibodies 260 

against Ki-67 (Abcam #ab92742, Cambridge, USA), Ck-14 (Abcam #ab7800 Cambridge, USA), 261 
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desmoglein-1 (Abcam #ab12077, Cambridge, USA), α-SMA (Sigma-Aldrich, St Louis, USA) and 262 

β-actin (Abcam #ab8226, Cambridge, USA). 263 

 264 

Quantitative PCR analysis 265 

mRNA was isolated from skin samples using TRIzol reagent (Invitrogen, Cat# 266 

15596026). 1 µg of RNA was reverse-transcribed into cDNA using the high-capacity cDNA 267 

SuperScript Vilo® kit, according to the manufacturer’s instructions (Thermo Scientific, Cat# 268 

11706050, Waltham, USA). qPCR was performed in an ABI 7500 Fast Real-Time PCR using 269 

SYBR green master mix (Thermo Scientific, Cat# 4385610) and primers for Mmp-9, Foxo1, Ki-270 

67, Ck-14, α-SMA and Desmoglein-1 (primer sequences available in Table 1). Expression levels 271 

of each target gene were normalized to β-actin and mRNA relative expression as internal 272 

efficiency controls. The mRNA fold change was calculated using the 2(-Delta Delta C(t)) 273 

method (33), and values expressed as fold increases relative to the negative control group. 274 

 275 

Statistical analyses 276 

Statistical analyses were performed using GraphPad Prism software, version 5.0. One- 277 

way analysis of variance (ANOVA) followed by Tukey’s test was used to calculate statistical 278 

significance as appropriate. All data in this study are expressed as the mean ± standard deviation 279 

(S.D.). Values of p < 0.05 were considered significant.  280 

 281 
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Figures and Tables 

 

 
 

Figure 1. GQ-11 induces cells migration and proliferation. Representative Reconstructed 

Human Epidermis (RHE) based on glycated collagen, incisioned with 2 mm biopsy punch treated 

with DMSO (CTRL (+)), GQ-11 or Pio (2 mM) for 24 h, fixed and stained with H&E – magnification 

4x (A). HUVECs were seeded and treated with DMSO (CTRL), Pio or GQ-11 (2 mM) after a 

straight lesion in the center of the plate wells – magnification 100x (B). Expression of Ppar, 

Ppar, Mmp-9 and Foxo-1 (C). mRNA was quantified by qPCR. Negative controls (CTRL (-)) are 

represented by RHE based on control collagen, and were used in ddct calculations with -actin as 

housekeeping gene (fold change). Data are expressed as the mean ± S.D.  n=3. Statistical 

analyses were performed using ANOVA/Tukey’s multiple comparison tests. **p < 0.01; ***p<0,001 

vs CTRL(+). 
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Figure 2. GQ-11 induces keratinocytes differentiation. Representative Reconstructed Human 

Epidermis (RHE) based on glycated collagen, incisioned with 2 mm biopsy punch treated with 

DMSO (CTRL (+)), GQ-11 or Pio (2 mM) for 24 h, fixed and and marked with Ki-67 and Ck-14 by 

immunohistochemistry – magnification 40x (A). Total Ki-67 and Ck-14 protein detected by Western 

Blot (B). Expression of Ki-67 and Ck-14 in RHE (C). mRNA was quantified by qPCR. Negative 

controls (CTRL (-)) are represented by RHE based on control collagen, and were used in ddct 

calculations with -actin as housekeeping gene (fold change). Data are expressed as the mean ± 

S.D.  n=3. Statistical analyses were performed using ANOVA/Tukey’s multiple comparison tests. 

**p < 0.01; ***p<0,001 vs CTRL(+). 
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Figure 3. GQ-11 induces keratinocytes and fibroblasts differentiation. Representative 

Reconstructed Human Epidermis (RHE) based on glycated collagen, incisioned with 2 mm biopsy 

punch treated with DMSO (CTRL (+)), GQ-11 or Pio (2 mM) for 24 h, fixed and and marked with 

alpha-SMA by immunohistochemistry – magnification 40x (A). Total alpha-SMA protein detected 

by Western Blot (B). Expression of -SMA in RHE (C) mRNA was quantified by qPCR. Negative 

controls (CTRL (-)) are represented by RHE based on control collagen, and were used in ddct 

calculations with -actin as housekeeping gene (fold change). Data are expressed as the mean ± 

S.D.  n=3. Statistical analyses were performed using ANOVA/Tukey’s multiple comparison tests. 

**p < 0.01; ***p<0,001 vs CTRL(+). 
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Figure 4. GQ-11 induces cell adhesion in basal epidermis. Representative Reconstructed 

Human Epidermis (RHE) based on glycated collagen, incisioned with 2 mm biopsy punch treated 

with DMSO (CTRL (+)), GQ-11 or Pio (2 mM) for 24 h, fixed and and marked with Desmoglein-1 

by immunohistochemistry – magnification 40x (A). Total Desmoglein-1 protein detected by 

Western Blot (B). Expression of  Desmoglein-1 in RHE (C) mRNA was quantified by qPCR. 

Negative controls (CTRL (-)) are represented by RHE based on control collagen, and were used in 

ddct calculations with -actin as housekeeping gene (fold change). Data are expressed as the 

mean ± S.D.  n=3. Statistical analyses were performed using ANOVA/Tukey’s multiple comparison 

tests. **p < 0.01; ***p<0,001 vs CTRL(+). 
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Table 1. Forward and reverse primers used for real-time PCR. 

 

 
Gene Forward primer (5′‐  3’) Reverse primer (5′‐  3’) 

α-SMA ACTGGGACGACATGGAAAAG TACATGGCTGGGACATTGAA 

β-actin GCCTTTGCCGATCCGC GCCGTAGCCGTTGTCG 

Ck-14 TCACAGCCACAGTGGACAAT CCTTCAGGCTCTCAATCTGC 

Desm-1 ACCGCATCTCTGGAGTAGGA CCTGCAAATGTAGCCATTGA 

FoxO-1 GATCCCGTAAGTCGGGCG TCGATGGCCTTGGTGATGAG 

Ki-67 AAAGAATTGAACCTGCGGAAGAGC AGTATTATTTTGGCGTCTGGAGCG 

Mmp-9 CCTTTGGACACGCACGAC CCACCTGGGTTCAACTCACTC 

Pparα TCGTGCCGCTGAGCCTGG GCCTCCGTCCGAGAGATGC 

Pparγ ATGCTGAAACCCTGAAGGTG TGCTTGACCCTCAGAGACCT 
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INTRODUCTION 1 

Ischemia-Reperfusion (I/R) is defined as a pathological condition characterized by restriction of 2 

blood supply followed by flow restoration and subsequent re-oxygenation, representing the major challenge 3 

during organ transplantation and general cardiothoracic surgery [1]. In its pathophysiology, not only the 4 

initial restriction of blood supply leads to a severe imbalance of metabolic demand but also the blood flow 5 

restoration exacerbates tissue injury and inflammation responses, contributing to a wide range of conditions 6 

[2, 3]. 7 

Ischemia condition is associated to the inhibition of oxygen-sensing prolylhyldroxylase (PHD) 8 

enzymes, once they require oxygen as a cofactor, which in turn leads to a post-translational activation of 9 

hypoxia and inflammatory signaling cascades, controlling transcription factors such as hypoxia-inducible 10 

factor (HIF) and nuclear factor-κB (NF-κb), sequentially inducing interleukyn-6 (IL-6) and tumor necrosis 11 

factor-α (TNF- α) [4, 5, 6]. Particularly, at this point it is reported increased permeability of capillaries and 12 

arterioles, following increased diffusion and fluid filtration across the tissues by activated endothelial cells, 13 

associated by itself to increased reactive oxygen species (ROS) and decreased nitric oxide (NO) production 14 

[7, 8]. In response to tissue damage, exacerbated free radicals release, oxidative stress induction as well 15 

as pro-inflammatory cytokines expression and activation of cell death programs are carried by reperfusion 16 

after ischemia. Therefore, the critical points of I/R are inflammation, headed by TNF-α and Il-6, and oxidative 17 

stress, headed by production of pro-oxidant mediators, depletion of superoxide dismutase (SOD), 18 

accumulation of free radicals and redox signaling disruption [9, 10]. 19 

PPARγ is a member of the nuclear receptor family, expressed throughout tissues and which 20 

primary controls adipocyte differentiation, glucose metabolism, and lipid homeostasis. However, apart from 21 

established metabolic actions, PPARγ also controls cell proliferation and has anti-inflammatory properties 22 

[11]. These PPARγ-related anti-inflammatory properties are provided by its expression in several immune 23 

cell types, such as activated macrophages, dendritic cells and activated T and B cells. Moreover, PPARγ 24 

is also able to regulate chemo-attraction and cell adhesion of these inflammatory cell types by inhibiting 25 

chemokine C-C ligand 2 (CCL-2), vascular cell adhesion protein (VCAM) and intracellular adhesion 26 



molecule (ICAM) expression, improving endothelial function [12, 13]. Due to these regulatory properties, 1 

some reports have shown that the pre-treatment with a PPAR agonist, pioglitazone, improved reperfusion 2 

injury in patients with myocardial infarction [14]. 3 

Nevertheless, the actual pharmacological approach to prevent I/R damage has so far been 4 

unsuccessful. In part because one unique drug cannot treat all metabolic disturbances caused with  5 

concecutive processes of I/R but also because in another hand, the use of these drugs implicates in 6 

important side effects. In the case of pioglitazone -and other thiazolidinediones (TZDs) use - fluid retention, 7 

body weight gain, peripheral edema, severe hepatotoxicity and cardiovascular risk are observed, 8 

encouraging the search for new derivatives with better therapeutic efficacy [15, 16, 17, 18, 19, 20]. 9 

GQ-11 is a new TZD derivative that, sharing a weak dual PPARα and PPARγ agonism, carries 10 

anti-inflammatory properties, modulating IL-6, MCP-1 and IL-10 expression and release, as previously 11 

reported [21]. Considering its properties, the aim of this study was to further investigate the effects of GQ-12 

11 on inflammation and oxidative process in an I/R animal model. 13 

METHODS  14 

Animal Model and Treatment 15 

Wistar rats, male, 60 days age, fed a standard diet, were hold at University of Genoa animal 16 

facilities. The study has been approved by the Animal Care Committee of University of Genoa (75/2018-17 

PR: #22418.76) and followed guidance of Guide for the Care and the Use of Laboratory Animals [22] 18 

published by the US National Institutes of Health (NIH Publication No. 85-23, updated in 2011). 19 

The animal protocol was designed to minimize pain or discomfort to the animals. The animals were 20 

acclimatized to animal facilities conditions (23 °C, 12 h/12 h light/dark, 50% humidity, ad libitum access to 21 

food and water) for 2 weeks prior to experimentation. Intragastric gavage administration was carried out 22 

with conscious animals, using straight gavage needles appropriate for the animal size (15-17g body weight: 23 

22 gauge, 1 inch length, 1.25 mm ball diameter). All animals were euthanized by barbiturate overdose 24 

(intravenous injection, 150 mg/kg pentobarbital sodium) for tissue collection. 25 



In a pre-surgery period of 7 days, animals were separated in 4 groups (n=3): no treated/no surgical 1 

procedure (negative control), treated with vehicle (NaCl 0.9% Tween 0.25% - positive control), 10 mg/kg 2 

pioglitazone or GQ-11 (new derivative). The treatment was conducted by gavage in the animal facilities 3 

procedure room of the university, daily, at 5 pm. After treatment period, animals were conducted to the 4 

animal facilities surgery room, anesthetized with diazepam (subcutaneous – 5 mg/kg), ketamine 5 

(intraperitoneal – 75 mg/kg) and xylazine (intraperitoneal – 10 mg/kg) and shaved on abdominal area to be 6 

submitted to a surgical procedure of supraceliac aorta clamping for 30 minutes, inducing complete 7 

abdominal ischemia (except the negative controls). After 30 minutes of ischemia, the clamp was removed 8 

for a 3 hours reperfusion. During ischemia and reperfusion protocols, animals were maintained in their own 9 

cages, under anesthesia and warm light for body temperature maintenance. After procedure, animals were 10 

submitted to positron emission tomography (PET) or euthanized by barbiturate overdose (intravenous 11 

injection, 150 mg/kg pentobarbital sodium) for organ collection (liver and bowel) to investigate gene 12 

expression, protein profile and enzymes activity. Samples were collected in cryovials and quickly frozen on 13 

dry ice until storage at -80C. 14 

mRNA isolation and Quantitative Real-Time PCR  15 

For gene expression analysis, we first performed RNA isolation of frozen tissue with Trizol 16 

reagent (Thermo Scientific, Cat#15596026) and reverse-transcribed it using RevertAid H Minus First Strand 17 

cDNA Synthesis Kit (Thermo Scientific, Cat#K1631), following company instructions. 18 

Quantitative Real-Time PCR (qPCR) was performed using SYBR Green Master Mix (BioRad 19 

Laboratories, Cat#170-8887) and specific primers (TIB MolBiol – UniGe) as listed (Table 1). mRNA fold 20 

change was calculated using ΔΔCt method [24] and the expression of Pparα, Pparγ, Lxrα, Il-1β, Ccl-2, 21 

Catalase, SOD2, GPx, Metallothionein 1, Vcam and Vegf were evaluated with Rpl-4 as housekeeping gene. 22 

 23 

Western Blot 24 

Total protein samples were extracted with RIPA buffer (Sigma-Aldrich, St Loius, MO, USA), with a 25 

protease, proteasome and phosphatase inhibitor cocktail. Next, 50 g of total protein was resolved by 12% 26 

sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred onto a polyvinylidene fluoride 27 

membrane using Bio-Rad transfer system (Bio-Rad, Richmond, CA, USA). The membranes were blocked 28 



with 5% non-fat-milk in TBST for 2 hours at room temperature with gentle shaking and incubated overnight 1 

at 4C with primary antibodies against -actin (Sigma-Aldrich, St Louis, MO, USA; 1:40,000), VCAM-1 2 

(Santa Cruz Biotechnology, Dallas, TX, USA; 1:1000), IL-10 (Abcam, Cambridge, UK; 1:1000), TGF- 3 

(Abcam, Cambridge, UK; 0.5 g/ L), SOD2 (Novus, Centennial, CO, USA; 1:1000) and GPx (Novus, 4 

Centennial, CO, USA; 1:1000). After washing, membranes were incubated with a secondary antibody 5 

(Sheep anti-rabbit IgG, 1:3000, horseradish peroxidase-conjugated; Amersham Bioscences, Piscataway, 6 

NJ, USA). Membranes were developed using enhanced chemiluminescence reagents (Bio-Rad, Richmond, 7 

CA, USA). 8 

 9 

TBARS quantification 10 

TBARS were quantified as described by Ohkawa et al., 1979 [25] where homogenized frozen tissue 11 

was incubated with thiobarbituric acid reagent to be centrifuged and read in spectrophotometer at 532 nm 12 

wavelength. Samples were normalized by protein concentration using Bradford method and 13 

malondialdehyde (MDA, Sigma-Aldrich, Cat#100683-54-3) was used as a standard control, in the 14 

concentrations of 0.5, 1, 2, 4 and 8 mol/mL. 15 

 16 

Evaluation of Glutathione Peroxidase Activity 17 

Glutathione peroxidase activity was evaluated [26] with frozen tissue centrifuged to be read in 18 

spectrophotometer at 340 nm wavelength with 0, 1, 3 and 5 minutes intervals in a reaction with 2. mM 19 

sodium azide, 7.5 U/mL glutathione reductase, 10 mM reduced glutathione, 5% mercaptopropionic acid, 20 

1.2 mM β-NADPH, 4.8 mM tert-butyl and 200 mM phosphate buffer. Samples were normalized by protein 21 

concentration using Bradford method. 22 

 23 

Evaluation of Total Superoxide Dismutase Activity 24 

Total superoxide dismutase activity was evaluated [27] with homogenized frozen tissue centrifuged 25 

to be read in spectrophotometer at 560 nm wavelength with 0, 1, 3 and 5 minutes intervals in a reaction 26 

with 0.1 mM EDTA, 400 μM nitroblue tetrazolium chloride (NBT), 98 μM β-NADPH, 160 μM phenazine 27 



methyl sulfate (PMS) and 50 mM phosphate buffer. Samples were normalized by protein concentration 1 

using Bradford method. 2 

 3 

Statistical Analysis 4 

Statistical analyses were performed using GraphPad Prism software, version 5.0. One-way 5 

analysis of variance (ANOVA) followed by Tukey’s/ Dunnett’s post-test was used to calculate statistical 6 

significance as appropriate. All data in this study are expressed as the mean ± standard deviation (S.D.). 7 

Values of P < 0.05 were considered significant. 8 

  9 

RESULTS 10 

GQ-11 treatment prevents ischemia/reperfusion (I/R) damage in rats after supraceliac aorta clamping 11 

To explore the main effects of GQ-11 in I/R we first submitted the animals to PET, observing 18F-12 

FDG uptake in liver (Figure 1A) and bowel (Figure 1B). When analyzing SUVmax, a marked difference was 13 

observed between the negative and positive controls, indicating 18F-FDG uptake increase in the group 14 

submitted to aorta clamping. Importantly, GQ-11 treatment showed a more marked decrease of 18F-FDG 15 

uptake than Pioglitazone in both organs (Figure 1C), even after I/R induction, when compared to positive 16 

control. 17 

 18 

GQ-11 treatment decreases pro-inflammatory markers in liver and bowel 19 

 In order to better understand the effect of GQ-11 and pioglitazone on 18F-FDG uptake, we 20 

investigated their PPAR agonism and inflammatory markers. In this sense, both drugs showed no influence 21 

in Ppar expression (Figure 1D), but increased Ppar expression in the organs (Figure 1D), as wells as of 22 

Lxr (Figure 1D). As previously reported, this PPAR agonism is correlated to an important anti-inflammatory 23 

potential. Indeed, GQ-11 treatment down-regulated Il-1, Il-6 and Ccl-2 expression when compared to 24 

positive control (Figure 2A) besides to decrease Vcam-1 expression (Figure 2A) and release (Figure 2C). 25 

In addition, GQ-11 also promoted downregulation of IL-6 either in liver or bowel, and IFN- and TNF- in 26 

the liver (Figure 2B). IFN- and TNF- levels were not detectable in bowel samples. 27 



GQ-11 treatment increases anti-inflammatory markers in liver and bowel. 1 

Furthermore, the anti-inflammatory potential provided by GQ-11 treatment was also extended to 2 

upregulation of anti-inflammatory markers, such as Il-10 expression and Tgf- (Figure 3A) and release 3 

(Figure 3C) in both organs. Moreover, it was also reported upregulation of Vegf and Mt1 expression, both 4 

in GQ-11 and Pioglitazone groups (Figure 3B). 5 

 6 

GQ-11 treatment modulates enzymes activity, preventing TBARs formation and oxidative stress in liver and 7 

bowel. 8 

Besides inflammation, oxidative stress markers were also evaluated. GQ-11 and pioglitazone 9 

increased catalase and GPx expression (Figure 4A) and release (Figure 4B) when compared to positive 10 

control. Both treatments also enhanced GPx activity and diminished TBARs (Figure 4C). 11 

 12 

DISCUSSION 13 

In this study we show that GQ-11, a new dual PPARα and PPAR agonist prevents I/R-induced 14 

damage caused by inflammation and oxidative stress processes in rats.  15 

First focusing in the evaluation of general abdominal inflammation on pre-treated rats submitted to 16 

I/R, we evaluated 18F-FDG uptake using PET. 18F-FDG is a radiopharmaceutical analog of glucose, 17 

developed as a PET radiopharmaceutical, used for tumor diagnosis, therapy monitoring and experimental 18 

cancer research. However, 18F-FDG uptake is not specific to malignancies and accumulates in sites with 19 

acute inflammation [28]. Glucose is the primary metabolic substrate of macrophages at the same time that 20 

immune cells activation requires increased glucose uptake, primarily through Glucose Transporter 1 21 

(GLUT1). Some other studies also report that PPAR agonists affect GLUT1 expression in immune cells, 22 

oppositely to tumor cells, decreasing glucose analogs uptake [29, 30, 31]. 23 

Our PET images and analysis showed lower 18F-FDG uptake both in liver and bowel of animals 24 

submitted to I/R and treated with pioglitazone or GQ-11, when compared to positive control (Figure 1), 25 

suggesting improve of I/R-related inflammation in those animals treated with PPAR agonists. These results 26 

corroborate with other studies showing that cytokine modulation and anti-inflammatory effects of PPAR 27 



agonists are directly related to decreased 18F-FDG uptake, especially through Glut1 downregulation in 1 

macrophages [32]. 2 

 In order to further investigate the regulation of I/R-related inflammation promoted by GQ-11 and 3 

pioglitazone, we analyzed the expression of inflammatory markers in liver and bowel. In general, PPAR 4 

agonists have been related to I/R protective effects through inhibition of intracellular cell adhesion 5 

molecules expression, reduction of neutrophil and macrophages infiltration, modulating the inflammatory 6 

response and the oxidative stress in endothelium, thus, playing a main role in modulation of inflammatory 7 

process during reperfusion [33]. In fact, our major findings regarding inflammation profile showed increased 8 

expression of Ppar  in liver and bowel, promoted by pioglitazone and GQ-11 (Figure 1), and a strictly 9 

related downregulation of Il-1, Il-6 and Ccl-2 in the same treatment groups and organs (Figure 2).  10 

Consistently, previous studies also showed anti-inflammatory effects promoted by GQ-11, through 11 

TNF-, MCP-1 and IL-1 modulation in chronic low grade inflammation [21]. Other evidence suggest that 12 

IL-1 plays a key role in pathophysiology of hepatic I/R injury, some of them attesting that neutrophils and 13 

macrophages can contribute to cytokine maturation, independently of inflammasome [34]. In turn, if 14 

inflammatory process induces marked neutrophils and macrophages recruitment, VCAM-mediated cell 15 

adhesion, also regulated by pro-inflammatory interleukins and TNF-, may allow cells activation and 16 

release of proteolytic enzymes, aggravating endothelial damage [35]. Indeed, our findings also showed 17 

important downregulation of VCAM expression and release (Figure 2), probably due to downregulation of 18 

Ccl-2 and other pro-inflammatory markers, suggesting potential endothelial protection. 19 

In addition, this pro-inflammatory markers control may be related to upregulation of  IL-10 (Figure 20 

3), an anti-inflammatory cytokine expressed by alternatively activated macrophages, as well as TGF-, 21 

involved in pro-inflammatory cytokines repression in macrophages through NF-b inhibition [36]. 22 

Several other studies also have reported the role of angiogenesis in ischemic injury protection, 23 

important to promote the regeneration process in ischemic tissues [37, 38]. The formation of new blood 24 

vessels in ischemia is induced primarily by VEGF and involves a harmonized cellular interplay, including 25 

endothelial, hematopoietic and mesenchymal cells to increase local blood flux and supply nutrients, oxygen 26 

and other required factors, ensuring local homeostasis, promoting re-endothelization and improving the 27 

hemodynamic function, preventing hypoxia and apoptosis [39]. In this context, the upregulation of Vegf 28 



combined with VCAM downregulation found in animals treated with GQ-11 (Figures 2 and 3), also seems 1 

to be important especially in restoration of endothelium function. 2 

Besides inflammation, we also demonstrated that pioglitazone and GQ-11 were involved in 3 

oxidative stress regulation including the modulation of metallothioneins (MTs) expression and antioxidant 4 

enzymes activity. The upregulation of Mt1 (Figure 3), involved in zinc and copper transportation, is also 5 

implicated in inflammation and oxidative stress handling. MTs neutralize cell stress and toxicity induced by 6 

increased cytosolic free zinc – in its turn induced by TNF- and IL-6 through Zip transporters upregulation. 7 

Moreover, MTs also mediate ROS-scavenging effects through STAT3, preventing I/R-related cell stress 8 

and apoptosis [40, 41, 42]. 9 

Many studies support the idea of inflammation and oxidative stress as interdependent and 10 

connected processes, which co-exist at inflamed sites. Here we understand that ROS formation and pro-11 

inflammatory cytokines production lead to exacerbated oxidative damage and enhanced pro-inflammatory 12 

responses in a dynamic process. Importantly, redox processes are involved in diminished bioavailability of 13 

endothelial-derived NO, which may result in impaired endothelial-dependent vascular reactivity, also 14 

activating MMPs, inducing degradation of ECM components and a persistent endothelial dysfunction, 15 

antagonizing PPAR and aggravating I/R condition [43, 44, 45]. 16 

 Investigating the effects of GQ-11 and pioglitazone on enzymatic antioxidant defense and an 17 

oxidative stress marker, we found increased catalase expression and GPx activity besides decreased 18 

TBARS levels (Figure 4). It was previously reported that pioglitazone binds to catalase with strong affinity, 19 

increasing significantly its activity [46]. It is also show that mutant PPAR in endothelial cells during stress 20 

conditions has endothelium impairment restored by superoxide scavenger, suggesting that PPAR function 21 

loss is caused by exacerbated oxidative stress (47). Furthermore, PPAR mutation is also associated to 22 

upregulation of pro-oxidant genes as well as dowregulation of important anti-oxidant genes including those 23 

of catalase and SOD. This is consistent with catalase and SOD being PPAR-target genes [47]. 24 

Likewise, products from lipid peroxidation are active compounds over free radical pathways from 25 

ROS interaction with polyunsaturated fatty acids and are associated to tissue injury. Many reports link lipid 26 

hydroperoxides to DNA damage and describe the importance of SOD, catalase and GPx-mediated 27 

protection [48, 49, 50]. In fact, our findings show that treatment with PPAR agonists increased catalase 28 



expression and GPx activity leading to H2O2 consumption and decreased oxidative stress what can 1 

attenuate  I/R-related damage. 2 

Briefly, the strong protective effect observed for GQ-11 treatment in animals submitted to I/R, 3 

seems to be based on a set of regulations promoted by its weak PPAR agonism including attenuation of 4 

inflammation and oxidative stress. 5 

CONCLUSIONS 6 

In conclusion, regulation of both inflammation and oxidative stress seems to be important targets 7 

in the search for I/R management, suggesting that PPAR agonists, including GQ-11, could be important 8 

mediators in these conditions. Nevertheless, the balance between therapeutic and side effects is 9 

determinant to safe and effective prevention strategies. 10 
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FIGURE LEGENDS 1 

 2 

Figure 1. Positron emission tomography images of liver (A) and bowel (B), respective SUVmax (C) 3 

and expression of Ppar-, Ppar-  and Lxr- (D) mRNA in liver and bowel after ischemia/reperfusion 4 

in Wistar rats pre-treated with vehicle, GQ-11 or pioglitazone. Injection of 18F-FDG was performed after 5 

2h20 of reperfusion and images were acquired after 3 hours of reperfusion. mRNA was quantified by qPCR. 6 

Negative controls (CTRL (-)) are represented by animals not submitted to ischemia/reperfusion and/or 7 

treatment, and were used in ddct calculations with Rpl-4 as housekeeping gene (fold change). Positive 8 

controls (CTRL (+)) are represented by animals submitted to ischemia/reperfusion and treated with vehicle. 9 

Data are expressed as the mean ± S.D.  n=3. Statistical analyses were performed using ANOVA/Tukey’s 10 

multiple comparison tests. *p < 0.05; **p<0,01, ***p<0,001 vs CTRL+. 11 

 12 

Figure 2. Expression of Il-1, Il-6, Ccl-2 and Vcam-1 (A) in liver and bowel; total IL-6 content in liver 13 

and bowel, and IFN- and TNF- content in liver (B);  VCAM-1 protein (C) in liver and bowel of Wistar 14 

rats pre-treated with vehicle, GQ-11 or pioglitazone and submitted to ischemia/reperfusion. mRNA 15 

was quantified by qPCR. Negative controls (CTRL (-)) are represented by animals not submitted to 16 

ischemia/reperfusion and/or treatment, and were used in ddct calculations with Rpl-4 as housekeeping 17 

gene (fold change). Positive controls (CTRL (+)) are represented by animals submitted to 18 

ischemia/reperfusion and treated with vehicle. Total protein was quantified by cytometric bead array (CBA) 19 

and detected by western blot. Data are expressed as the mean ± S.D. n=3. Statistical analyses were 20 

performed using ANOVA/Tukey’s multiple comparison tests. *p < 0.05; **p<0,01; ***p<0,001 vs CTRL+. 21 

 22 

Figure 3. Il-10 and Tgf- mRNA and IL-10 (A); Il-10 and Tgf- protein (B);  Vegf and Mt1 mRNA (C) in 23 

liver and bowel of Wistar rats pre-treated with vehicle, GQ-11 or pioglitazone and submitted to 24 

ischemia/reperfusion. mRNA was quantified by qPCR. Negative controls (CTRL (-)) are represented by 25 

animals not submitted to ischemia/reperfusion and/or treatment, and were used in ddct calculations with 26 

Rpl-4 as housekeeping gene (fold change). Positive controls (CTRL (+)) are represented by animals 27 

submitted to ischemia/reperfusion and treated with Vehicle. Total protein was quantified by cytometric bead 28 

array (CBA) and detected by western blot. Data are expressed as the mean ± S.D. n=3. Statistical analyses 29 

were performed using ANOVA/Tukey’s multiple comparison tests. *p < 0.05; **p<0,01; ***p<0,001 vs 30 

CTRL+. 31 

 32 

Figure 4. GPx, SOD2 and Catalase mRNA (A),  GPx and SOD2 protein (B) and activity (C), and TBARs 33 

(C) in liver and bowel of Wistar rats pre-treated with vehicle, GQ-11 or pioglitazone and submitted 34 

to ischemia/reperfusion. mRNA was quantified by qPCR. Negative controls (CTRL (-)) are represented 35 

by animals not submitted to ischemia/reperfusion and/or treatment, and were used in ddct calculations with 36 



Rpl-4 as housekeeping gene (fold change). Positive controls (CTRL (+)) are represented by animals 1 

submitted to ischemia/reperfusion and treated with Vehicle. Total protein detected by western blot. Data 2 

are expressed as the mean ± S.D. n=3. Statistical analyses were performed using ANOVA/Tukey’s multiple 3 

comparison tests. *p < 0.05; **p<0,01; ***p<0,001 vs CTRL+. 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 





 





 



TABLE 1. Forward and reverse primers used for real-time PCR. 

 
 
 

RAW DATA 
 
 
 
RAW DATA 
 
 

Figure 1C. SUVmax (%ID/g - Mean  S.D.) 

 
 

 

Ctrl (-) Ctrl (+) PIO GQ-11 

Liver 0.09±0.02 2.01±0.10 1.47±0.33 1.27±0.08 

Bowel 0.29±0.17 1.08±0.18 0.67±0.13 0.49±0.07 

 
 
 
 

Gene Forward primer (5′‐  3’) Reverse primer (5′‐  3’) 

Pparα CCCCACTTGAAGCAGATGACC CCCTAAGTACTGGTAGTCCGC 

Pparγ CGGAGTCCTCCCAGCTGTTCGCC GGCTCATATCTGTCTCCGTCTTC 

Lxrα TCAAGGGAGCACGCTACATT CCTCTTCTTGACGCTTCAGTTT 

Il-1β AGGCATAACAAGCTCATCTGGG CATCTGGACAGCCCAAGTCAAGG 

Il-6 TACATATGTTCTCAGGGAGAT GGTAGAAACGGAACTCCAG 

Ccl-2 AGGGCTTGGGTTGGTTCATT AGCTGCTATCTCTGGAAGCTG 

Il-10 TAAGGGTTACTTGGGTTGCC TATCCAGAGGGTCTTCAGC 

Tgf-β CCGCAACAACGCAATCTATG AGCCCTGTATTCCGTCTCCTT 

Vcam AAGTGGAGGTCTACTCATTCC GGTCAAAGGGGTACACATTAG 

Vegf TTTCGGGAACTAGACCTCTCACC CTTCATGTCAGGCTTTCTGGATT 

Mt1 CTGCTCCACCGGCGG GCCCTGGGCACATTTGG 

Cat CCTGAGAGAGTGGTACATGC CACTGCAAACCCACGAGGG 

SOD2 CAGAAGGCAAGCGGTGAAC TAGCAGGACAGCAGATGAGT 

GPx CATTGAGAATGTCGCGTCCC TTGCCATTCTCCTGATGTCCG 

Rpl-4 TCCGCCAGGCTAGGAATGTA AGGTGGGATCTGTCTGCTAGT 



Figure 1D. PPAR fold change (Mean  S.D.) 

 
 

 

Ctrl (+) PIO GQ-11 

Liver 0.019±0.011 0.036±0.006 0.042±0.006 

Bowel 0.037±0.009 0.033±0.004 0.045±0.005 

 
 

Figure 1D. PPAR fold change (Mean  S.D.) 

 
 

 

Ctrl (+) PIO GQ-11 

Liver 0.201±0.067 1.040±0.303 1.044±0.486 

Bowel 0.360±0.143 1.258±0.187 1.219±0.352 

 
 

Figure 1D. LXR fold change (Mean  S.D.) 

 

 

Ctrl (+) PIO GQ-11 

Liver 0.392±0.528 1.930±0.507 2.81±0.377 

Bowel 0.733±0.505 2.134±0.355 2.180±0.595 

 
 

Figure 2A. IL-1 fold change (Mean  S.D.) 

 

 

Ctrl (+) PIO GQ-11 

Liver 0.384±0.103 0.045±0.046 0.155±0.061 

Bowel 2.529±0.747 0.577±0.231 0.743±0.273 

Figure 2A. IL-6 fold change (Mean  S.D.) 

 

 

Ctrl (+) PIO GQ-11 

Liver 1.065±0.436 0.996±0.414 0.444±0.110 

Bowel 5.247±0.428 6.203±0.298 2.237±0.246 

 
 
 
 
 
 

Figure 2A. Ccl-2 fold change (Mean  S.D.) 



 

 

Ctrl (+) PIO GQ-11 

Liver 6.788±3.475 0.559±0.281 1.595±1.047 

Bowel 6.955±1.950 1.726±0.541 2.095±0.629 

 
 

Figure 2A. Vcam-1 fold change (Mean  S.D.) 

 

 

Ctrl (+) PIO GQ-11 

Liver 8.170±2.597 2.072±0.365 3.233±1.229 

Bowel 17.940±1.476 16.084±4.823 7.438±2.044 

 
 

Figure 2B. Total IL-6 (pg/mL - Mean  S.D.) 

 

 

Ctrl (-) Ctrl (+) PIO GQ-11 

Liver 3.210±2.494 8.848±3.418 1.848±1.086 0.678±0.397 

Bowel 2.313±0.526 7.688±0.794 1.578±0.888 1.090±0.835 

 
 

Figure 2B. Total IFN- and TNF in liver (pg/mL - Mean  S.D.) 

 

 

Ctrl (-) Ctrl (+) PIO GQ-11 

IFN-𝛄 30.2±5.9 57.9±15.4 33.4±22.0 13.7±8.6 

TNF-α 130.5±12.3 248.8±48.3 109.7±24.5 67.4±42.1 

 
 

Figure 3A. IL-10 fold change (Mean  S.D.) 

 

 

Ctrl (+) PIO GQ-11 

Liver 0.597±0.374 0.252±0.085 1.392±0.181 

Bowel 0.798±0.285 1.364±0.295 2.440±0.410 

 
 
 
 
 

Figure 3A. Tgf- fold change (Mean  S.D.) 

 



 

Ctrl (+) PIO GQ-11 

Liver 0.539±0.294 0.339±0.089 1.174±0.330 

Bowel 0.443±0.306 0.572±0.062 1.297±0.348 

 
 

Figure 3A. Total IL-10 (pg/mL - Mean  S.D.) 

 

 

Ctrl (-) Ctrl (+) PIO GQ-11 

Liver 419.0±67.6 291.5±116.2 478.8±28.6 695.5±65.4 

Bowel 7.6±12.4 8.3±1.4 17.6±3.3 32.2±7.2 

 
 

Figure 3C. Vegf fold change (Mean  S.D.) 

 

 

Ctrl (+) PIO GQ-11 

Liver 0.107±0.093 1.412±0.326 1.236±0.704 

Bowel 0.162±0.065 1.112±0.217 0.903±0.335 

 
 

Figure 3C. Mt1 fold change (Mean  S.D.) 

 

 

Ctrl (+) PIO GQ-11 

Liver 0.873±0.428 1.832±0.522 2.439±0.557 

Bowel 0.539±0.195 2.332±0.630 2.273±0.357 

 
 

Figure 4A. GPx fold change (Mean  S.D.) 

 

 

Ctrl (+) PIO GQ-11 

Liver 1.624±0.442 3.440±0.449 4.398±0.431 

Bowel 2.440±0.564 4.585±0.516 4.945±0.894 

 
 
 
 
 
 

Figure 4A. Sod2 fold change (Mean  S.D.) 

 



 

Ctrl (+) PIO GQ-11 

Liver 9.209±1.978 3.898±1.893 3.366±2.108 

Bowel 6.708±1.944 3.485±3.193 1.667±0.983 

 
 

Figure 4A. Catalase fold change (Mean  S.D.) 

 

 

Ctrl (+) PIO GQ-11 

Liver 2.995±1.193 7.821±0.752 10.606±3.005 

Bowel 2.752±0.591 8.154±1.376 10.106±1.291 

 
 

Figure 4C. GPx Activity – NADPH loss (AU - Mean  S.D.) 

 

 

Ctrl (-) Ctrl (+) PIO GQ-11 

Liver 0.180±0.030 0.114±0.024 0.145±0.048 0.228±0.018 

Bowel 0.208±0.044 0.120±0.017 0.189±0.028 0.208±0.014 

 
 

Figure 4C. Total SOD Activity – NADPH loss (U/g Protein - Mean  S.D.) 

 

 

Ctrl (-) Ctrl (+) PIO GQ-11 

Liver 68.8±51.59 356.9±34.69 264.4±26.05 204.4±20.86 

Bowel 105.3±34.92 375.6±42.33 242.6±53.38 242.9±44.42 

 
 

Figure 4C. TBARS (mol/mL - Mean  S.D.) 

 
 

 

Ctrl (-) Ctrl (+) PIO GQ-11 

Liver 0.895±0.138 2.030±0.320 0.749±0.087 0.691±0.121 

Bowel 0.524±0.053 0.563±0.059 0.328±0.011 0.359±0.042 
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8. CONCLUSIONS 

 

The use of PPAR dual agonists, such as GQ-11, is a key new approach to 

prevent diabetes complications, such as delayed healing followed by 

amputations, and ischemia-reperfusion syndrome. Inflammation modulation – 

through cytokines balance promoted by GQ-11 treatment - showed to be the 

central regulator of imbalanced factors in both cases. 

In addition, regulation of oxidative stress also showed important role along 

anti-inflammatory effects observed after aorta-clamping. Nevertheless, the 

balance between therapeutic and side effects is crucial for safe and effective 

strategies, besides drug delivery improves necessary for a better exploitation of 

the compound effects. 
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Office of Animal Care and 

Institutional Biosafety Committees (MC 672) 

Office of the Vice Chancellor for Research 

206 Administrative Office Building 

1737 West Polk Street 

Chicago, Illinois 60612-7227 

Phone (312) 996-1972 •  Fax (312) 996-9088  •  www.research.uic.edu 

 

 

 

September 13, 2018 

 

Timothy J. Koh 

Kinesiology and Nutrition 

M/C 994 

 

Dear Dr. Koh: 

 

The protocol indicated below was reviewed at a convened ACC meeting in accordance with the 

Animal Care Policies of the University of Illinois at Chicago on 08/21/2018. The protocol was 

not initiated until final clarifications were reviewed and approved on 09/08/2018.  The 

protocol is approved for a period of 3 years with annual continuation.  

 

Title of Application:  Mechanisms of Wound Inflammation and Healing 

 

ACC Number: 18-129 

 

Initial Approval Period: 09-08-2018 to 08-21-2019 

 

Current Funding: Portions of this protocol are supported by the funding sources indicated in 

the table below. 

Number of funding sources: 1 

Funding Agency Funding Title Portion of Proposal 

Matched 

NIH Macrophage Phenotype And Impaired Wound Healing All matched 

Funding Number Current Status UIC PAF NO. Performance Site Funding PI 

RO1GM092850-05 Funded  UIC Timothy Koh 

This institution has Animal Welfare Assurance Number A3460.01 on file with the Office of 

Laboratory Animal Welfare (OLAW), NIH.  This letter may only be provided as proof of 

IACUC approval for those specific funding sources listed above in which all portions of the 

funding proposal are matched to this ACC protocol. 

 

In addition, all investigators are responsible for ensuring compliance with all federal and 

institutional policies and regulations related to use of animals under this protocol and the funding 

sources listed on this protocol.  Please use OLAW’s “What Investigators Need to Know about the 

Use of Animals” (http://grants.nih.gov/grants/olaw/InvestigatorsNeed2Know.pdf) as a reference 

guide.  Thank you for complying with the Animal Care Policies and Procedures of UIC. 

 

Sincerely yours, 

 
Amy Lasek, PhD 

Chair, Animal Care Committee 

AL /ss 

cc: BRL, ACC File, Jingbo Pang, Pijus Barman 

http://grants.nih.gov/grants/olaw/InvestigatorsNeed2Know.pdf
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     	Largo	Rosanna	Benzi,	10	16132	GENOVA 

Animal	Facility	-	Ubicazione	Ex-IST	Nord	(torri	B0	e	C0)	-	E-mail:	michele.cilli@hsanmartino.it	tel.:010-5558274	 	
IRCCS	Certificato	secondo	la	norma	UNI	EN	ISO	9001:2015	Certificato	n.	IT248888	BUREAU	VERITAS	

Certificate	of		Accreditation	and	Designation	as	Comprehensive	Cancer	Centre	OECI	Registered	Number	RPM	N.	0473647634	

ANIMAL	FACILITY	

Genoa,	March	22,	2019	
	
To	whom	it	may	concern:		

The	Animal	Facility	of	“Ospedale	Policlinico	San	Martino”	 is	responsible	for	the	care,	welfare	and	health	of	 laboratory	
animals	 (rodents,	 lagomorphs,	 cephalopods),	 included	 immunologically	 compromised	 nude,	 SCID	 mice,	 humanized	
models	NOD/SCID	-	NSG	mice	and	several	genetically	modified	models.	The	animal	facility	is	designated	as	a	Research	
Facility	by	the	Italian	Ministry	of	Health	(N°	14/2017-UT	–	31/05/2017).	

This	 facility	 includes	 5	 animal	 rooms	under	 exclusion	barrier	 (ventilated	 caging	 systems)	 and	15	 animal	 rooms	under	
conventional	 conditions,	 a	 rodent	 quarantine,	 procedure	 rooms,	 imaging	 resources,	 a	 surgery	 suite,	 a	 large	 efficient	
cage	wash	area	with	a	modern	rack	washer	and	two	large	autoclave	units.	This	facility	provides	space	for	the	housing	of	
over	 7000	mice,	 500	 rats,	 30	 rabbit	 and	 12	 octopus.	 Some	 rodents	 housed	 in	 this	 facility	 are	 housed	 in	 individually	
ventilated	caging	(IVC)	systems.	
	
In	 our	 facility	we	 test	 for	 rodent	 pathogens	 every	 year	 using	 one	 or	more	 of	 the	 following	 testing	 strategies:	 direct	
colony	animal	sampling	or	sentinel	rodent	testing.	If	using	rodent	sentinels,	all	sentinel	animals	should	have	a	minimum	
of	8	weeks	of	exposure	and	preferably	12-16	weeks	of	exposure	before	testing	to	allow	time	for	sero-conversion	and	to	
develop	a	detectable	parasite	infestation.		

The	well-being	and	state	of	health	of	experimental	animals	 is	 regularly	monitored	by	 the	veterinarian	with	a	view	 to	
prevent	the	pain	or	avoidable	suffering,	distress	or	lasting	harm.	In	the	Animal	Facility	the	“Three	Rs”	tenet	is	applied	by	
scientists	 in	 the	 respect	 of	 the	 national	 current	 regulations	 regarding	 the	 protection	 of	 animals	 used	 for	 scientific	
purpose	(D.	Lvo	4	marzo	2014,	n.	26,	legislative	transposition	of	Directive	2010/63/EU	of	the	European	Parliament	and	
of	the	Council	of	22	September	2010	on	the	protection	of	animals	used	for	scientific	purposes).		

The	“Three	Rs”	 tenet	 -	Replacement,	Reduction	and	Refinement	 -	 is	grounded	 in	 the	premise	 that	animals	 should	be	
used	only	 if	a	scientist’s	best	efforts	 to	 find	a	non-animal	alternative	have	 failed,	and	that	when	animals	are	needed,	
only	the	most	humane	methods	should	be	used	on	the	smallest	number	of	animals	required	to	obtain	valid	information.		

Use	of	 the	Three	Rs	 tenet	assists	 in	 improving	 the	welfare	of	 animals	used	 in	 science	 in	 several	ways:	 it	 addresses	a	
range	of	 concerns	about	 scientific	animal	use;	 it	places	a	 focus	on	 individual	animals;	 it	 adapts	and	 responds	 to	new	
information;	 it	 balances	 the	 needs	 of	 science	 and	 the	 needs	 of	 the	 animals;	 and	 it	 unites	 disparate	 groups	with	 an	
interest	in	the	welfare	of	animals	used	in	science.	

Research	protocols	presented	by	Prof.	Domenico	Palombo	are	included	in	those	reviewed	and	approved	by	the	OPBA	
(Institutional	Animal	Welfare	Body)	and	authorized	by	 the	 Italian	Ministry	of	Health	on	October	11	2017	with	 the	N.	
75/2018-PR.	

																																																																																																																																						Yours	sincerely,		

		 	

																																																																																																																																		Michele	Cilli	DVM 	

															 	 	 	 															Designated	Veterinary	

																																																					Animal	Welfare	Body	Coordinator		

																																																						
















