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RESUMO

PADILHA, M. Impacto da dieta materna e da intervenção com fruto-oligossacarídeo sobre a 

microbiota do leite humano. 2018. 148 p. Tese (Doutorado) – Faculdade de Ciências Farmacêuticas, 

Universidade de São Paulo, São Paulo, 2018. 

O leite humano é, reconhecidamente, o principal componente para o crescimento e o desenvolvimento 

metabólico e imunológico de lactentes. Adicionalmente, durante a lactação, o leite humano consiste em uma 

importante fonte de micro-organismos para a formação da microbiota intestinal de neonatos. Fatores 

relacionados à mãe têm sido associados à composição da microbiota do leite humano. Entretanto, poucos 

estudos avaliaram a dieta materna como componente modulador da microbiota do leite humano. Os objetivos 

deste estudo foram investigar o impacto da dieta materna sobre a composição da microbiota do leite humano 

de mães saudáveis e, posteriormente, avaliar a influência da intervenção com fruto-oligossacarídeo na 

microbiota do leite humano, durante 20 dias de lactação. O estudo foi dividido em duas partes; a primeira 

parte consistiu de um estudo transversal, com 94 lactantes atendidas no Hospital Universitário da 

Universidade de São Paulo (HU/USP), a fim de investigar a associação entre o consumo materno de 

nutrientes durante a gestação e durante o primeiro mês de lactação e a microbiota do leite humano. A segunda 

parte consistiu em um ensaio clínico, aleatorizado, placebo-controlado, com 53 lactantes, classificadas em 

grupo FOS, que recebeu 4.5 g de fruto-oligossacarídeo + 2 g de maltodextrina (n = 28) ou grupo placebo, 

que recebeu 2 g de maltodextrina (n = 25), suplementados por 20 dias. O DNA das amostras de leite foi 

isolado e utilizado como molde para amplificação e sequenciamento em Illumina MiSeq® System. Em geral, 

a dieta materna durante a lactação (consumo a curto prazo) apresentou influência pontual sobre diversos 

grupos de micro-organismos, incluindo correlações positivas entre ácidos graxos poli-insaturados/linoleico 

e o gênero Bifidobacterium. No entanto, somente a dieta materna durante a gestação (consumo a longo prazo) 

foi estatisticamente significante (p = 0.02) para as análises de agrupamento das amostras (análises de estrutura 

de comunidade), sendo o maior teor de vitamina C consumido durante a gestação relacionado ao agrupamento 

2, direcionado por maiores populações do gênero Staphylococcus. Após o período de intervenção na dieta 

materna, não foram encontradas diferenças entre a abundância relativa de gêneros entre os grupos placebo e 

FOS. No entanto, as distâncias do percurso das amostras do início até o final da suplementação foram maiores 

para o grupo FOS (p = 0.0007). De acordo com os resultados, a idade materna influencia essa resposta à 

suplementação por FOS (p = 0.02), embora, não tenham sido encontrados padrões nítidos nas diferenças de 

abundância relativa entre os grupos. Os resultados obtidos sugerem que a dieta materna consiste em um fator 

de modulação da microbiota do leite humano, sendo a dieta durante a gestação um fator mais intenso sobre 

a estrutura da comunidade bacteriana do leite humano. No entanto, o consumo a curto prazo ou a intervenção

alimentar com prebiótico sobre a dieta materna apresentou influência pontual sobre a dinâmica da microbiota 

do leite, ainda que mudanças observadas sejam indivíduo-dependentes e influenciadas pela idade materna, 

como no caso do estudo de intervenção.

Palavras – chave: leite materno; microbiota; prebiótico; lactação; dieta materna; colonização intestinal.



ABSTRACT

PADILHA, M. Impact of the maternal diet and the intervention with fructooligosaccharide on the 

human milk microbiota. 2018. 148 p. Thesis (PhD) – School of Pharmaceutical Sciences, University 

of São Paulo, São Paulo, 2018. 

Human milk is recognized as the main component for growth, metabolism, and immune development in 

infants. Furthermore, during lactation, human milk is an important source of microorganisms for the intestinal 

colonization of newborns. Mother-related factors have been associated with the human milk microbiota 

composition. Nevertheless, apparently, there has not been any study in which the maternal diet was evaluated 

as a modulator of the human milk microbiota. Therefore, the aim of this study was to investigate the impact 

of the maternal diet on the human milk microbiota composition of healthy women, and subsequently, to 

evaluate the effect of fructooligosaccharides supplementation on the human milk microbiota. This study 

consisted of two parts; the first was a cross-sectional study, including 94 lactating women recruited at the 

University Hospital of the University of São Paulo (HU/USP), to investigate the association between the 

maternal nutrient intake during pregnancy and lactation over the first month and the human milk microbiota. 

The second part consisted of a randomized, placebo-controlled clinical trial with 53 lactating, classified as 

FOS group (n = 28), which received 4.5 g of fructooligosaccharides + 2 g of maltodextrin or placebo group 

(n = 25), which received 2 g of maltodextrin, over a period of 20 days. The DNA was isolated and used as 

template for amplification and sequencing by the Illumina MiSeq® System. Overall, the maternal diet during 

lactation (“short-term” food intake) influenced specific bacterial groups, including positive correlations 

between polyunsaturated fatty acids/linoleic fatty acids and Bifidobacterium. However, only the maternal 

diet during pregnancy (“long-term” food intake) was statistically significant (p = 0.02) for the clustering 

analyzes (community structure analyzes), in which higher levels of vitamin C intake during pregnancy was 

related to cluster 2, driven by the Staphylococcus genus. After the intervention period on the maternal diet, 

no differences were found for relative abundance of genera between the placebo and the FOS groups. 

However, the distances of the trajectories covered by the samples from the beginning to the end of the 

supplementation was higher for the FOS group (p = 0.0007). According to our results, the maternal age 

affects the response for FOS supplementation (p = 0.02), though no patterns in the differences of relative 

abundances were found between the groups. Our results suggest that the maternal diet may influence the 

human milk microbiota, and the diet during pregnancy is a stronger factor over the bacterial community 

structure. Minor changes were found by the maternal short-term food intake or the maternal intervention with 

the prebiotic, and the changes seem to be individual-dependent and influenced by the maternal age, 

particularly in the intervention study.

Key words: Breast milk; microbiota; prebiotic; lactation; maternal diet; gut colonization
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PRESENTATION

The first part of the current thesis is composed by LITERATURE REVIEW, 

JUSTIFICATION, and OBJECTIVES. The second part is composed by the methods, results 

and discussions, presented as 2 CHAPTERS, which are versions of the 2 scientific papers to 

be submitted for publication. Finally, the third part is composed by the GENERAL

CONCLUSIONS. Other documents, and relevant information are presented as

ATTACHMENTS and ADDITIONAL FILES.
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LITERATURE REVIEW

The human microbiota

In the course of their life, human beings share their living space with a wide variety of 

microorganisms. Although this condition increases the susceptibility to pathogens, in most 

cases the contact with microorganisms shows to be innocuous and plays an essential role in 

health (POSSEMIERS et al., 2011; FAUST et al., 2012; INSTITUTE OF MEDICINE, 2013; 

MORGAN, SEGATA & HUTTENHOWER, 2013).

The significance of the relationship between humans and microorganisms becomes 

evident by the approximately 1014 cells that compose the human microbiota, ten times as many 

as human cells. These microorganisms comprise bacteria, fungi, viruses, and archaea, and are 

collectively known as our microbiota (or microbiome when genetic elements are 

also considered (LEY, PETTERSON & GORDON, 2006; GIBSON et al., 2017; SHEN, 2017).

Given the importance of the microbial community in the human body, several studies 

have investigated the human microbiome in the context of human health and disease. Worth 

mentioning are the projects International Human Microbiome Consortium (IHMC), European 

Commission - Metagenomics of the Human Intestinal Tract (MetaHIT), United States National 

Institutes of Health’s Human Microbiome and the Canadian Microbiome Initiative (CMI). 

These projects have helped to characterize and study the genetic potential of the metabolic 

activities and interactions between microorganisms and hosts in different body sites 

(BÄCKHED et al, 2012).

Different microbial abundance and diversity patterns were observed, depending on the 

habitat they occupy, such as oral cavity, gut, skin, and vagina (HUMAN MICROBIOME 

PROJECT CONSORTIUM, 2012). 

The genera Streptococcus and Lactobacillus are more abundant in oral cavity and vagina 

samples, respectively. The oral microbial community presents a greater species diversity, while 

the vaginal microbiome consists of a community of a smaller spectrum (HUMAN 

MICROBIOME PROJECT CONSORTIUM, 2012). 

Over 90% of the bacteria in the intestinal microbiome are from phyla Bacteroidetes and

Firmicutes, while Actinobacteria, Proteobacteria, Verrucomicrobia and Cyanobacteria are 

represented to a lesser extent. Methanogenic archaea (mainly Methanobrevibacter smithii), 
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eukaryotes (mainly yeasts), and virus (mainly phages) may also be present (LOZUPONE et al., 

2012).

Members of the genus Bacteroides, phylum Bacteroidetes, are predominant in the gut 

microbiota, although members of the genera Prevotella, Capnocytophaga, Bergeyella, 

Porphyromonas, and Tannerella can also be found (THOMAS et al., 2011). The Firmicutes

phylum is mainly represented by the genera Ruminococcus, Aerococcus, Enterococcus, 

Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, 

Carnobacterium, Tetragenococcus, Vagococcus and Weissella (STOLAKI et al., 2012).

In this context, ARUMUGAM et al. (2011) suggested that the gut microbiome of 

individuals is categorized into one of three enterotypes based on their dominant genera:

Bacteroides (enterotype 1), Prevotella (enterotype 2), or Ruminococcus (enterotype 3).

Although it has been suggested that most individuals share specific bacterial phyla or 

genera, there is a huge range of variation of species among individuals (INSTITUTE OF 

MEDICINE, 2013). Some authors have suggested that the characterization of the microbiome 

of healthy individuals should be the initial approach. However, considering the huge microbial 

diversity, the gene expression profile has also been studied, because it represents a metabolic 

profile. It seems to be a more stable pattern among individuals (ARUMUGAM et al., 2011; 

HUMAN MICROBIOME PROJECT CONSORTIUM, 2012).

On the other hand, studies on the characterization of microbiome composition have found 

diversity to be relevant. TURNBAUGH et al. (2009) and QIN et al. (2010) observed that a 

smaller diversity of microorganisms in feces is directly related to obesity and inflammatory 

bowel disease, whereas FREDRICKS et al. (2005) observed that a great diversity of genital 

microorganisms is associated to bacterial vaginosis.

In this sense, human health or the characterization of a healthy microbiome depends on 

achieving and maintaining a complex homeostasis. When this balance is disturbed, negative 

effects occur, leading to changes in metabolic activities and/or in the bacterial dynamics, 

causing diseases (BÄCKHED et al., 2012; KUNDU et al., 2017).

Despite the recent developments in the human microbiome, its complexity and inter-

individual variations are still not completely clear.  Therefore, additional studies are required

to understand the microbiota’s structure, composition, as well as its determining factors 

(INSTITUTE OF MEDICINE, 2013).
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The development of the human microbiome: impacts on human health and disease 

The development of the human microbiome is a complex process, which is influenced by 

interactions between microorganisms and their host (FANARO et al., 2003).  Physical factors, 

such as oxygen, moisture and pH levels, as well as immunological factors, genetic 

characteristics, nutrient availability and microbial interactions significantly influence the local 

microbiota composition (FAUST et al., 2012; GOODRICH et al., 2014; HILLMAN et al., 

2017). 

The scientific literature suggests that the interaction between microorganisms and their 

hosts starts at birth (VAISHAMPAYAN et al., 2010). Nevertheless, some recent studies have

suggested the hypothesis that microbial colonization starts even before birth, since DNA of 

bacterial communities has been isolated from placenta, amniotic fluid, and meconium from 

healthy pregnancies (BEARFIELD et al., 2002; JIMÉNEZ et al., 2008; RAUTAVA et al., 2012; 

GOSALBES et al., 2013). However, it is during the delivery and postpartum period that 

microorganisms from the mother and the environment play an important role in the microbial 

colonization of the newborn’s gastrointestinal tract (GIT) (SCHWIERTZ et al., 2003). In the 

first phases of colonization, which occurs within the first week after birth, facultative anaerobes 

that belong to Enterobacterium, Enterococcus, and Streptococcus genera are predominant. 

Later, strict anaerobes, such as Bifidobacterium, Bacteroides, and Clostridium, become 

predominant when compared to facultative anaerobes (WEBER & POLANCO, 2012).

The delivery mode (vaginal or Cesarean section) seems to be one important factor in the 

development of the microbiota composition. The GIT of vaginally born infants is colonized by 

bacteria from the maternal genital and gastrointestinal tracts, such as Lactobacillus,

Bifidobacterium, Streptococcus, Prevotella, and Enterobacter. On the other hand, C-section 

infants are first exposed to hospital environment and skin bacteria of their mother, including 

the genera Staphylococccus, Corynebacterium, and Propionibacterium (SCHWIERTZ et al., 

2003; SALMINEN et al., 2004; BIASUCCI et al., 2008; YOUNES et al., 2018).

In addition, GRÖLUND et al. (1999) observed a delay in gut colonization by 

Lactobacillus and Bifidobacterium in C-section infants compared to vaginally born infants. The 

authors also suggest that differences in microbiota composition may persist up to the sixth 

month of life.  Comparing modes of delivery, PENDERS et al. (2006) also observed that infants

born by Cesarean delivery are more frequently colonized by Clostridium difficile, while 
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vaginally delivered neonates show a microbial profile that is predominantly characterized by 

Bifidobacterium longum and Bifidobacterium catenulatum (BIASUCCI et al., 2008).

Other factors may also influence the composition of the gut microbiota, such as 

gestational age at birth, hygiene conditions, use of medication and diet (MSHVILDADZE & 

NEU, 2010).

Regarding the gestational age, preterm infants have a particularly sensitive intestinal 

mucosal surface due to immature intestinal epithelial cells and may present exaggerated 

inflammatory responses to stimulation from commensal bacteria or pathogens (CLAUD & 

WALKER, 2001). Therefore, the interaction of preterm newborns with microorganisms is 

delicate: it can establish a stable microbiota or an imbalanced and abnormal situation (MAI et 

al., 2011).

An important and well-documented abnormality of the intestinal microbial composition 

and that offers a high risk to preterm infants is necrotizing enterocolitis (MOROWITZ et al., 

2010). MAI et al. (2011) showed the correlation between gut microbiota and this disease. Prior 

to the necrotizing enterocolitis diagnosis, they observed a decrease of Proteobacteria in the 

stool samples of preterm neonates compared to the control group. On the other hand, they 

observed a surge of Proteobacteria after the occurrence of necrotizing enterocolitis. In this 

study, MAI et al. (2011) suggested that the low exposure or colonization by Proteobacteria in 

the first week of life could compromise the adaptive immune response modulation in case of a 

subsequent increase of this population.

In addition, the use of antibiotics represents a risk factor for the occurrence of necrotizing 

enterocolitis, because antibiotics may interfere with the composition of the gut microbiota and 

in children may compromise the intestinal barrier function against pathogens 

(MSHVILDADZE & NEU, 2010).

Studies with term neonates reinforce the significant impact antibiotics have on gut 

microbiota. BRANDT et al. (2012) observed a reduction in anaerobic bacteria and Escherichia

and an increase of Klebsiella in a neonate that received treatment for 10 days, compared to a 

group of neonates who did not receive the treatment. Nevertheless, TANAKA et al. (2009) 

suggested that the microbiota tends to be restored after the treatment with antibiotics, although 

there is a possibility of some changes becoming permanent.

The use of antibiotics and better hygiene and sanitation, as well as nutrition, especially in 

the Western world, has contributed to reducing child mortality and increasing life expectancy. 

However, these conditions come at a cost: the progressive reduction of important bacteria 
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groups, which are essential to the development and strengthening of the immune system 

(PROKOPAKIS et al., 2013).

In 1989, David Strachan formulated the “Hygiene Hypothesis”, according to which 

infections in early childhood could reduce the risk of allergic diseases. The reduced exposure 

to microorganisms resulting from Western “antiseptic” conditions was to blame for the 

increased incidence of allergic and autoimmune disorders (PROKOPAKIS et al., 2013).

Since exposure to microorganisms is reduced, especially in childhood, the immune 

system is not appropriately stimulated, which encourages the onset of inflammatory bowel 

diseases and allergies (PROKOPAKIS et al., 2013). Although there is no consensus as to the 

correlation between gut microbiota and the etiology of immune diseases, studies have observed 

that individuals that manifest these diseases present a peculiar gut microbiota (NEUMAN & 

NANAU, 2012; D’ARGENIO et al., 2013).

PENDERS et al. (2007) studied the fecal microbiota of 957 one-month-old breast-fed 

infants and observed a positive association between the presence of Escherichia coli and the 

risk of developing atopic eczema. The same authors observed that the colonization by 

Clostridium difficile also presented a higher risk of eczema, allergic sensitization, and atopic 

dermatitis.

Studies of inflammatory bowel diseases (IBD), which include ulcerative colitis and 

Crohn’s disease, have shown that IBD subjects microbiome fluctuates more than those of 

healthy individuals, based on deviation from a newly defined healthy plane (HALFVARSON 

et al., 2017), and significant differences in gut microbial composition of diagnosed patients

(WRIGHT et al., 2015). The main observed differences in the composition of gut microbiota 

of IBD patients is low colonization by Clostridium leptum and Akkermansia muciniphila, and 

the presence of some unknown species (MANICHANH et al., 2006; NEUMAN & NANAU, 

2012). Specifically, in Crohn’s disease, E. coli is enriched, while Faecalibacterium prausnitzii

is found at lower abundance (WRIGHT et al., 2015). Interestingly, in the same individual, 

inflammatory and noninflammatory mucosal sites also present differences in terms of microbial 

community structure (WALKER et al., 2011).

Several studies have suggested diet therapy as an attempt to control the microbiota 

dysbiosis that occurs in IBD and successfully recover the balance of microbial composition 

(DAY et al., 2008, D’ARGENIO et al., 2013).

The study by D’ARGENIO et al. (2013) shows the modulation of the gut microbiota 

through therapeutic polymeric enteral nutrition consisting of proteins, antioxidants, and lipids 
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with anti-inflammatory properties. After eight weeks of treatment, the authors observed a 

microbiota profile in the individual with Crohn’s disease that was similar to an individual that 

did not have the disease.  

In fact, several studies have suggested the importance of nutrition for the intestinal 

microbial composition (WU et al., 2011; XIAO et al., 2014). The influence of nutrition on the 

composition of the gut microbiota can already be observed in early childhood, depending on 

the infant’s diet. 

According to PENDERS et al. (2006), exclusively formula-fed neonates show a higher 

incidence of E. coli, Clostridium difficile, Bacteroides, and Lactobacillus in their stool than 

their breastfed counterparts do. On the other hand, exclusively breastfed infants tend to have a 

more beneficial microbiota, predominantly groups of Bifidobacterium and Lactobacillus, and 

smaller populations of Bacteroides, C. difficile, Clostridium coccoides, Staphylococcus, 

Enterobacteriaceae, and E. coli (HARMSEN et al., 2000; PENDERS, 2006; SOLÍS et al., 

2010).

After weaning, the gut microbiota continues to develop until the infant is approximately 

two years of age. At this point, children reach a relative stability of the gut microbiota and 

resemble the microbiota of an adult (KOENIG et al., 2011). 

Several studies have suggested the importance of microbial colonization in childhood, 

leading to repercussions in the early life or in the adulthood (AJSLEV et al., 2011; KAPLAN 

& WALKER, 2012). In addition, studies have suggested a correlation between gut microbiota 

and chronic non-communicable diseases (CNCD), such as overweight/obesity (TURNBAUGH 

et al., 2006; 2009), type 1 diabetes (WEN et al., 2008), metabolic syndrome (VIJAY-KUMAR 

et al., 2010), and inflammatory bowel diseases (D’ARGENIO et al., 2013). 

Differences in colonization acquired during childhood may have consequences to the 

individual’s health or the development of CNCD (GOULET, 2015). When KALLIOMÄKI et 

al. (2008) studied the fecal microbiota of infants in early childhood (6 to 12 months), they found 

an inverse correlation between the presence of Bifidobacterium and overweight or obesity at 7 

years of age. Some species of microorganisms have been linked to changes in energy 

metabolism and weight gain (TURNBAUGH et al., 2006; KAPLAN & WALKER, 2012). 

Since the gut microbiota is characterized by its large diversity, studying its composition, 

particularly the factors that influence this composition, may offer ways of modulating the 

microbiota, when necessary, in order to maintain health and reduce the risk of diseases 

(MSHVILDADZE & NEU, 2010; KOENIG et al, 2011).
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The influence of diet on the composition of the gut microbiota

Diet is one of the most important factor in modulating the composition and metabolic 

activity of the human gut microbiota. The main dietary nutrients, particularly macronutrients 

(carbohydrates, proteins, and fats), their amounts, types, and ratios have a great impact on the 

gut microbiota. Diet can indirectly influence the intestinal transit time and luminal pH, which 

are closely linked to the composition of the gut microbiota (SCOTT et al., 2013).

The nutrients that are not absorbed after food is digested remain in the intestinal lumen 

to be used by gut microorganisms. Particularly Bacteroidetes, Firmicutes, and Actinobacteria

have an enzymatic complex that allows them to degrade and metabolize a wide variety of 

substrates from the digestive process (SCOTT et al., 2013).

Intestinal bacteria mainly rely on fermentation to obtain energy. Under anaerobic 

conditions, the main products of carbohydrate fermentation are gases (CO2, H2, and CH4) and 

short-chain fatty acids (SCFA); acetic acid (acetate), propionic acid (propionate), and butyric 

acid (butyrate) are the most abundant in a molar ratio of 3:1:1. The presence of SCFA reduces 

the luminal pH and is an important source of energy for enterocytes (SCOTT et al., 2013).

Particularly butyrate is the main source of energy for enterocytes. Propionate and acetate 

are transported to the liver, where they play important roles as substrates in hepatic 

gluconeogenesis and lipogenesis, respectively (IBRAHIM & ANISHETTY, 2012).

Since the quality and quantity of consumed nutrients vary from one individual to another, 

the amount of SCFA that is produced, and the composition of the GIT microbiota also differ, 

proving the close relation between diet and intestinal microbiome (MUSSO, GAMBINO & 

CASSADER, 2011).

LEY et al. (2006) investigated how diet influenced the composition of the gut microbiota 

in obese subjects and observed a lower ratio of Bacteroidetes compared to their lean 

counterparts. Interestingly, after putting these obese individuals on a carbohydrate and fat 

restricted diet, the authors observed a significant increase in the Bacteroidetes ratio and a 

microbiota profile that is more characteristic of lean individuals.

Similarly, changes in the gut microbiota were observed in individuals on a high protein 

and low carbohydrate diet. Their Eubacterium, Roseburia spp., and Bifidobacterium population 

and fecal butyrate levels were reduced (SANZ, SANTACRUZ & PALMA, 2008).

Protein fermentation by proteolytic bacteria, mainly represented by species of 

Bacteroides, results in a more diversified metabolite profile compared to carbohydrate 
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fermentation. In addition to SCFA, protein fermentation produces ammonia and branched-chain 

fatty acids, amines, and hydrogen sulfide. Some of the protein fermentation metabolites, such 

as ammonia and amines, may be toxic to the intestinal tissue and act as carcinogenic promoters 

(SCOTT et al., 2013). On the other hand, the ingestion of carbohydrates, including prebiotic 

carbohydrates, may reduce protein fermentation and the use of peptides by intestinal bacteria, 

and thus avoid the production of unwanted metabolites (PRETER et al., 2007).

In addition to protein, dietary fats may also be an important factor to change the gut 

microbiota (SCOTT et al., 2013). However, very few studies have investigated the effect of fat 

ingestion on the gut microbiota.

According to BRINKWORTH et al. (2009), a high-fat diet significantly reduced the 

production of SCFA and bifidobacteria population, compared to a low-fat diet. However, in 

that study the low-fat diet had to be complemented with carbohydrates to be adjusted for energy 

requirements. This made it difficult to come to conclusive results. 

WU et al. (2011) also observed evidence of an association between food intake and the

gut microbiota. The authors found a positive correlation between the ingestion of animal protein 

and fat and the prevalence of the genus Bacteroides, while the ingestion of carbohydrates was 

linked to the genus Prevotella. In addition, they observed that short-term changes to the diet 

did not cause significant alterations in the gut microbiota, and thus attributed microbial 

modulation to long-term dietary changes.

Concurrently, other studies have observed that specific foods/nutrients influence 

microbial dynamics. MASSOT-CLADERA et al. (2012) found a significant reduction in 

Bacteroides, Clostridium, and Staphylococcus species in the feces of rats that were on a 

standard diet enriched by 10% with cocoa compared to the control group that was only on the 

standard diet. Another study investigated the impact of polyphenols from black tea or red 

wine/grape juice in an in vitro simulator of the human intestinal microbiota. In both 

interventions, the authors reported a shift in the Firmicutes: Bacteroidetes ratio, and an increase 

in Klebsiella and Akkermansia in comparison with Bifidobacterium, Blautia coccoides, and 

Anaeroglobus (KEMPERMAN et al., 2013).

In fact, the diet plays a central role in the maintenance of health and prevention of diseases 

and seems to be directly linked to intestinal health. According to SCOTT et al. (2013), the 

maintenance of a healthy microbiota is linked to a diet high in non-digestible carbohydrates and 

a restricted protein and fat intake. 
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Therefore, studies that focus on clarifying how nutrients influence the modulation of the 

gut microbiota are essential, since they may offer a new approach for future nutritional 

interventions in order to reduce the risk of certain diseases and to maintain health (INSTITUTE 

OF MEDICINE, 2013).

The effects of prebiotics on health and modulation of the gut microbiota 

In the last years, food has been valued not only for their nutritional and sensory properties 

but also for their health benefits. In this context, prebiotic ingredients have received special 

attention (SAAD, 2006; MCGILL, 2009).

The more recent definition of prebiotic is “a substrate that is selectively utilized by host 

microorganisms conferring a health benefit” (GIBSON et al., 2017). By this definition, three 

criteria were required for a prebiotic: to be resistant to human enzymes and gastric acid, be 

fermented in the intestinal microbiota, and selectively stimulating the growth and/or activity of 

bacteria associated with health. The health effects of prebiotics include not only benefits to the 

gastrointestinal tract (e.g., inhibition of pathogens, immune stimulation), but also 

cardiometabolism (e.g, reduction in blood lipid levels, effects upon insulin resistance), mental 

health (e.g., metabolites that influence brain function, energy, and cognition), bone (e.g., 

mineral bioavailability), and beyond.

Oligosaccharides are the primary prebiotics, and according to ROBERFROID (2007), 

inulin and fructooligosaccharides (FOS) are among the main prebiotic oligosaccharides. In 

addition to inulin and FOS, the European Union also includes galactooligosaccharides (GOS) 

and lactulose in the prebiotic concept (KOLIDA & GIBSON, 2011).

Inulin occurs naturally in plants, such as chicory, onion, garlic, Jerusalem artichoke, 

tomato and banana. Oligofructose is found in wheat, honey, leek, banana and onion. 

Commercially available inulin and oligofructose are mainly produced from chicory and beet 

sugar (ROBERFROID, 2007).

The Brazilian Health Surveillance Agency ANVISA (in Portuguese, Agência Nacional 

de Vigilância Sanitária) has recognized the prebiotic properties of inulin and FOS (ANVISA, 

2008). Until December 2016, the legislation determined solid foods to contain a minimum 

required quantity of 3 grams and liquid foods, 1.5 grams. From 2017, the legislation determined 

a minimum of 5 grams of FOS/inulin should be recommended for daily intake, not exceeding 
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the maximum of 30 grams in daily consumption to receive the prebiotic health claim (BRASIL,

2016).

As long as they are not fermented, prebiotics exert an osmotic effect in the intestinal 

lumen. As soon as fermentation by the endogenous microbiota starts, especially in the colon, 

the production of gas and SCFA increases. In some cases, individuals with irritable bowel 

syndrome may not tolerate prebiotics. At low doses, however, they are generally well tolerated 

(SAAD, 2006).

Prebiotics increase bifidobacteria and SCFA levels. They protect against pathogens, 

reduce diarrhea, increase the absorption of nutrients and stimulate the immune system (MORO 

et al., 2006; LAVANDA et al., 2011; WHELAN, 2013).

Human breast milk is our first source of prebiotics. Several studies have attributed the 

main differences between the intestinal microbial composition of exclusively breastfed 

neonates and their formula-fed counterparts to the presence of oligosaccharides in breast milk 

(CHAMP & HOELBER, 2009). Human milk oligosaccharides promote the growth of 

bifidobacteria, protecting against potential pathogens and thus reducing the risk of several 

diseases (HINDE & GERMAN, 2012). 

Given the importance of these compounds, studies have focused their investigation on the 

effects of prebiotic supplements in infant formulas and pregnant women (CHAMP & 

HOEBLER, 2009; CEAPA et al., 2013). In formula-fed infants, the supplementation with a 

mixture of GOS/FOS (9:1 ratio; 8g/L concentration) reduced the incidence of infections 

(ARSLANOGLU, MORO & BOEHM, 2007). In infants at high risk for developing atopic 

dermatitis, on the other hand, the administration of GOS/FOS-supplemented hydrolyzed 

formula resulted in protection against developing this condition (MORO et al., 2006).

In pregnant women, the supplementation with a daily dose of 9 grams of GOS/FOS (9:1 

ratio) in the last trimester of pregnancy promoted the increase of bifidobacteria in maternal stool 

samples, although this increase was not observed in neonatal stool samples (SHADID et al., 

2007). In addition, CHAMP e HOEBLER (2009) highlighted that the administration of 

prebiotic supplementation during pregnancy is a tool to reduce the risk of gestational diabetes 

and excessive weight gain. The authors also suggested that supplementing the maternal diet 

with prebiotics is a dietary strategy for the primary prevention of CNCD for the new generation.

The evidences support the claim that the administration of oligosaccharides is beneficial 

to human health and reduce the risk of diseases, both in newborn infants and in pregnant 

women, and demonstrate the correlation between these compounds and microbial colonization. 
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The presence of oligosaccharides in human milk reinforces their importance in the early life on 

the health of infants (CEAPA et al., 2013).

Human milk: from nutrition to modulation of the infant’s intestinal microbiome 

Breastfeeding is considered the gold standard method of nourishment for infants. Except 

in very rare situations, breastfeeding should be encouraged, since it has numerous indisputable 

health, psychological, social, and economic benefits (WORLD HEALTH ORGANIZATION, 

2000).

The World Health Organization recommends exclusive breastfeeding, i.e. without any 

solid or liquid foods, except for medication and nutritional supplements, for the first 6 months 

of life and continued breastfeeding with complementary foods up to 2 years of age or beyond 

(WORLD HEALTH ORGANIZATION, 2000).

Human milk is a complex biological fluid with a species-specific composition, which 

meets all nutritional requirements and promotes optimal infant growth (FERNÁNDEZ et al., 

2012).

The first fluid produced in the first few days postpartum is colostrum. It is secreted in 

small amounts. Colostrum contains low concentrations of lactose, but is rich in protein and in 

immune components, including immunoglobulin A (IgA), lactoferrin, leukocytes, and 

developmental factors, such as the epidermal growth factor (EGF), indicating its function to be 

immunologic and trophic (BALLARD & MORROW, 2013).

Transitional milk typically occurs from 5 days to two weeks postpartum. It shares some 

of the characteristics of colostrum, but is higher in carbohydrates and fat. By four to six weeks 

postpartum, human milk is considered fully mature, is rich in carbohydrates and fat and remains 

relatively stable in composition over the course of lactation (BALLARD & MORROW, 2013).

The nutrients of human milk originate by synthesis in the lactocyte, from maternal stores 

or diet. The nutritional quality of human milk is conserved, but the maternal diet is an important 

factor for vitamins and the fatty acid composition of human milk (VALENTINE & WAGNER, 

2013).

The relationship between maternal diet and human milk composition became clear in 

ALLEN (2012), who analyzed studies, which showed that maternal supplementation of 

vitamins, such as thiamine (vitamin B1) and pyridoxine (vitamin B6), during lactation, was 

effective to increase their human milk concentrations. JENSEN et al. (2000) observed that the 
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supplementation of docosahexaenoic acid (DHA) promoted higher concentrations of this 

essential fatty acid in the breast milk of supplemented women compared to the control group.

Similarly, NISHIMURA et al. (2014) reported that the maternal dietary DHA and 

eicosapentaenoic acid (EPA) content during late pregnancy may affect the fatty acid 

composition of mature breast milk. The study also shows that the maternal dietary intake of ω-

3 to ω-6 fatty acid ratio, during late pregnancy and the postpartum period, can affect the 

polyunsaturated fatty acid composition of breast milk.

In addition to offering excellent nutritional value, human milk also plays an essential role 

in the development of the neonatal gut microbiome, mainly due to the oligosaccharides and 

microorganisms that naturally occur in human milk (BODE, 2012; FERNÁNDEZ et al., 2012).

Human milk oligosaccharides, remotely known as “bifidus factor”, are the most studied 

compounds as to the modulation of the neonatal gut microbiota (BARILE & RASTALL, 2013). 

They result from the addition of monosaccharides to lactose in the mammary gland by

glycosyltransferases (BALLARD & MORROW, 2013).

Proportionally, human milk oligosaccharides constitute the third most abundant solid 

compound of human milk. Over 200 different structures have been defined for human milk 

oligosaccharides. Since they are not digested by human enzymes, they are used as energy 

substrate for intestinal bacteria (WARD et al., 2006; BALLARD & MORROW, 2013; BARILE 

& RASTALL, 2013).

Human milk oligosaccharides contain fucose and sialic acid and share common structural 

patterns with the glycans present on the infant’s intestinal epithelia, which are known to be 

receptors for pathogens (BARILE & RASTALL, 2013). These oligosaccharides provide a 

defensive strategy: they resemble glycans and therefore prevent binding of pathogens to 

epithelial cells (MORROW et al., 2005).

Interestingly, there are differences in the human milk oligosaccharides composition along 

the lactation period, and among the lactating women. According to BODE (2012), the major 

concentration is found in the colostrum, while the mature milk has lower concentrations. 

Besides, genetic differences in the activities of the Secretor and Lewis blood group system

genes lead to differences in the fucosylation of the human milk oligosaccharides, influencing 

the presence of specific structures.

Several studies have also shown the selective properties of human milk oligosaccharides 

(SELA et al., 2008). WARD et al. (2006) observed that Bifidobacterium infantis used human 
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milk oligosaccharides as sole source of carbon, while L. gasseri was not able to use this 

carbohydrate as energy substrate.

In fact, the presence of Bifidobacterium in fecal samples of exclusively breast-fed infants 

has been extensively discussed in literature and linked to health benefits and to the reduction of 

risks of developing diseases in the short- and long-term (BISGAARD et al., 2011; RINGEL-

KULKA et al., 2013).

In addition to oligosaccharides, microorganisms that naturally occur in human milk are 

believed to participate directly in the composition of the infant’s intestinal microbiota. In the 

last couple of years, the identification of nonpathogenic microorganisms in human milk samples 

has received increasing attention, considering human milk as a continuous resource of 

commensal, symbiotic or potentially probiotic bacteria for the infant gut (MARTÍN et al., 2003; 

MARTÍN et al., 2004; FERNÁNDEZ et al., 2012). 

The relevance of microorganisms found in human milk becomes clear, when we consider 

that an infant consuming approximately 800 mL/day of milk would ingest between 105 and 107

microorganisms daily (MARTÍN et al., 2004). Bacterial species that have been isolated from 

human milk by cultured and uncultured methods include Lactobacillus gasseri, L. rhamnosus, 

L. plantarum, L. fermentum, Enterococcus faecium, Bifidobacterium breve, B. adolescentis, B. 

bifidum, B. longum, and B. dentium (MARTÍN et al. 2007; MARTÍN et al., 2009; MARQUES 

et al., 2010).

In 2011, the first study was published that focused on the characterization of the human 

milk microbiome through DNA pyrosequencing and that offered a global overview of 

commonly found genera (HUNT et al., 2011). This study identified a high complexity and inter-

individual variability, although they shared the following groups Streptococcus,

Staphylococcus, Serratia, Pseudomonas, Corynebacteria, Ralstonia, Propionibacterium,

Sphingomonas, and Bradyrhizobiaceae (HUNT et al., 2011). 

Other studies observed high proportions of Weisella and Leuconostoc populations in 

colostrum samples, followed by Staphylococcus, Streptococcus, and Lactococcus (CABRERA-

RUBIO et al., 2012). In addition, human milk samples taken from healthy women at days 3 -

6, 9 -14 and 25 - 30 postpartum identified the genera Bifidobacterium, Bacteroides, and Blautia, 

which are strict anaerobes commonly found in the intestinal microbiota (JOST et al., 2013).

Although several studies have demonstrated the presence of microorganisms naturally 

occurring in human milk, the mechanisms by which these microorganisms reach human milk 

is not entirely clear (FERNÁNDEZ et al., 2012).
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One hypothesis to explain the presence of bacteria in human milk is that these

microorganisms would come from the skin or oral cavity microbiota of the infant, since these 

species, which are often isolated from milk, are sometimes found on these sites (BIAGI et al., 

2017). 

Although many of the isolated species are found on human skin and in human milk, they 

do not always share the same genotypic traits. The presence in human milk of strictly anaerobic 

species, such as the Bifidobacterium, diverges from the traditional assumption of contamination 

through the skin or oral cavity of the infant (MARTÍN et al., 2003; FERNÁNDEZ et al., 2012; 

JOST et al., 2013a).

A hypothesis to the origin of human milk bacteria assumes that milk microbiota also 

originates from the mother’s gut (JEURINK et al., 2013). According to this hypothesis, bacteria 

would reach the mammary gland via an endogenous route, the entero-mammary pathway. This 

mechanism would involve dendritic cells, which would penetrate the gut epithelium and be able 

to take up commensal bacteria directly from the maternal gut lumen (JEURINK et al., 2013).

Once the gut bacteria are in the dendritic cells, they can reach different locations through 

the circulatory system from the gut-associated lymphoid tissue (FERNÁNDEZ et al., 2012). 

This mechanism was firstly suggested in the study of RESCIGNO et al. (2001), in which a 

strain of Salmonella typhimurium with no invasive genes was isolated from the spleen of mice, 

after oral administration.

In fact, ALBESHARAT et al. (2011) and JOST et al., (2013a) reported that some species, 

particularly those of the genera Bifidobacterium and Lactobacillus, may be present in maternal 

fecal, breast milk or infant fecal samples. These studies suggest a vertical transfer of 

microorganisms from the maternal gut to the breast milk and from there to the infant gut.

In this line, a recent study identified bacteria living “free” (in “planktonic” state) and 

associated to human immune cells, observed by SEM microscopy and fluorescence microscopy. 

The results reinforce the hypothesis of a translocation of bacteria to the mammary gland through 

blood and/or lymph stream by its association to human immune cells (BOIX-AMORÓS et al., 

2016).

Interestingly, MACPHERSON e UHR (2004) also observed that dendritic cells are able 

to take up commensal microorganisms from the gut lumen and, contrary to what happens when 

macrophages are involved in the response, allow some commensal microorganisms to remain 

alive for several days. This mechanism could be responsible for allowing viable bacteria to 

reach the mammary glands (THUM et al., 2012). 
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On the other hand, some studies, which analyzed the human milk microbiome, found low 

proportions of Bifidobacterium and Lactobacillus (HUNT et al., 2011; CABRERA-RUBIO et 

al., 2012), contrary to what had been previously observed (MARTÍN et al., 2007; MARTÍN et 

al., 2009). Although differences in the methodological approach for bacteria identification 

among the studies might be one reason for differences in those results, the authors attribute 

these differences to genetic, cultural, environmental or dietary factors affecting the studies’ 

participants (HUNT et al., 2011).

Indeed, CABRERA-RUBIO et al. (2012) observed that differences in the composition of 

the human milk microbiota were related to the stage of breast milk (colostrum, transitional milk 

and mature milk), the delivery mode (vaginal or Cesarean section), and maternal factors, such 

as the pre-pregnancy body mass index (BMI) and pregnancy weight gain.

The above-mentioned studies suggest a huge variability in terms of human milk bacterial 

community among individuals, as well as in terms of nutrients, immunological and 

oligosaccharides composition. Given that the human milk microorganisms are important 

elements for the development of the infant gut microbiota at the early life, to identify the factors 

that can influence the human milk microbiota is essential, since they may indirectly influence 

the infant colonization (FERNÁNDEZ et al., 2013).

JUSTIFICATION

Human milk is known to be the most important component for the infant’s growth and 

metabolic and immune development (CABRERA-RUBIO et al., 2012). In addition, the

microorganisms that naturally occur in breast milk are among the main factors responsible for 

the infant gut microbiota composition during lactation (COLLADO et al., 2015).

Several studies have discussed how maternal factors influence the nutritional composition 

and bioactive compounds of human milk (ALLEN, 2012; BALLARD & MORROW, 2013). 

However, so far, very few studies have assessed whether maternal factors may influence the 

composition of the human milk microbiome (HINDE & GERMAN, 2012; CABRERA-RUBIO 

et al., 2012; BALLARD & MORROW, 2013). The maternal diet therefore deserves special 

attention.

Studies suggest that diet may play an important role in the composition and metabolic

activity of the gut microbiota (WU et al., 2011, SCOTT et al., 2013), as well as, in the nutrients 

composition of the human milk in lactating women. Considering that the maternal gut, and the 
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milk nutrients composition may influence the establishment of commensal bacteria in the 

human milk, it is very important to assess the impact the maternal diet may have on the 

composition of the human milk microbiome (FERNÁNDEZ et al., 2013; JEURINK et al., 2013, 

JOST et al., 2013b; BOIX-AMORÓS et al., 2016). 

It also seems that no study has so far evaluated the effect of the maternal diet during 

pregnancy, and the maternal diet supplementation with FOS on the human milk microbiota. 

Only one recent study has evaluated the effect of the maternal diet during lactation in 

modulating the human milk microbiota (WILLIAMS et al., 2017). However, the reduced 

number of participants and the presence of confounding factors in that study further 

substantiates the relevance of this research study.

OBJECTIVES

General

• To investigate the correlation between the maternal diet and the human milk microbiota profile. 

In addition, to assess the impact of maternal diet supplementation with prebiotics 

(fructooligosaccharides) on the human milk microbiota during lactation. 

Specific

• To investigate the correlation between the maternal diet during pregnancy (“long-term” food 

intake) and the first month of lactation (“short-term” food intake) with the human milk 

microbiota profile.

• To assess the influence of the maternal diet supplementation with prebiotics 

(fructooligosaccharides) on the dynamics of the Bifidobacterium and Lactobacillus population 

in human milk.
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CHAPTERS

The current thesis is organized in the format of two scientific articles (Chapter 1 and 

Chapter 2), which are inside the scope of this thesis, as follows:

a. Study I: to investigate the correlation between the maternal diet during pregnancy 

(“long-term” food intake) and the first month of lactation (“short-term” food intake) 

with the human milk microbiota (Chapter 1: Maternal dietary patterns in pregnancy 

drive the human milk microbiota profile, whereas minor changes are evidenced by 

short-term diet during lactation).

b. Study II: to assess the influence of the maternal diet supplementation with prebiotics 

(fructooligosaccharides) on the dynamics of the Bifidobacterium and Lactobacillus

populations in human milk (Chapter 2: Response of the human milk microbiota to a 

maternal prebiotic intervention is individual-dependent and influenced by the 

maternal age).

The first study was a cross-sectional study, and the second study was a clinical trial. 

Both studies were conducted according to Figure 1 and Figure 2.
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24-HR: 24-hour food recall; HM: Human milk; QFFQ: Quantitative Food Frequency Questionnaire; FOS: Fructooligosaccharides.
Supplementation group: 4.5g of Fructooligosaccharides (FOS) + 2g of Maltodextrin; Placebo group: 2g of Maltodextrin.
Study I: Maternal dietary patterns in pregnancy drive the human milk microbiota profile, whereas minor changes are evidenced by short-term diet during lactation
Study II: Response of the human milk microbiota to a maternal prebiotic intervention is individual-dependent and influenced by the maternal age

Day 7 (± 3)
Day 50 (± 4)Day 30 (± 4)

Delivery

Pregnancy

Study I Study II

Socioeconomic 
Questionnaire

Measuring weight / 
height 

24-HR

1st Interview

Measuring weight 

24-HR +

QFFQ

HM collection

Screening and 
randomization for 

intervention trial with 
FOS / placebo

2nd Interview Placebo group

Measuring weight 

24-HR

HM collection

3rd Interview

Supplementation group

Figure 1. Study designs for data and milk samples collection.
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Study I: Maternal dietary patterns in pregnancy drive the human milk microbiota profile, whereas minor changes 
are evidenced by short-term diet during lactation
Study II: Response of the human milk microbiota to a maternal prebiotic intervention is individual-dependent and 
influenced by the maternal age

FOS: Fructooligosaccharide
OTU: Operational Taxonomic Unit 

Excluded (n = 20)

- Refused to participate (n = 0)
- Did not meet inclusion criteria (n = 0)
- Did not attend all the meetings (n = 14)
- Whose milk samples were lower or equal 
than 10,000 or higher or equal than 
100,000 OTUs counts (n = 6)

Excluded (n = 19)

- Refused to participate (n = 0)
- Did not meet inclusion criteria (n = 3)
- Did not attend all the meetings (n = 14)
- Whose milk samples were lower or equal 
than 10,000 or higher or equal than 
100,000 OTUs counts (n = 2)

Excluded (n = 2)

- Did not meet inclusion criteria (n = 2)

Study II
Randomized

(n = 92)

Allocated to 
intervention (FOS) 

(n = 48)

Allocated to 
intervention (Placebo) 

(n = 44)

Concluded the trial 

n = 28

Concluded the trial 

n = 25

Study I
(n = 94)

Assessed for eligibility
(n = 243)

Excluded (n = 149)
- Refused to participate (n = 12)
- Did not meet inclusion criteria (n = 10)
- Did not attend all the meetings (n = 119)
- Whose milk samples were lower or equal than 
10,000 or higher or equal than 100,000 OTUs 
counts (n = 8)

Figure 2. The flow diagram of participant recruitment, for each Study.
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GENERAL CONCLUSIONS

In this study, we described for the first time the effects of the maternal diet during 

pregnancy and during the first month of the lactation period on the human milk bacterial 

microbial community. In addition, we investigated the impact of maternal diet supplementation 

with prebiotics (fructooligosaccharides) on the human milk microbiota during lactation.

Our results suggested that the maternal diet may influence the human milk microbiota, 

and the diet during pregnancy is a stronger factor over the bacterial community structure. Minor 

changes were found by the maternal short-term food intake or the maternal intervention with 

the prebiotic, and the changes seem to be individual-dependent and influenced by the maternal 

age, particularly in the intervention study.
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Attachment 5. Quantitative Food Frequency Questionnaire (QFFQ)
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