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Abstract

This study has as objective to determine total mercury (Total Hg) levels by atomic absorption spectrophotometry in 134 individuals 
edible part of Mullus argentinae, in two different fishing areas and two seasons in Rio de Janeiro State. Also, proximate composition 
was performed. Total Hg results in wet weight basis ranged from 0.0867 to 0.7476 µg.g-1 in muscle; 0.0023 to 0,1034 µg.g-1 in 
flippers; and 0.0177 to 0.1849 µg.g-1 in skin. Mean evaluated moisture was 73.39%; protein was 18.76%; lipid concentration of 
5.36%; carbohydrates of 2.35%; and ashes were 0.85%. Results showed that Total Hg contents was lower than accepted limits 
established by regulatory organization. Higher averages were observed in muscle (0.2441 µg.g-1) when compared with skin (0.2386 
µg.g-1) and flippers (0.0195 µg.g-1). In general, samples collected on summer showed higher values of total Hg when comparing to 
winter. Regarding beach areas there was no significant difference (p>0.05). We can conclude that this specie should be cautious 
consumed because of total Hg bioaccumulation characteristics, although neither levels were above limits established. 
Keywords: bioaccumulation, demersal fish, direct mercury analyzer, spectrophotometry, trace elements.

Resumo

o objetivo deste estudo foi determinar o teor de mercúrio no tecido comestível de Mullus argentinae, conhecido como peixe trilha, 
espécie amplamente consumida no Rio de Janeiro, Brasil. Foi determinado o teor de mercúrio total (Hg total) por espectrofotometria 
de absorção atômica em 134 amostras, coletados em duas áreas e estações climáticas diferentes. Além disso, foi avaliada a 
composição centesimal das amostras. Os resultados de Hg total em peso úmido variaram de 0,0867 a 0,7476 µg.g-1 no músculo; 
0,0023 a 0,1034 µg.g-1 nas nadadeiras; e 0,0177 a 0,1849 µg.g-1 na pele. Os valores médios da composição centesimal foram 
de 73,30% de umidade, 18,76% de proteína, 5,36% de lipídios, 2,35% de carboidratos e 0,85% de matéria mineral. Os resultados 
das 134 amostras analisadas demostraram que os teores de Hg Total apresentam concentração inferior aos limites aceitos pelos 
órgãos reguladores. As maiores médias foram observadas no músculo (0,2441 µg.g-1) quando comparadas à pele (0,2386 µg.g-1) 
e nadadeiras (0,0195 µg.g-1). Em geral, as amostras coletadas no verão apresentaram maiores valores de Hg total em relação 
ao inverno. Em relação aos locais de coleta não houve diferença significativa (p> 0,05). Podemos concluir que esta espécie deve 
ser consumida com cautela devido às características de bioacumulação do Hg total, apesar das médias apresentadas estarem 
abaixo dos limites estabelecidos pela legislação.
Palavras-chave: analisador direto de mercúrio, bioacumulação, elementos traço, espectrometria, peixes demersais.

Introduction

Fish consumption is considered worldwide as a balanced and 
healthy diet once it provides high-quality protein, polyunsaturated 
such omega-3, other essential nutrients which are related as 
an important food matrix to ensure nutritional quality. Although, 
possible chemical contamination can lead to harmful effects on 
human healthy, including Alzheimer´s disease, Parkinson´s, 
Autism, depression, and anxiety. There are also reports since 
2000s, about low dose mercury related to high blood pressure, an 
increase risk of heart attacks, and higher “bad” LDL cholesterol 
(ZAHIR et al. 2005; ZHANG et al. 2018).

Among inorganic contaminants in fish, the most worrying is 
mercury, one of the most toxic environmental pollutants, due 
to metillated form (MeHg) that could be incorporated by many 
animal species, including humans, throughout food chain by 
bioaccumulation process. It is well known that fish consumption 
is the major source for human mercury exposure. The path of 
methylmercury into the human body is explained through the 
formation of water-soluble methylmercury complexes in body 
tissues that are attached to thiol groups in protein, certain 
peptides, and amino acids (CLARKSON and MAGOS, 2006; 
FARINA and ASCHNER, 2019).
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As organic mercury’s high or even low ingestion can lead to 
accumulation on muscles, bones, liver, kidneys and brain, 
agencies and governments worldwide developed regulations 
and recommendations to protect public health regarding toxic 
substances (DE AQUINO et al. 2017). In Brazil, it was established 
the maximum residue limits of 500 mg.kg-1 Hg for non-predatory 
fish and 1,000 mg.kg-1 Hg for predatory fish (COMMISSION 2006; 
BRAZIL 2013a). 

The argentine goatfish (Mullus argentinae) is a great commercial 
important fish in Rio de Janeiro State, due to its low coast 
and flavor, being highly consumed on the coast. Inhabitant of 
subtropical marine water (LUQUE et al. 2002; DI AZEVEDO 
and IÑIGUEZ, 2018) the M. argentinae is a marine demersal 
benthonic and predatory fish living in depth range of 20-60 m, 
occurring on south and southeast of Brazil (BONSIGNORE et 
al. 2018). As the flavor is like shrimp and is considered low cost, 
present high consumption, especially in the summer.

Therefore, the aim of this study was to determine total mercury 
concentration on M. argentinae in two beach areas and in 
different seasons in Southeastern, Brazil. 

Material and Methods

A total of 134 individuals were caught from two fishing areas 
in Angra dos Reis (23o 0´36ʺ S, 44o 19ʹ 6ʺ W) (n=35) between 
May and September of 2017 and Cabo Frio (22o 52ʹ 43ʺ S 42o 1ʹ 
12ʺ W) (n=99) between March and October by local fishermen. 
Both areas were chosen due to the importance they represent 
in tourism in the southeast region and due to significant 
consumption of marine fish. The collections included months 
with different climatic variations, with the gold of evaluating 
the influence of seasonality on total Hg concentration, as well 
as evaluating possible differences between the capture areas. 
To evaluate the seasonality effects on total Hg concentration, 
samples were divided according the water temperature during 
catch. Between June and September, the average water 
temperature was 23,7ºC whiles between October and May were 
26,4ºC. Fishes were transported in isothermal containers with 
ice to Federal Fluminense University.

In laboratory conditions, samples of the muscles, fins and skin 
were comminuted and stored at -20ºC until the analyzes were 
performed. 

The moisture was determinate by an infrared equipment (Mettler 
Toledo LJ16, São Paulo, Brazil); Crude protein was calculated by 
converting the nitrogen content, determined by micro Kjeldahl’s 
method (AOAC 2016). Total lipid was determined according 
Soxhlet extraction method (AOAC 2016) and ash content using 
pre-dried samples obtained from moisture analysis using muffle 
oven at 550oC. Carbohydrate content were calculated based 
on difference [Carbohydrate = 100% - (% moisture + %ash + 
%crude protein + %fat)].

Total Hg were determined using thermal decomposition 
amalgamation atomic absorption spectrometry method (TDA-
AAS), with a direct mercury analyzer (DMA – 80 Milestone®, 
Sorisole (BG), Italy) using US-EPA 7473:2007 method.  Quartz 
samples boats (Milestone, DMA 8347) were used in an automatic 
sampler. The pyrolysis process (sample heated) was controlled 
by an internal thermocouple (ATC). Then, Hg is trapped in a gold 
amalgamator (Milestone, DMA 8134). To ensure Hg reduction in 

this stage a catalyst system is employed (Milestone, DMA 8333). 
After trapped mercury, the gold amalgamator is heated and a 
system consisting of a low-pressure mercury vapor lamp, which 
emits light at 253,65 nm wave length and a silicon UV diode as 
a detector performs the detection of elemental mercury. Oxygen 
(White Martins, São Paulo, Brazil) was used as reagent and 
carrier gas for Hg vapours. The optimized conditions for drying 
and decomposition (pyrolysis) using 60 mg of sample were 200 
°C for 60 s and 600 °C for 180 s, respectively. The instrument 
was calibrated each day using standard reference materials 
(SRM). Blanks (an empty boat) and standard reference material 
were analysed at the beginning of every batch of 10 samples 
to assess accuracy to quantify total Hg a calibration curve was 
elaborate (R2 = 0,993). 

All material used was decontaminated washing with a common 
detergent rinsing twice with Milli Q quality water and soaking 
into a clean diluted HNO3 20% (v/v) bath for 48 h, rising with 
ultra-pure water (Milli-Q). Finally, all material was dried in clean 
environment. All the reagents were of analytical grade.

Accuracy of the results was checked by using certified reference 
material from National Institute for Science and Technology (NIST 
1577b-bovine liver) and International Atomic Energy Agency (IAEA 
336-lichen) in triplicate analyses. Quartz samples boats were 
washed, rinsed, dried, and heated at 650oC for 3 min in DMA-80 
analyzer. Total mercury quantified in the reference materials were 
within 87 and 86% of the mean certified values. Calibration curves 
were prepared by successive dilutions of a certified standard 
solution at 1000 mg L−1 of Hg in 0.5 % (v/v) HNO3. 

Data were analyzed using Graph Pad Prism 5.0 software. T-test 
was used for means and standard deviations. One-way ANOVA 
was used to estimate differences between fish species. The 
significance level was p < 0.05.

Results and Discussion

Proximate composition
The proximate composition in most fish, according to F.A.O./
W.H.O. (2011), is primarily water, proteins, and lipids making up 
about 98% of the total mass, and the other minor constituents 
include carbohydrates, vitamins, and minerals and can varies 
due to factors as seasonal condition, diet, sex and habitat (Rani 
et al. 2016; Wu et al. 2019; Hossain et al. 2019), geographical 
locations, stages of maturity, and sizes (W.H.O./F.A.O. 2010; 
ROMOTOWSKA et al. 2016; FERNANDES et al. 2018; 
LINHARTOVÁ et al. 2018). According to Stancheva et al. (2013) 
edible fish tissue contains 60–84% water, 15–24% protein and 
0.1–22% lipids. The proportions of the constituents are species-
specific and the main variations in proximate composition between 
species occurs in moisture and lipids content. Formers reports, 
suche as Jacquot (1961) and Pal et al. (2018) already described 
that environmental factors such as living conditions and eating 
habits, can affect the chemical composition of fish. Rulev and 
Makarova (1959) and Abraha et al. (2018) already observed a 
difference in the levels of moisture, protein and lipids according to 
the season, as well as Ludorf (1963) and Bandarra et al. (2018) 
who described the place of capture as variable for fish composition. 

In this study, no differences (p>0.05) were observed between 
areas and seasons for moisture, protein, lipid and ash (wet basis). 
Moisture was 73.35% on average, protein ranged between 
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14.58% to 23.18%, lipid and ash were 5.49% and 0.88% on 
average respectively. 

Table 1: Proximate composition (%) in Mullus argentinae 
captured in beach areas, Angra dos Reis and Cabo 
Frio, Rio de Janeiro, Brazil.

Moisture Protein Lipid Carbohidrates Ashes

Angra dos 
Reis

73.39 ± 
3.55a

18.76 ± 
2.31a

5.36 ± 
1.57a 2,35 ± 1,75a 0.85 ± 

0.10a

Cabo Frio 73.31 ± 
2.82a

17.84 ± 
1.64a

5.67 ± 
2.14a 2,26 ± 1,8a 0.93 ± 

0.10a

a, b	Different letters in the same column indicate significant difference 
(p<0,05). 

Generally, most type of marine organisms are characterized 
by lipid levels lower than 3%. The results from the present 
study demonstrated that this species was also characterized 
by a medium lipid content (4–8 g.100 g–1 w.w.). Tropical water 
fish have lower lipid content when compared to cold water 
(ARMSTRONG et al. 1991; DE SOUZA et al. 2020). This variation 
occurs not only due to the water temperature, but also due to 
the need for food of different species during times of growth and 
reproduction, and also due to the availability of food, changing 
the use of the lipid stock by the fish (MARSHALL et al. 1999; 
MUELLER et al. 2017; CHANG et al. 2018).
The average moisture content for fish according to Hart and 
Fisher (1997) varies from 64 to 90% and may vary according 
to several factors, including the time of collection. As for the 
carbohydrate content, the concentrations show little variation 
between species and the results obtained in this study are similar 
to those found by Siddique et al. (2012) and Suvitha (2015).
Demersal species generally have lower lipid and energy values 
as commented by Ball et al. (2007) and Kaewmanee et al. 
(2015). This fact is related to demersal diet and feeding habits, 
which also interferes in fatty acid proportions as reported by 
Würzberg et al. (2011). Vollenweider et al. (2010) observed 
that species inhabiting deep waters have lower lipid content 
because the environment where they live is less influenced by 
climate change, requiring less energy expenditure to carry out 
their biological activities. As the food base of demersal species is 
inhabitant of deep waters, consequently their lipid content is also 
low. The effects of marine fish lipids on coronary heart disease, 
atherosclerosis, thrombosis, and blood pressure have been 
studied by various authors (PRATO and BIANDOLINO 2012; 
GIL and GIL 2015; CHANG et al. 2017; JOHNSEN et al. 2018). 
One of the reasons is that marine fish are the most excellent 
sources of n-3 PUFA (polyunsaturated fatty acids) for human 
health (CONWAY et al. 2018; ZACEK et al. 2018). 
Protein content of fish is considered low if it is below 15%. In this 
study, edible tissue showed good protein levels (14,58-23,18%). 
Njinkoue et al. (2016) and Durmus et al. (2017) obtained similar 
protein levels in marine fish as this study. Fish protein intake bring 
benefits for human health, since it provides essential amino acids, 
such as lysine and methionine (Béné et al. 2015), and antioxidant 
peptides (Sila and Bougatef 2016). Besides, according FAO 
(2020), fish represented 17% of the global population’s intake of 
animal protein and 7% of all protein consumed in 2017. 
Despite nutritional value of fish, it is important to point that 
environmental pollution can interfere with this concept, causing 

damage to the quality of fish as food. We must consider that 
organic mercury is lipophilic and can also interfere in lipid quality.

Mercury determination
Few studies have considered mercury content and proximate 
composition in Mullus argentinae captured in the subject areas 
of this study. 
According to F.A.O./W.H.O. (2018) Hg is one of the most toxic 
elements among the studied heavy metals and exposure to 
high level of this element could permanently damage the brain, 
kidneys and developing fetus. In the present study, selective 
portions were chosen because their contamination degree 
is related to the degree of contamination of the muscle as 
describes by Cervenka et al. (2011). As in the species evalueted 
in this study the fins are also consumed, finding out the degree 
of contamination of them is essential to calculate the risk of 
intoxication.  
The higher detected averages of Hg in samples from Angra 
dos Reis (n=35) and Cabo Frio (n=99) were in muscle (0,1707 
and 0,2269 mg.kg–1 w.w), whereas flippers contain the lowest 
averages (0,0126 and 0,0212 mg.kg–1 w.w) as shown in Table 
2. Muscle has a high potential for mercury accumulation due to 
the chemical affinity of the contaminant with the thiol group of 
amino acids, while the mercury concentrations in the skin are 
due to the adsorption process directly from the environment in 
which they are found (Polak-Juszczak, 2018).

Table 2: Total Hg (µg.g-1) in muscle, flippers and skin of Mullus 
argentinae captured in different water temperature 
(26,4ºC and 23,7ºC) in Cabo Frio and Angra dos reis, 
Rio de Janeiro, Brazil.

26,4ºC 23,7ºC

Muscle 0.1707 ± 0.0021 b 0.2269 ± 0.0145 a

Flippers 0.0126 ± 0.0012 a 0.0212 ± 0.0028 a

Skin 0.0813 ± 0.0016 b 0.1399 ± 0.0048 a

a,b Different letters in the same row indicate significant difference (p<0.05). 

Compared to our results Naccari et al. (2015), Jeevanaraj et al. 
(2016) and Sánchez-Muros et al. (2018) had similar results in 
demersal fish. Demersal species generally accumulate higher 
concentrations of heavy metals than pelagic fish (JIANG et al. 
2018). The same occurs when compared benthic and pelagic fish 
species (HOSSEINI et al. 2013; MONIKH et al. 2013; ARCAGNI 
et al. 2018), mainly related to diet and feeding habits. In addition 
to diet and eating habits, total Hg in edible tissue may vary due 
to biological and environmental factors such as size, weight, lipid 
content, climatic variations, geographical conditions and pollution 
(WOLFF et al. 2016; AZAD et al. 2019; SILVA et al. 2019).
Temporal variations of total mercury concentration were detected 
in muscle and skin. Higher averages were observed in lower 
water temperature. Eutrophication may be the reason of this 
difference. This process influences nutrients availability in the 
aquatic ecosystem, which can lead to different levels of mercury 
contamination (CRESSON et al. 2015; DODDS and SMITH 
2017). Poste et al. (2015) demonstrate in their study that a high 
phytoplankton biomass and growth rates, which occurs during 
eutrophication process, may reduce the potential for high total 
mercury in fish. Active phytopalnkton biomass is higher in larger 
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temperatures in tropical waters (COTOVICZ JR. et al. 2017) 
which elucidates the lower concentrations of total mercury in 
hot weather in this study. 
Angra dos Reis and Cabo Frio attract economic activities due to 
their scenic tourism. Although these activities generate income 
and employment, they also bring destruction to the natural 
environment, including water pollution of oceans and rivers (Silva 
et al. 2011; Guerra et al. 2013). Mercury levels in fish sampled 
from two sampling locations showed significant differences 
(Table 3). Higher mercury averages in muscle and skin were 
found in fish sampled from Angra dos Reis (0.3017 µg.g-1 for 
muscle, 0.0193 µg.g-1 for flippers and 0.3105 µg.g-1 for skin). 
The difference in concentrations can be explained by the intense 
idustrial activity in the region, which increases the concentration 
of waste dumped in the environment (Brazil 2017b), increasing 
the levels of environmental pollution and methylating bacteria, 
making it possible to increase the levels of methyl mercury 
bioavailable in the aquatic environment.

Table 3: Total Hg (µg.g-1) in muscle, flippers and skin of Mullus 
argentinae captured in beach areas Angra dos Reis 
and Cabo Frio, Rio de Janeiro, Brazil.

Muscle Flippers Skin

Angra dos 
Reis

0.3017 ± 
0.1287a

 0.1289 ± 
0.1057a

 0.2186 ± 
0.1497a

Cabo Frio 0.1886 ± 
0.0847b

 0.0946 ± 
0.0339a

 0.0976 ± 
0.0637b

a, b	Different letters in the same column indicate significant difference 
(p<0,05).

Another factor that may have influenced the total Hg 
concentrations in the two regions is the resurgence phenomenon. 
This phenomenon is characterized by the alteration of marine 
currents and, consequently, greater circulation of water. During 
the resurgence cold water currents rich in nutrients rise from the 
deepest areas of the oceans and at the same time movements 
of surface hot water currents can occur that go to the depths 
(PEREIRA et al. 2018). The encounter between the two currents 
leads to a high dispersion of nutrients and methylating bacteria 
present in the water, including contaminants, such as methyl 
mercury (LOHMANN and BELKIN 2014; COALE et al. 2018).
All concentrations obtained in this study were below the maximum 
limits established by Brazilian legislation for sea fish, which is 
1.0 mg/kg w.w. to carnivorous and 0.5 mg/kg w.w for the others 
species (BRAZIL, 2013a). Although the concentrations have 

not exceeded the maximum residue limits, studies evaluating 
the risk according to the daily or weekly consumption of this 
species by the population are necessary. This must be taken 
into account since the frequency of fish consumption varies 
according to the geographical region of the population. Riverside 
populations in the Amazon region reach a consumption per capita 
of approximately 148 kg/hab/year (OLIVEIRA 2010), while the 
average consumption in Latin America in 2017 was 10,5 kg/hab/
year (F.A.O. 2020). In addition, some samples from this study 
showed contamination levels above 0.7 mg/kg w.w, close to the 
maximum limit stipulated by legislation. 
This study has a great importance whereby mercury was 
determined in different geographical areas over different periods. 
Several interesting findings can be reached from this study: The 
data indicated that mercury levels differed significantly among 
the areas, and thropic level correlations with mercury, which 
benthonic and demersal species usually shows higher mercury 
levels due to their diet and feeding habits as demonstrate by Liu 
et al. (2014), Bonsignore et al. (2015) and Annual et al (2018). 
Another important factor that affects mercury contamination 
in fish is bioaccumulation process based on its bioavailability, 
uptake, and toxicokinetics according to Xu et al. (2018). Other 
additional recorded factors were physiological differences 
between different fish species, migration from unpolluted areas to 
relatively more polluted areas. Benthic species are more exposed 
to higher concentrations of methylmercury in the sediment (CHOI 
et al. 2019) and of their specific prey (JOHNSON et al. 2015). This 
reflected the area variations that may be due to the highest values 
of mercury in the marine environment where high methylation 
rates occurred (ALPERS et al. 2014; EAGLES-SMI et al. 2016). 

Conclusion

We can conclude that average concentration of total Hg has not 
exceed according to regulamentary limits. Mercury concentration 
were significantly affected by season and capture locations (Angra 
dos Reis, n=35 and Cabo Frio, n=99). Due to the high values 
observed in the skin, it can be inferred that the mercury adsorption 
mechanism, especially in the Angra dos Reis region, is the main 
route, suggesting that water may be a possible contamination 
vehicle. Also, it should be considered further studies including 
Provisional Tolerable Weekly Intake (PTWI) for this specie, 
especially when increase consumption, during summer.
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